
Algebraic Topology 2004 Example Sheet 3x
Sample Solution

Here is a sample solution for problem 7 for the two-holed torus, which is by far the
most complicated of the examples (but the ordinary torus is still too complicated
to compute blindly with matrices). The computation depends on the triangulation
chosen for problem 1. Here is one possibility:
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There is nothing in particular that is special about this triangulation – it’s just
the first one I happened to draw. It might be that there is another one that would
make this problem easier. If you picked a triangulation that doesn’t posses any sort
of pattern, I would guess that it could make the problem a lot harder.

Since we only have 0, 1, and 2 simplices, we have that the homology is zero
except in degrees 0, 1, and 2.

Computing H2
∼= Z:

Since C3 = 0, we just need to compute Z2, and then H2 = Z2. Let

z =
∑

av0,v1,v2 cv0,v1,v2

where the sum ranges over the set of 2-simplices {v0, v1, v2}, and suppose dz = 0.

Example Sheet 3x continues on the next page.
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Algebraic Topology 2004 Example Sheet 3x p. 2

The signs in this problem are easier if instead of following our vertex order for
the simplices in the sum above, we go clockwise around each 2-simplex in the
picture, e.g., using c1,11,10 rather than c1,10,11 (= −c1,11,10).

First we’ll show that each av0,v1,v2 is determined by a0,1,10. Then we’ll show
that there is a cycle with a0,1,10 = 1 (which is then necessarily unique). It will
follow that every cycle is a multiple of the one with a0,1,10 = 1, and H2

∼= Z.
Since we have assumed that dz = 0, we must have a1,11,10 = a0,1,10 since

{0, 1, 10} and {1, 10, 11} are the only 2-simplices that have the face {1, 10}
– the differential on c1,11,10 gives a summand −c1,10 and the differential of
c0,1,10 gives a summand of c1,10. Likewise, we must have a1,2,11 = a1,10,11,
. . . , a0,10,9 = a7,0,9. Looking at the remaining 2-simplices, we must have
a9,10,25 = a0,10,9 = a0,1,10, and continuing around clockwise, we have a10,11,25 =
a9,10,25,. . . , a23,24,25 = a22,23,25. Thus, if z is a cycle, then the coefficients of all
the 2-simplices are determined by a0,1,10.

Finally, consider the chain x with a0,1,10 = 1 and the rest of the coefficients
as above (1 = a1,11,10 = · · · = a0,10,9 = a9,10,25 = · · · = a23,24,25). Then by the
analysis above, in dx the coefficients of the “inner edges” (the 1-simplices not
making up the edges A, B, C, D) are all zero. For the “outer edges”, starting
at the vertex 0 on the copy of A on the left, each outer edge {v, w} occurs in
exactly two 2-simplices: one is v, w, p for some p ∈ {9, . . . , 24} and the other is
w, v, q for some q ∈ {9, . . . , 24}. It follows that in dx, the coefficient of cv,w is
also zero, and so dx = 0.

Computing H0
∼= Z:

(We’ll return to H1 below.)
Every 0-chain is a zero cycle, so H0 = C0/B0. Since dc0,1 = c1− c0, we have

that c0 and c1 represent the same element of H0. Likewise looking at each of the
edges around the outside, we see that c2, . . . , c8 all represent the same element
as c0 in H0. Since dc0,9 = c9 − c0, c9 represents the same element as c0 in H0,
and looking at the edges in the 9, 10, . . . , 24 circle, we see that c10, . . . , c24 all
represent the same element as c0 in H0. Finally, since dc9,25 = c25 − c9, we see
that c25 represents the same element as c0 in H0. It follows that H0 is generated
by the image of c0.

To see that H0
∼= Z, consider the homomorphism f :C0 → Z that takes a 0-

chain
∑

ai ci to
∑

ai. Since for any 1-simplex {v, w}, f(dcv,w) = f(cw−cv) = 0,
f is zero on the boundaries. It follows that f factors through H0. Since f(c0) = 1
and H0 is generated by c0, H0 must be the free on c0. (And the homomorphism
f is an isomorphism.)
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Algebraic Topology 2004 Example Sheet 3x p. 3

Computing H1
∼= Z⊕ Z⊕ Z⊕ Z:

The more refined answer is that H1 is the free abelian group on the cycles “A”,
“B”, “C” and “D”:

A = c0,1 + c1,2 + c2,0,

B = c0,3 + c3,4 + c4,0,

C = c0,5 + c5,6 + c6,0,

D = c0,7 + c7,8 + c8,0.

First we need to show that these generate H1.
Let z be a 1-cycle. First we show that z represents the same element in H1

as a 1-cycle z′ where the coefficients of c9,25, . . . , c24,25 are all zero. Suppose
z has coefficients a9,25, . . . , a24,25 for these, and let

z′ = z + a9,25 dc9,10,25 + (a10,25 − a9,25) dc10,11,25

+ (a11,25 − a10,25 + a9,25) dc11,12,25

+ · · ·+ (a24,25 − a23,25 + · · · − a9,25) dc24,9,25.

It’s clear that z and z′ represent the same element of H1. By construction,
the coefficients of c10,25, . . . , c24,25 in z′ are zero, and the coefficient of c9,25 is
a24,25− a23,25 + · · ·+ a10,25. On the other hand, since the differential of z′ is
zero and these are the only generators whose differential contains a summand
of c25, we must have that the coefficient of c9,25 is zero.

Next observe that z′ represents the same element in homology as a 1-cycle
z′′ with the coefficients of c9,10, . . . , c24,9 also all zero – we just add multiples
of c0,10,9, c1,11,10, c0,12,11, . . . to cancel them.

Next, for z′′ as above, the coefficient of c0,10 must be equal to minus
the coefficient of c1,10 since the coefficient of c10 in dz′′ is zero, so add that
multiple of dc0,1,10 to get a new cycle (representing the same element of
homology) with the coefficient of c0,10 also zero. Next add a multiple of
dc1,2,11 to make the coefficient of c1,11 also zero, and in the resulting cycle,
we must have that the coefficient of c2,11 is minus the coefficient of c0,11 (since
the coefficient of c11 in the cycle’s differential is zero); we add a multiple of
dc2,0,11. By the same argument (seven more times), we can go around the
outer ring adding boundaries, until we get a cycle z′′′ (representing the same
element of H1) where non-zero coefficients only occur for (possibly) c0,1,
c1,2, c2,0, c0,3, c3,4, c4,0, c0,5, c5,6, c6,0, c0,7, c7,8, and c8,0. Looking at the
coefficient of c1 in dz′′′, we see that the coefficients of c0,1 and c1,2 must be
equal. Looking at the coefficient of c2 in dz′′′, we see that the coefficients
of c1,2 and c2,0 must be equal. Likewise, the coefficients of c0,3, c3,4, c4,0

must be equal to each other (but not nec. to those of c0,1, c1,2, c2,0), the
coefficients of c0,5, c5,6, c6,0 must be equal, and the coefficients of c0,7, c7,8,
c8,0 must be equal. Thus, z′′′ is a linear combination of A, B, C, and D.
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Next we need to see that they are independent: If pA + qB + rC + sD = 0 (in
H1) for integers p, q, r, s, then p = q = r = s = 0. So suppose there is a 2-chain
x with dx = pA + qB + rC + sD (in C1).

Proof 1.
Write x =

∑
av0,v1,v2cv0,v1,v2 . Let a = a1,2,11. Looking at the coefficient

of c2,11 in dx, we must have a2,0,11 = a. Looking at the coefficient of c0,11

in dx, we must have that a0,12,11 = a. looking at the coefficient of c0,12 in
dx, we must have that a0,3,12 = a. And so on. We see that the coefficient
for any 2-simplex in the outer ring is a. We have p = a1,2,11 − a2,1,15,
q = a3,4,13 − a4,3,17, r = a5,6,19 − a6,5,23, and s = a7,8,21 − a8,7,9, which must
then all be zero.

Proof 2.
A,B, C, D are generators for homology with coefficients in R (by the same
argument as above) and the equation dx = pA+ qB = rC + sD still holds in
C1(K, R). So it suffices to show that H1(K, R) is four dimensional. (The rest
of this paragraph is in terms of real coefficients.) We have that the kernel
of d:C2 → C1 is 1-dimensional and C2 is 56 dimensional (by counting the
2-simplices), so the image of the differential, B1, is 55 dimensional. We have
that C1 is 84-dimensional (by counting the 1-simplices). We have that C0

is 26-dimensional, and so the image of the differential d:C1 → C0 must be
25-dimensional (since the quotient is 1-dimensional), and so the kernel of the
differential, Z1, must be 84− 25 = 59 dimensional. It follows that Z1/B1 is
59− 55 = 4 dimensional.

Proof 3.
The preceding two proofs worked well in this case, but don’t work as well
when there is torsion (when the homology is not a free abelian group). Here
is a trick that works more generally and can be adapted to the case of P2,
where you would look for an appropriate homomorphism with target Z/2.
Consider the homomorphism α:C1 → Z that takes a 1-chain

∑
av0,v1cv0,v1

to the integer

a1,2 + a1,11 + a10,11 − a11,25 − a12,25 − a13,25 − a14,25 − a14,15 − a2,15

Looking at 2-simplices cv0,v1,v2 , it is easy to check that α(dcv0,v1,v2) = 0 –
the only ones where it could possibly be non-zero are c1,2,11, c1,11,10, c10,11,25,
c11,12,25, c13,14,25, c14,15,25, c2,15,14, and c2,1,15, which can be checked by hand.
So α(dx) = 0. But α(A) = 1, α(B) = 0, α(C) = 0, and α(D) = 0, so p = 0.

The same kind of trick defines homomorphisms β, γ, and δ which are
zero on boundaries and are one on exactly one of B, C, D and are zero on
the remaining ones and also on A. Applying these functions to the equation
dx = pA + qB + rC + sD then shows that q = 0, r = 0, and s = 0.

End of Example Sheet 3x.
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