

Automata & Formal Languages Michaelmas Term 2023 Part II of the Mathematical Tripos University of Cambridge Prof. Dr. B. Löwe

Example Sheet #1

- (1) Let $R = (\Omega, P)$ be a rewrite system and $\alpha, \beta, \gamma \in \Omega^*$. Show that if $\alpha \xrightarrow{R} \beta$, then $\alpha \gamma \xrightarrow{R} \beta \gamma$. Show that the converse does not hold in general. What properties of P could guarantee that the converse holds?
- (2) Let Ω be a finite non-empty set of symbols. Give examples of rewrite systems $R = (\Omega, P)$ and $\alpha, \beta \in \Omega^*$ with the following properties:
 - (i) There is a unique derivation for $\beta \in \mathcal{D}(R, \alpha)$.
 - (ii) There are exactly two derivations for $\beta \in \mathcal{D}(R, \alpha)$.
 - (iii) There are infinitely many derivations for $\beta \in \mathcal{D}(R, \alpha)$.
- (3) Let $\Sigma := \{a, b\}$ and let $G = (\Sigma, V, P, S)$ and $G' = (\Sigma, V', P', S')$ be grammars. For each of the questions, give an example or argue that it is impossible to do so.
 - (i) Is it possible that G and G' are equivalent, but $\mathcal{D}(G, S) \neq \mathcal{D}(G', S')$?
 - (ii) Is it possible that $\mathcal{D}(G, S) = \mathcal{D}(G', S')$, but G and G' are not equivalent?
 - (iii) Is it possible that G and G' are equivalent, but not isomorphic?
 - (iv) Is it possible that G and G' are isomorphic, but $\mathcal{D}(G, S) \neq \mathcal{D}(G', S')$?
 - (v) Is it possible that G and G' are not equivalent, but $\mathcal{L}(G) \cap \{a\}^* = \mathcal{L}(G') \cap \{a\}^*$?
- (4) Let $\Sigma = \{a, b, c\}$. Show each of the following claims by producing an appropriate grammar that produces the given language. Explain why your grammar generates this language.
 - (i) The language consisting of words of the form $(abc)^n$ (for n > 0) is type 3.
 - (ii) The language consisting of words of the form $a^n bc^n$ (for $n \in \mathbb{N}$) is type 2.
 - (iii) The language consisting of words of the form $a^n b^n c^n$ (for n > 0) is type 1.

Are any of them of even higher type than listed?

(5) Let $G = (\Sigma, V, P, S)$ be any grammar. As in the lectures, a production rule $\alpha \to \beta$ is called *variable-based* if $\alpha \in V^*$. Suppose that $\alpha \to \beta$ is a noncontracting variable-based rule, say with $\alpha = A_1...A_n$ and $\beta = B_1...B_m$ for $A_i \in V$, $B_i \in \Omega$, and $n \leq m$. Let $X_1, ..., X_n$ be n new

variables that do not occur in V and consider the following list of 2n rules:

$A_1 A_2 A_3 \dots A_{n-2} A_{n-1} A_n$	$\rightarrow X_1 A_2 A_3 \dots A_{n-2} A_{n-1} A_n$
$X_1 A_2 A_3 \dots A_{n-2} A_{n-1} A_n$	$\rightarrow X_1 X_2 A_3 \ \dots \ A_{n-2} A_{n-1} A_n$
$X_1 X_2 A_3 \dots A_{n-2} A_{n-1} A_n$	$\rightarrow X_1 X_2 X_3 \ \dots \ A_{n-2} A_{n-1} A_n$
	:
$X_1 X_2 X_3 \dots X_{n-2} A_{n-1} A_n$	$\rightarrow X_1 X_2 X_3 \dots X_{n-2} X_{n-1} A_n$
$X_1 X_2 X_3 \dots X_{n-2} X_{n-1} A_n$	$\rightarrow X_1 X_2 X_3 \dots X_{n-2} X_{n-1} X_n B_{n+1} \dots B_m$
$X_1 X_2 X_3 \dots X_{n-2} X_{n-1} X_n B_{n+1} \dots$	$\dots B_m \to B_1 X_2 X_3 \dots X_{n-2} X_{n-1} X_n B_{n+1} \dots B_m$
$B_1 X_2 X_3 \ldots X_{n-2} X_{n-1} X_n B_{n+1} \ldots$	$\dots B_m \to B_1 B_2 X_3 \ \dots \ X_{n-2} X_{n-1} X_n B_{n+1} \ \dots \ B_m$
	÷
$B_1 B_2 B_3 \dots B_{n-2} X_{n-1} X_n B_{n+1} \dots$	$\dots B_m \to B_1 B_2 B_3 \dots B_{n-2} B_{n-1} X_n B_{n+1} \dots B_m$
$B_1 B_2 B_3 \dots B_{n-2} B_{n-1} X_n B_{n+1} \dots$	$\dots B_m \to B_1 B_2 B_3 \dots B_{n-2} B_{n-1} B_n B_{n+1} \dots B_m$

Show that each of these rules is context-sensitive and that replacing $\alpha \to \beta$ in P by this collection of 2n rules does not change the language produced by G. Use this to prove that a language is noncontracting if and only if it is context-sensitive.

- (6) Give an example of a class of languages that is closed under unions and intersections, but not under complementation.
- (7) In the lectures, we proved that the concatenation grammar of two grammars G and G' produces the concatenation of the two languages produced by G and G' under the assumption that they are variable-based and do not share any variables. Show that these assumptions are necessary by giving grammars G and G' such that the language produced by the concatenation grammar is not $\mathcal{L}(G)\mathcal{L}(G')$. Is the same true for the union grammar construction?
- (8) Construct deterministic automata by drawing transition diagrams which accept the following languages. Explain your answers.
 - (a) $\{w \in \{0,1\}^*; |w| > 2\};$
 - (b) $\{w \in \{0,1\}^*; w \text{ is a nonempty alternating sequence of 0s and 1s}\};$
 - (c) $\{w \in \{0,1\}^*; w \text{ is a multiple of } 3 \text{ when interpreted in binary}\};$
 - (d) $\{w \in \{0,1\}^*; w \text{ contains 01010 as a substring}\}.$
- (9) Consider the following nondeterministic automaton over the alphabet $\Sigma = \{0, 1\}$:

Convert it to a deterministic automaton with $2^3 = 8$ states using the power set construction. Can you simplify the deterministic automaton without changing the accepted language?

- (10) For each of the following languages $L \subseteq \{0,1\}^*$, determine whether or not they are regular. Justify your answers.
 - (a) $\{0^n 1^{2n}; n \ge 1\};$ (f) $\{0^n 1^m; n \neq m\};$ (b) $\{ww; \varepsilon \neq w \in \{0, 1\}^*\};$ (g) $\{0^n 1^m; n \ge m \text{ and } m \le 1000\};$ (c) $\{w1w; w \in \{0\}^*\};$ (h) $\{0^n 1^m; n \ge m \text{ and } m \ge 1000\};$ (d) $\{v1w; v, w \in \{0\}^*\};$
 - (e) $\{0^n 1^m; n > m\};$

- (i) $\{1^p; p \text{ is a prime}\}.$
- (11) Let $L \subseteq \{0^n 1^n; n \ge 1\}$. Show that L is regular if and only if L is finite.
- (12) Suppose that $G = (\Sigma, V, P, S)$ is a regular grammar with |V| = n. Prove that if G produces a word of length at least 2^{n+1} , then it produces infinitely many words.
- (13) In the lectures, we have seen two different constructions that prove that the class of regular languages is closed under unions: the union grammar and the product automaton construction. Take two grammars G and G' and form deterministic automata D and D', using the two mentioned constructions such that $\mathcal{L}(D) = \mathcal{L}(G) \cup \mathcal{L}(G') = \mathcal{L}(D')$. Compare the number of states that the automata D and D' have.