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(29) Let Σ = {a, b}. Consider the register machine M given by the following program:

qS 7→ ?(0, a, q0, q1)

q0 7→ +(1, a, q2)

q1 7→ +(2, b, q2)

q2 7→ −(0, qH, qS)

qH 7→ ?(0, ε, qH, qH)

Assume that the register content of the registers indexed 0, 1, and 2 is abbaa, bbaa, and aaa, respectively.
Determine the first twelve snapshots of the computational sequence produced by this machine on the
given input. Will the computation eventually halt? If so, what are the halting time and the register
content at time of halting?

(30) Let Σ = {a} and consider the register machine given by the following program. Determine the operation
performed by this register machine.

qS 7→ −(0, q0, q3) q0 7→ +(2, a, q1) q1 7→ +(3, a, q4) q2 7→ +(2, a, q7)

q3 7→ ?(1, ε, q6, qH) q4 7→ +(4, a, q0) q5 7→ +(4, a, q3) q6 7→ −(2, q5, q7)

q7 7→ −(3, q2, q8) q8 7→ ?(4, a, q9, q3) q9 7→ +(2, a, q7) qH 7→ ?(0, ε, q8, q9)

[Remark. It helps to visualise the register machine with a diagram in the style of the graphical repre-
sentations of automata.]

(31) Consider the following operation: given a word w = a0...an, duplicate the final two letters, i.e., produce
a0...an−2an−1an−1anan; if w = ε, don’t do anything; if w = a, produce aa. Explicitly write down a
register machine M0 (giving all program lines in detail) that performs this operation.

Find a second machine M1 that is different from M0, strongly equivalent to M0, and has the same upper
register index. Find a third machine M2 that is different from M0, strongly equivalent to M0, and has
a different upper register index. Find a fourth machine M3 that is not strongly equivalent to M0, but
performs the same operation.

(32) Show that the question “Is the content of registers i and j the same?” can be answered by a register
machine and that the operation “Replace all occurrences of the letter a in register i by the letter b”
can be performed by a register machine. [In this example, you may use all operations performed and
questions answered by register machines from § 4.2; in particular, you do not have to present a complete
description of the program of the register machine.]

(33) We consider the following notions of equivalence between register machines M and M ′:

(i) The machines M and M ′ are operation equivalent if they perform the same operations.

(ii) The machines M and M ′ are function equivalent if for all k, they define the same partial functions
on Wk, i.e., if fM,k = fM ′,k.

(iii) The machines M and M ′ are weakly equivalent if they define the same languages, i.e., WM = WM ′

(where WM := dom(fM,1)).

Show that strong equivalence implies operation equivalence, operation equivalence implies function equiv-
alence, function equivalence implies weak equivalence, and that none of the implications can be reversed.



(34) Let Σ = {a, b, c}. Show without using the result from (42) that the language {anbncn ; n > 0} is
computable.

(35) Let X ⊆ Wk. In the lectures, we said that a total function f : Wk → W with the property

f(w⃗) ̸= ε ⇐⇒ w⃗ ∈ X

is a characteristic function of X and a partial function f : Wk 99K W with dom(f) = X a pseudo-
characteristic function of X. Show that X is finite if and only if every characteristic function of X is
computable if and only if every pseudocharacteristic function of X is computable.

(36) Show that the class of computable sets is closed under finite unions, but not under countable unions.

(37) Prove that the shortlex ordering is irreflexive, transitive, and trichotomous.

(38) Let Σ = {0, 1} with the ordering 0 < 1. On W = Σ∗, define the standard lexicographic order : w ≤lex w′

if either w ⊆ w′ or, if k is the least number such that w(k) ̸= w′(k), then w(k) < w′(k). Show that
(W,≤lex) is not isomorphic to (N,≤).

(39) Suppose that f : W → W is a total function that is increasing in the following sense: if v < w, then
f(v) < f(w) (where < is the shortlex ordering). Prove that if f is computable, then the range of f is
computable.

(40) Let Σ = {0, 1} with the ordering 0 < 1 and consider the Σ-words

w0 := 01010, w1 := 110101, w2 := 00111,

w3 := 100, w4 := 111110, and w5 := 11111.

Compute the following words:

(i) w0 ∗ w1;

(ii) (w2)(0);

(iii) (w3)(1);

(iv) (w4)(0) ∗ (w4)(1);

(v) s(w4);

(vi) s(w5);

(vii) u such that #(u) = #(w4) + #(w5);

(viii) u such that #(u) = #(w3) ·#(w5).

(41) Show that the following functions are primitive recursive:

(i) f(w) = v if and only if w = v = ε or #(w) = #(v) + 1;

(ii) f(w, v) = u if and only if #(w)−#(v) = #(u) or

(
#(v) > #(w) and u = ε

)
.

(42) Let Σ := {0,1,a,A, (, ),→}. Define a (natural) encoding of all grammars over the alphabet {0, 1} by
words in W = Σ∗, i.e., a function code that assigns elements of W to each word, string, production rule,
and grammar over {0, 1}. Re-visit the proof of Theorem 1.18 (“The word problem for noncontracting
grammars is solvable”) and transform it into a proof of the statement that

{(code(G), code(w)) ; G is a noncontracting grammar and w ∈ L(G)}

is a computable set. Conclude that if G is a noncontracting grammar, L(G) is a computable set.

[Suggestion. E.g., you could define the encoding by letting a0 stand for 0, a1 stand for 1, (A10001)
stand for the variable A17 (note that 10001 is 17 in binary), ((A10001)(A111) → a1a0(A10001))
stand for the production rule A17A7 → 10A17, etc.]
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