Example Sheet 4

Renewal theory and applications.

1. A cinema in Camford shows one movie at a time, which is changed after a time uniformly distributed in $[0,3]$ (months). Purchasing the rights to a new movie costs $£ 10,000$. How much have they spent after 5 years?

Suppose that a given customer goes to the movies at rate once every two months, but only walks into the cinema if the movie is less than one month old. In 5 years, how many movies has she seen? What if the time to change a movie is exponentially distributed with mean 1.5 months?
2. Suppose that the lifetime of a car is a random variable with density function f. Mr. Smith buys a new car as soon as the old one breaks down or reaches T years. A new car costs $£ c$, while an additional $£ a$ is incurred if the car breaks down before T. In the long-run, how much does Mr. Smith spend on his cars per unit time?
3. Let $\left(X_{t}\right)_{t \geq 0}$ be a renewal process with interarrival times having the Gamma $(2, \lambda)$ distribution. Determine the limiting excess distribution. Determine also the expected number of renewals up to time t.
4. A barber takes an exponentially distributed amount of time, with mean 20 minutes, to complete a haircut. Customers arrive at rate 2 per hour, but leave if both chairs in the waiting room are full. Make a Markov chain model on the state space $\{0,1,2,3\}$. Then using Little's formula, find the average waiting time in the system (including his service time) of a customer.

Spatial Poisson processes.

5. In a certain town at time $t=0$ there are no bears. Brown bears and grizzly bears arrive as independent Poisson processes B and G with respective intensities β and γ.
(a) Show that the first bear is brown with probability $\beta /(\beta+\gamma)$.
(b) Find the probability that between two consecutive brown bears, there arrive exactly r grizzly bears.
(c) Given that $B(1)=1$, find the expected value of the time at which the first bear arrived.
6. Campbell-Hardy theorem. Let Π be the points of a non-homogeneous Poisson process on \mathbb{R}^{d} with intensity function λ. Let $S=\sum_{x \in \Pi} g(x)$ where g is a smooth function which we assume for convenience to be non-negative. Show that $\mathbb{E}(S)=\int_{\mathbb{R}^{d}} g(u) \lambda(u) d u$ and $\operatorname{var}(S)=\int_{\mathbb{R}^{d}} g(u)^{2} \lambda(u) d u$, provided these integrals converge.
7. Let Π be a Poisson process with constant intensity λ on the surface of the sphere of \mathbb{R}^{3} with radius 1 . Let P be the process given by the (X, Y) coordinates of the points projected on a plane passing through the centre of the sphere. Show that P is a Poisson process, and find its intensity function.
8. Repeat the previous exercise, when Π is a homogeneous Poisson process on the ball $\left\{\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1\right\}$.
