Algebraic Topology, Examples 2

Michaelmas 2017

1. Let X be a Hausdorff space, and G a group acting on X by homeomorphisms,
freely (i.e. if g € G satisfies g - x = = for some z € X, then g = e) and properly
discontinuously (i.e. each z € X has an open neighbourhood U > x such that {g €
G| g(U)NU # o} is finite).

(a) Show that the quotient map X — X/G is a covering map.

(b) Deduce that if X is simply-connected and locally path-connected then for any
point [z] € X/G we have an isomorphism of groups m(X/G, [z]) & G.

(c) Hence show that for any m > 2 there is a space X with fundamental group
Z/m and universal cover S3. [Hint: Consider S* as the unit sphere in C?.]

[You may use the fact that S® is simply connected without proof.]

2. Show that the inclusion 7 : (S* x {1}) U ({1} x S*) < S* x S! does not admit a
retraction. [As usual, think of S C C, the elements of unit modulus, containing 1.]

3. Consider X = S v S! with basepoint zy the wedge point, which has 7 (X, zy) =
(a,b) where a and b are given by the two characteristic loops. Describe covering
spaces associated to:

(a) ((a)), the normal subgroup generated by a;
(b) (a), the subgroup generated by «;

(c) the kernel of the homomorphism ¢ : (a,b) — Z/4 given by ¢(a) = [1] and
¢(b) = 3] = [-1].

Show that the free group on two letters contains a copy of itself as a proper subgroup.

4. Consider the 2-dimensional cell complex Y obtained from X in the previous
question by attaching 2-cells along loops in the homotopy classes a? and b2, so that

m (Y, zo) = (a, b|a2,bz>.

(a) Construct (in pictures) the covering space of Y corresponding to the subgroup
(ala?).
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(b) Construct (in pictures) the covering space of Y corresponding to the kernel of
the homomorphism ¢ : (a,b|a? b*) — Z/2 given by ¢(a) = 1 and ¢(b) = 0.
Hence show that Ker(¢) is isomorphic to (a,b|a?, b%).

5. Show that the groups
G={a,b|a*»?) and H = (z,y|aryzy ‘v 'y

are isomorphic. Show that this group is non-abelian and infinite.

[Hint: Construct surjective homomorphisms to Sy and 7Z.]

6. The Klein bottle is the surface obtained from the following identification diagram.

.
-

<
3

-
-

Show that the Klein bottle has a cell structure with a single 0-cell, two 1-cells, and
a single 2-cell. Deduce that its fundamental group has a presentation (a,b|baba™'),
and show this is isomorphic to the group in Q13 of Sheet 1.

7. Consider the following configurations of pairs of circles in S (we have drawn them
in R3; add a point at infinity).

By computing the fundamental groups of the complements of the circles, show there
is no homeomorphism of S? taking one configuration to the other.
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8. Let f: X — Y be a continuous map. The mapping cylinder of f is the space
My = (X x[0,1])UY)/~

where ~ is the finest equivalence relation such that (z,1) ~ f(x). Let  be the unique
map from X to a point. Assuming that Y is contractible, show that there is a pair
of homotopy equivalences

Mngf; Mgi}Mf

so that ¢ o ¢ is homotopic to the identity relative to X x {0} C M, and ¢ o ¢ is
homotopic to the identity relative to X x {0} C M.

9. A graph G is a 1-dimensional cell complex. A tree is a graph which is contractible.
A tree T inside a graph G is mazimal if no strictly larger subgraph is a tree. You
may assume that every graph has a maximal tree.

(a) If T C G is a tree, show that the quotient map G — G/T is a homotopy
equivalence. Hence show that every connected graph is homotopy equivalent to
a graph with a single vertex. [Hint: Use question 8./

(b) Show that the fundamental group of a graph with one vertex, based at the
vertex, is a free group with one generator for each edge of the graph. Hence
show that any free group occurs as the fundamental group of some graph. [We
have not required that a graph have finitely many edges.]

(c¢) Deduce that a subgroup of a free group is free. [You may use without proof the
fact that a covering space of a graph is again a graph.]
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