Algebraic Topology 2004 Example Sheet 3x
Sample Solution

Here is a sample solution for problem 7 for the two-holed torus, which is by far the
most complicated of the examples (but the ordinary torus is still too complicated
to compute blindly with matrices). The computation depends on the triangulation
chosen for problem 1. Here is one possibility:
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There is nothing in particular that is special about this triangulation — it’s just
the first one I happened to draw. It might be that there is another one that would
make this problem easier. If you picked a triangulation that doesn’t posses any sort
of pattern, I would guess that it could make the problem a lot harder.

Since we only have 0, 1, and 2 simplices, we have that the homology is zero
except in degrees 0, 1, and 2.

Computing He = Z:

Since C's = 0, we just need to compute Z5, and then Hy = Z5. Let
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where the sum ranges over the set of 2-simplices {vg, v1, v2}, and suppose dz = 0.
Example Sheet 3x continues on the next page.
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The signs in this problem are easier if instead of following our vertex order for
the simplices in the sum above, we go clockwise around each 2-simplex in the
picture, e.g., using ¢1,11,10 rather than ¢; 1011 (= —c¢1.11,10)-

First we’ll show that each ay, v, v, 15 determined by ag 1,10. Then we’ll show
that there is a cycle with ag ;10 = 1 (which is then necessarily unique). It will
follow that every cycle is a multiple of the one with ap 1,10 = 1, and Hy = Z.

Since we have assumed that dz = 0, we must have a; 11,10 = @o,1,10 since
{0,1,10} and {1,10,11} are the only 2-simplices that have the face {1,10}
— the differential on c¢y,11,10 gives a summand —c; 19 and the differential of
C0,1,10 giVGS a summand of C1,10- Likewise, we must have a1,2,11 = ai,10,11,

.., Qp,10,9 = a7,09. Looking at the remaining 2-simplices, we must have
a9.10,25 = @0,10,9 = @0,1,10, and continuing around clockwise, we have a9, 11,25 =
@9.10,25,- - -, G23,24,25 = A22.23,25. Lhus, if 2 is a cycle, then the coefficients of all
the 2-simplices are determined by ag 1.10-

Finally, consider the chain x with ap 1,10 = 1 and the rest of the coefficients
as above (1 =dai,11,10 = = A0,10,9 = a9,10,25 = *** = 023’24’25). Then by the
analysis above, in dx the coefficients of the “inner edges” (the 1-simplices not
making up the edges A, B, C, D) are all zero. For the “outer edges”, starting
at the vertex 0 on the copy of A on the left, each outer edge {v,w} occurs in
exactly two 2-simplices: one is v, w,p for some p € {9,...,24} and the other is
w, v, q for some g € {9,...,24}. It follows that in dz, the coefficient of ¢, ,, is
also zero, and so dxr = 0.

Computing Hy = Z:

(We’ll return to Hy below.)

Every 0-chain is a zero cycle, so Hy = Cyy/By. Since dcy 1 = ¢1 — ¢o, we have
that cg and c; represent the same element of Hy. Likewise looking at each of the
edges around the outside, we see that cs, ..., cg all represent the same element
as c¢o in Hy. Since dcg g9 = cg — cp, cg represents the same element as ¢y in Hy,
and looking at the edges in the 9,10,...,24 circle, we see that cyq,...,co4 all
represent the same element as ¢y in Hy. Finally, since deg o5 = ca5 — g, We see
that co5 represents the same element as ¢y in Hy. It follows that Hy is generated
by the image of cg.

To see that Hy = Z, consider the homomorphism f:Cy — Z that takes a 0-
chain > a; ¢; to > a;. Since for any 1-simplex {v, w}, f(dcyw) = flcw—cy) =0,
f is zero on the boundaries. It follows that f factors through Hy. Since f(cp) =1
and Hy is generated by ¢, Hy must be the free on ¢y. (And the homomorphism
f is an isomorphism.)
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Computing H1 2 Z S Z S 7L d Z:

The more refined answer is that H; is the free abelian group on the cycles “A”,
“B”, “C” and “D”:

A=co1+ci2+c20,

B =co3+c3,4+cap0,

C =co5+cs6+ o0,

D =co7+cr8+ cspo-
First we need to show that these generate H;.

Let z be a 1-cycle. First we show that z represents the same element in H;
as a 1-cycle 2z’ where the coefficients of cg o5, . .., €24,25 are all zero. Suppose
z has coefficients ag 25, . .., a24 25 for these, and let

/
2=z 4 ag,25 dcg 10,25 + (a10,25 — a9,25) dci0,11,25
+ (a11,25 — a10,25 + a9,25) dci1,12,25
+ -+ (ag425 —ag3,25 + -+ — a9 25) dca4.9,25.

It’s clear that z and 2’ represent the same element of Hi. By construction,
the coefficients of ¢1¢,25, . . ., C2425 in 2’ are zero, and the coefficient of cg o5 is
24,25 — A23,25 + - - - + a10,25. On the other hand, since the differential of 2’ is
zero and these are the only generators whose differential contains a summand
of cg5, we must have that the coefficient of cg 25 is zero.

Next observe that z’ represents the same element in homology as a 1-cycle
2" with the coefficients of ¢g 10, . . ., c24,9 also all zero — we just add multiples
of €0,10,9, C1,11,10, €0,12,11; - - - to cancel them.

Next, for z” as above, the coefficient of ¢y 19 must be equal to minus
the coefficient of ¢; 19 since the coefficient of c¢1o in dz” is zero, so add that
multiple of dcp 1,10 to get a new cycle (representing the same element of
homology) with the coefficient of ¢g 19 also zero. Next add a multiple of
dci 211 to make the coefficient of ¢; 17 also zero, and in the resulting cycle,
we must have that the coefficient of ¢ 11 is minus the coefficient of ¢¢ 11 (since
the coefficient of c17 in the cycle’s differential is zero); we add a multiple of
dcg0,11. By the same argument (seven more times), we can go around the
outer ring adding boundaries, until we get a cycle 2"’ (representing the same
element of Hy) where non-zero coefficients only occur for (possibly) co 1,
1,2, €2,05 C0,3, C3,4, C4,0, C0,5, C5,65 C6,05 C0,7, C7,8, and cgo. Looking at the
coefficient of ¢; in dz’’, we see that the coefficients of ¢y 1 and ¢1 2 must be
equal. Looking at the coefficient of ¢y in dz”’, we see that the coefficients
of ¢;2 and cp 9 must be equal. Likewise, the coefficients of ¢y 3, ¢34, ca
must be equal to each other (but not nec. to those of ¢y 1, 12, ¢20), the
coefficients of ¢y 5, ¢56, c6,0 must be equal, and the coefficients of ¢y 7, c7 3,
cs,0 must be equal. Thus, 2" is a linear combination of A, B, C, and D.
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Next we need to see that they are independent: If pA + ¢B + rC + sD = 0 (in
H,) for integers p,q,r,s, then p = g =r = s = 0. So suppose there is a 2-chain
x with de = pA+¢B +rC + sD (in Cy).

Proof 1.

Write & = ) ayg vy ,00Co0,01,05- L€t @ = a1211. Looking at the coefficient
of c211 in dx, we must have as 11 = a. Looking at the coefficient of ¢y 11
in dr, we must have that ag 12,11 = a. looking at the coefficient of ¢y 12 in
dx, we must have that ap 312 = a. And so on. We see that the coeflicient
for any 2-simplex in the outer ring is a. We have p = a1211 — a2,1,15,
q = 03,4,13 — (43,17, T = G5,6,19 — 065,23, and s = a7 g 21 — ag,79, which must
then all be zero.

Proof 2.

A, B,C, D are generators for homology with coefficients in R (by the same
argument as above) and the equation dx = pA+ ¢B = rC + sD still holds in
C1(K,R). So it suffices to show that H; (K, R) is four dimensional. (The rest
of this paragraph is in terms of real coefficients.) We have that the kernel
of d:Cy — (4 is 1-dimensional and Cs is 56 dimensional (by counting the
2-simplices), so the image of the differential, By, is 55 dimensional. We have
that C7 is 84-dimensional (by counting the 1-simplices). We have that Cj
is 26-dimensional, and so the image of the differential d: C; — Cy must be
25-dimensional (since the quotient is 1-dimensional), and so the kernel of the
differential, Z;, must be 84 — 25 = 59 dimensional. It follows that Z;/Bj is
59 — 55 = 4 dimensional.

Proof 3.

The preceding two proofs worked well in this case, but don’t work as well
when there is torsion (when the homology is not a free abelian group). Here
is a trick that works more generally and can be adapted to the case of P?,
where you would look for an appropriate homomorphism with target Z/2.

Consider the homomorphism a: C; — Z that takes a 1-chain ) ay, vy Cog 0,
to the integer

ai1,2 +ai11 + a10,11 — A11,25 — 412,25 — A13,25 — (14,25 — A14,15 — 42,15

Looking at 2-simplices ¢y, v, s, it 1S easy to check that a(dcy, v, 0,) = 0 —
the only ones where it could possibly be non-zero are ¢; 2,11, ¢1,11,10, C10,11,25,
C11,12,25, C13,14,25, C14,15,25, €2,15,14, and C2.1,15, which can be checked by hand.
So a(dz) = 0. But a(4) =1, a(B) =0, «(C) =0, and a(D) =0, so p = 0.

The same kind of trick defines homomorphisms 3, v, and § which are
zero on boundaries and are one on exactly one of B, C', D and are zero on
the remaining ones and also on A. Applying these functions to the equation
dr = pA+ qB + rC + sD then shows that ¢ =0, r =0, and s = 0.

End of Example Sheet 3x.
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