Unless explicitly asked to, you need not prove that any machine you construct defines the language you say it does. * denotes a harder problem.

1. Construct \(\epsilon \)-NFA’s and regular expressions for the following regular languages:

 (a) All words \(w \in \{0,1\}^* \) consisting of either the string 01 repeated some number of times (possibly none), or the string 010 repeated some number of times (possibly none).

 (b) All words \(w \in \{a,b,c\}^* \) consisting of some number of \(a \)'s (possibly none), followed by some number of \(b \)'s (at least one), followed by some number of \(c \)'s (possibly none).

 (c) All words \(w \in \{0,1\}^* \) which contain a 1 somewhere in the last 4 positions. If \(|w| < 4 \), then \(w \) must contain a 1 somewhere.

 (d) All words \(w \in \{a,\ldots,z,0,\ldots,9\}^* \) of the form \(\text{name:}\alpha.\text{address:}\beta \). Where might you use such a machine/expression, and why?

2. Give an \(\epsilon \)-NFA with the same language as that defined by each of the following regular expressions:

 \((0 + 1)(01) \) \hspace{1cm} \((a + bb)(ba^* + \epsilon) \) \hspace{1cm} \((aa^*)b^* + c \)

3. Prove that \(\{w \in \{0,1\}^* \mid w \text{ contains no more than 5 consecutive 0's} \} \) is regular.

4. Let \(R, S, T \) be regular expressions. For each of the following statements, either prove that it is true, or find a specific counterexample.

 \(\mathcal{L}(R(S + T)) = \mathcal{L}(RS) \cup \mathcal{L}(RT) \)

 \(\mathcal{L}((R^*)^*) = \mathcal{L}(R^*) \)

 \(\mathcal{L}((RS)^*) = \mathcal{L}(R^*S^*) \)

 \(\mathcal{L}((R + S)^*) = \mathcal{L}(R^*) \cup \mathcal{L}(S^*) \)

 \(\mathcal{L}((R^*S^*)^*) = \mathcal{L}((R + S)^*) \)

5. Use the pumping lemma to show that none of the following languages are regular:

 \(\{a^n b^n \mid n \geq 0 \} \)

 \(\{a^n b^{2n} \mid n \geq 0 \} \)

 \(\{ww \mid w \in \{0,1\}^* \} \)

\(Date: \) November 10, 2021.
(6) For each of the following languages, determine whether or not they are regular. Justify your answers.

(a) \(\{ xcx \mid x \in \{a, b\}^* \} \)
(b) \(\{ xcy \mid x, y \in \{a, b\}^* \} \)
(c) \(\{ a^n b^m \mid n > m \} \)
(d) \(\{ a^n b^m \mid n \geq m \text{ and } m \leq 1000 \} \)
(e) \(\{ a^n b^m \mid n \geq m \text{ and } m \geq 1000 \} \)
(f) \(\{ 1^p \mid p \text{ is a prime} \} \)

(7) Let \(L, M \) be languages over \(\Sigma \). We define the difference \(L - M \) to be the words that are in \(L \) but not \(M \). That is, \(L - M := (L \cup M) \setminus M \). Show that if \(L, M \) are both regular languages, then \(L - M \) is a regular language over \(\Sigma \).

Is \(\{ a^n b^m \mid n \neq m \} \) a regular language?

(8) Prove that no infinite subset of \(\{0^n 1^n \mid n \geq 0 \} \) is a regular language.

(9) Find minimal DFA’s for each of the following languages. In each case, prove that your DFA is minimal.

(a) \(\{ a^n \mid n \geq 0, n \neq 3 \} \)
(b) \(\{ a^m b^n \mid m \geq 2, n \geq 3 \} \)
(c) \(\{ a^m b \mid m \geq 0 \} \cup \{ b^n a \mid n \geq 0 \} \)

(10) If \(D_1 = (Q, \Sigma, \delta, q_0, F) \) is a minimal DFA, and \(D_2 = (Q, \Sigma, \delta, q_0, Q \setminus F) \) is a DFA for \(\Sigma^* \setminus \mathcal{L}(D_1) \), then is \(D_2 \) necessarily a minimal DFA? Prove your answer.

(11) Find a DFA which accepts \(\{ w \in \{0, 1\}^* \mid w \text{ is a multiple of 3 when interpreted in binary} \} \).
Compute the remainder, mod 3, of the following binary number: 1011011000110101011011. Convert your DFA to a regular expression accepting the same language.

(12) Let \(D \) be a DFA with \(N \) states. Prove the following:
(a) If \(D \) accepts at least one word, then \(D \) accepts a word of length less than \(N \).
(b) If \(D \) accepts at least one word of length \(\geq N \), then \(D \) accepts infinitely many words.

(13) Show that the language \(L := \{ w01^n \mid w \in \{0, 1\}^*, n \in \mathbb{N} \} \cup \{1\}^* \) satisfies the pumping lemma for regular languages. Is \(L \) a regular language?

(14) Give an algorithm that, on input of a DFA \(D \), decides if \(\mathcal{L}(D) = \emptyset \) or not.

(15*) Give an algorithm that, on input of DFA’s \(D_1, D_2 \), decides if \(\mathcal{L}(D_1) \subseteq \mathcal{L}(D_2) \) or not.
(You may appeal to results from the lectures.)

(16*) For any \(X \subseteq \{1\}^* \), show that \(X^* \) is a regular language.