
Examiner:

1 Analysis of Functions
Let di : (0, 1]→ {0, 1} where di(x) is the i-th digit of x in base 2, writing always the

developments with an infinite number of 1 to remove ambiguity. Define ri(x) = 2di(x)− 1
(Rademacher’s function) and sn(x) =

∑n
i=1 ri(x). Denote µ the Lebesgue measure.

1. State the definition of simple functions, and prove that they are dense in L1(R).

2. State and prove Chebychev’s inequality.

3. Prove that
∫ 1
0 sn(x) dx = 0, that

∫ 1
0 ri(x)rj(x) dx = 0 for i 6= j and

∫ 1
0 (sn)2 dx = n.

4. Prove that limn→∞ µ({x ∈ (0, 1] | |( 1
n

∑n
i=1 di(x))− 1

2 | > ε}) = 0.

5. Prove that
∫ 1
0 (sn(x))4 dx 6 3n2 and deduce µ({x ∈ (0, 1] | |sn(x)| > nε}) 6 3

n2ε4
.

6. Prove (Borel’s theorem) that N = {x ∈ (0, 1] | limn→∞
1
nsn = 0} has measure

1. [Hint: Choose εn s.t. 1
n2ε4n

is summable and compare I \ N and ∪{x ∈
(0, 1] | |sn(x)| > nεn}.]

1 Analysis of Functions
Integration in R and R2 is done with the standard Lebesgue measure.

1. Recall the definitions of the Fourier transform Ff the Fourier transform of f ∈
L1(R), and the Fourier-Plancherel transform ĝ of g ∈ L2(R). Prove that if u ∈ L2(R)
and v ∈ L1(R), the Fourier-Plancherel transform of u ∗ v exists and equals û · Fv.

2. For which p ∈ [1,+∞] do we have N ∈ Lp(R2) where N(x, y) :=
χx 6=y

y−x ?

3. Prove that φ : ∆ = {(a, b) ∈ R2 | 0 6 a 6 b} defined by φ(a, b) =
∫ b
a

sin t
t dt is

continuous and bounded. [Hint: We remind the following result that can be used
without proof: the improper integral

∫ +∞
0

sin t
t dt exists and is π/2.]

4. Show that the Fourier transform Fgk of gk := χ1/k<|x|<k
1
πx for k > 1, is well-defined

and bounded independently of k, and converges pointwise to a certain function g.

5. Prove that if f ∈ L2(R), the convolution f ∗ gk converges in L2(R) to a function
H(f) ∈ L2(R) (called the Hilbert transform of f).

6. Prove that ‖H(f)‖L2(R) = ‖f‖L2(R) and H(H(f)) = −f .

(*) Bonus: not needed to get full mark on the question. Consider f ∈ L1(R) so that
Fy(x) := N(x, y)f(x) is integrable for almost every y ∈ R. Prove that f is zero
almost everywhere. [Hint: Use Lesbegue’s differentiation Theorem.]
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Examiner:

1 Analysis of Functions
Recalls: A topological space is separable if it contains a countable dense subset. The

dual E′ of a normed vector space E is the space of continuous linear forms on E.

1. Give (without proof) a countable dense subset of Lp(R) when p ∈ [1 +∞).

2. Prove that L∞(R) is not separable.

3. Prove that if the dual E′ of normed vector space E is separable then E itself is
separable. [Hint: Use the Hahn-Banach Theorem.]

4. Prove that L1(R) is not the dual space of L∞(R).

5. Recall what is the generalised derivative D(f) of a function f ∈ L2(R).

6. For f ∈ L2(R) and h > 0 define τhf ∈ L2(R) by τhf(x) := f(x + h). Assume that
there is C > 0 s.t. ‖τhf − f‖L2(R) 6 C|h| for all h > 0, then prove that D(f) is an

L2(R) function and τhf−f
h converges to D(f) in the weak L2(R) topology as h→ 0.
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