Part II

Algebraic Geometry

Example Sheet IV, 2024
(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary. A * indicates a more difficult problem. I should note in general that this example sheet is a fair bit harder than the previous ones, so don't despair if you don't get all the problems!)

1. If P is a smooth point of an irreducible curve X and $t \in \mathcal{O}_{X, P}$ is a local parameter at P, show that $\operatorname{dim}_{k} \mathcal{O}_{X, P} /\left(t^{n}\right)=n$ for every $n \in \mathbb{N}$.
2. Show that $X=Z\left(x_{0}^{8}+x_{1}^{8}+x_{2}^{8}\right)$ and $Y=Z\left(y_{0}^{4}+y_{1}^{4}+y_{2}^{4}\right)$ are irreducible smooth curves in \mathbb{P}^{2} provided $\operatorname{char}(k) \neq 2$, and that $\phi:\left(x_{i}\right) \mapsto\left(x_{i}^{2}\right)$ is a morphism from X to Y. Determine the degree of ϕ, and compute e_{P} for all $P \in X$.
3. Show that the plane cubic $X=Z(f), f=x_{0} x_{2}^{2}-x_{1}^{3}+3 x_{1} x_{0}^{2}$, is smooth if $\operatorname{char}(k) \neq 2,3$. Find the degree and ramification degrees (i.e., the e_{P}) for (i) the projection $\phi=\left(x_{0}: x_{1}\right): X \rightarrow \mathbb{P}^{1}$ (ii) the projection $\phi=\left(x_{0}: x_{2}\right): X \rightarrow \mathbb{P}^{1}$.
4. Let X be a non-singular projective curve. Let $V \subset K(X)$ be a finite-dimensional k-vector subspace of $K(X)$. Show that there exists a divisor D on X for which $V \subset \mathcal{L}(D)$.
5. Let X be a smooth plane cubic. Assume that V has equation

$$
x_{0} x_{2}^{2}=x_{1}\left(x_{1}-x_{0}\right)\left(x_{1}-\lambda x_{0}\right),
$$

for some $\lambda \in k \backslash\{0,1\}$.
Let $P=(0: 0: 1)$ be the point at infinity in this equation. Writing $x=x_{1} / x_{0}$, $y=x_{2} / x_{0}$, show that x / y is a local parameter at P. [Hint: consider the affine piece $x_{2} \neq 0$.] Hence compute $v_{P}(x)$ and $v_{P}(y)$. Show that for each $m \geq 1$, the space $\mathcal{L}(m P)$ has a basis consisting of functions $x^{i}, x^{j} y$, for suitable i and j, and that $\ell(m P)=m$.
6. Let $f \in k[x]$ a polynomial of degree $d>1$ with distinct roots, and $V \subset \mathbb{P}^{2}$ the projective closure of the affine curve with equation $y^{d-1}=f(x)$. Assume that $\operatorname{char}(k)$ does not divide $d-1$. Prove that V is smooth, and has a single point P at infinity. Calculate $v_{P}(x)$ and $v_{P}(y)$.

* Deduce (without using Riemann-Roch) that if $n>d(d-3)$, then $\ell((n+1) P)=$ $\ell(n P)+1$.

7. A non-singular projective curve X is covered by two affine pieces (with respect to different embeddings) which are affine plane curves with equations $y^{2}=f(x)$ and $v^{2}=g(u)$ respectively, with f a square-free polynomial of even degree $2 n$ and $u=1 / x, v=y / x^{n}$ in $K(X)$. Determine the polynomial $g(u)$ and show that the canonical class on X has degree $2 n-4$. Why can we not just say that X is the projective plane curve associated to the affine curve $y^{2}=f(x)$?
8. Let $X_{0} \subset \mathbb{A}^{2}$ be the affine curve with equation $y^{3}=x^{4}+1$, and let $X \subset \mathbb{P}^{2}$ be its projective closure. Show that X is smooth, and has a unique point Q at infinity. Let ω be the rational differential $d x / y^{2}$ on X. Show that $v_{P}(\omega)=0$ for all $P \in X_{0}$. prove that $v_{Q}(\omega)=4$ and hence that $\omega, x \omega$ and $y \omega$ are all regular on X.
9. Let X be a non-singular projective curve and $P \in X$ any point. Show that there exists a nonconstant rational function on X which is regular everywhere except at P. Show moreover that there exists a projective embedding of X which has P as its unique point at infinity.
10. Let P_{0} be a point on an elliptic curve (non-singular projective curve of genus 1!) and $\phi_{3 P_{0}}: X \rightarrow \mathbb{P}^{2}$ the projective embedding. Show that $P \in X$ is a point of inflection if and only if $3 P=0$ in the group law determined by P_{0}. Deduce that if P and Q are points of inflection then so is the third point of intersection of the line $P Q$ with X.
11. Let X be a projective non-singular curve of genus 2 , and let K be an effective canonical divsor on X. Consider the divisor $K+P_{1}+P_{2}$ for points P_{i} with $P_{1}+P_{2} \nsim K$. Show that the linear system associated to this divisor induces a morphism ϕ from X to a quartic curve in \mathbb{P}^{2}. Show furthermore that $\phi(P)=$ $\phi(Q)$, with $P \neq Q$, if and only if $\{P, Q\}=\left\{P_{1}, P_{2}\right\}$.
12. Let $\pi: X \rightarrow \mathbb{P}^{1}$ be a hyperelliptic cover, i.e., a non-constant map of degree 2 from the projective non-singular curve X, and let $P \neq Q$ be ramification points of π. Show that as elements of $C l^{0}(X), P-Q \neq 0$ but $2(P-Q)=0$.
