

PART II AUTOMATA AND FORMAL LANGUAGES
MICHAELMAS 2015-16
EXAMPLE SHEET 1

* denotes a harder problem.

- (1) Give an example of a register machine, either via a program diagram or a sequence of instructions, for computing each of the following functions.
 - (a) $f(n) = n + 3$
 - (b) $f(n) = 3n$
 - (c) $f(m, n) = mn$
 - (d) $f(m, n) = m \bmod n$
 - (e) $f(m, n) = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$
- (2) Draw a program diagram for each of the following sequences of instructions, and identify the upper register index of each program. Also, for the specified n , write down the function on n variables that the program computes.
 - (a) $(1, +, 2), (1, +, 0)$. $n = 1$.
 - (b) $(1, -, 2, 5), (2, +, 3), (3, +, 4), (4, +, 1), (3, -, 6, 0), (2, -, 7, 8), (1, +, 6), (4, -, 9, 11), (5, +, 10), (2, +, 8), (5, -, 12, 5), (4, +, 11)$. $n = 1$.
 - (c) $(2, +, 2), (4, +, 3), (3, -, 5, 7), (1, -, 9, 10), (5, +, 6), (8, +, 3), (3, +, 0), (1, +, 8)$. $n = 4$.
- (3) Show that the following functions can be built up as total recursive functions from the basic functions via composition, recursion and minimisation.
 - (a) $f(a, b, c, x) = ax^2 + bx + c$
 - (b) $f(n) = n!$
 - (c) $f(m, n) = m \bmod n$
- (4) Use Church's thesis to show there is an algorithm that, on input of a register machine program P , halts iff P halts on *some* input in *some* number of variables.

(5) Let E be an infinite subset of \mathbb{N} . Use Church's thesis to show that E is recursive iff there is a strictly increasing total recursive function $f : \mathbb{N} \rightarrow \mathbb{N}$ whose image is precisely E .

(6) Use Church's thesis to show that the set of prime numbers is recursive.

(7) Use Church's thesis to show there is an algorithm that, on input of an integer n , outputs the prime factorisation of n .

(8) Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a total bijective function. Show that f is total recursive iff f^{-1} is total recursive.

(9*) We define *Cantor's pairing function* $\langle \cdot, \cdot \rangle : \mathbb{N}^2 \rightarrow \mathbb{N}$ by

$$\langle x, y \rangle := \frac{1}{2}(x+y)(x+y+1) + y$$

and its natural extension, $\langle \cdot, \dots, \cdot \rangle_k : \mathbb{N}^k \rightarrow \mathbb{N}$, inductively via

$$\langle x_1, \dots, x_k \rangle_k := \langle \langle x_1, \dots, x_{k-1} \rangle_{k-1}, x_k \rangle$$

(a) Show that $\langle \cdot, \cdot \rangle$ is a total bijection from $\mathbb{N}^2 \rightarrow \mathbb{N}$.

(b) Show that $\langle \cdot, \cdot \rangle$ is a total computable function.

(c) Show that $\langle \cdot, \dots, \cdot \rangle_k : \mathbb{N}^k \rightarrow \mathbb{N}$ is a total computable bijection.

(d) Give an explicit total computable bijection $g : \mathbb{N} \rightarrow \bigcup_{i=1}^{\infty} \mathbb{N}^i$, in terms of $\langle \cdot, \dots, \cdot \rangle_k^{-1}$.

(e) Show that there is a total computable function $h : \mathbb{N}^2 \rightarrow \mathbb{N}$ such that, for each m, k , the partial computable function $f_{m,k}$ satisfies:

$$f_{m,k}(x_1, \dots, x_k) = f_{h(m,k),1}(\langle x_1, \dots, x_k \rangle_k)$$

(f) Show that with $\langle \cdot, \dots, \cdot \rangle_k : \mathbb{N}^k \rightarrow \mathbb{N}$ we can produce all multi-variable partial computable functions from just the one-variable ones.