Part II

Algebraic Geometry

Example Sheet III, 2024
(For all questions, assume k is algebraically closed. Further, you can assume the characteristic is not equal to 2 if necessary.)

1. Determine the singular points of the surface in \mathbb{P}^{3} defined by the polynomial $x_{1} x_{2}^{2}-x_{3}^{3} \in k\left[x_{0}, \ldots, x_{3}\right]$. Find the dimension of the tangent space at all the singularities.
2. Let $f, g: X \rightarrow Y$ be morphisms between algebraic varieties, and suppose there is a non-empty open subset $U \subseteq X$ such that $\left.f\right|_{U}=\left.g\right|_{U}$. Show $f=g$. [Hint: First reduce to the case $Y=\mathbb{P}^{n}$, and show that the map $f \times g: X \rightarrow \mathbb{P}^{n} \times \mathbb{P}^{n}$ is a morphism, where $f \times g(x)=(f(x), g(x))$. Next consider the diagonal $\left.\Delta=\left\{(y, y) \mid y \in \mathbb{P}^{n}\right\} \subseteq \mathbb{P}^{n} \times \mathbb{P}^{n}.\right]$
3. Let X and Y be algebraic varieties. Recall that in defining rational map, we considered pairs (U, f) where $U \subseteq X$ is an open subset and $f: U \rightarrow Y$ is a morphism. We defined a relation $(U, f) \sim(V, g)$ if $\left.f\right|_{U \cap V}=\left.g\right|_{U \cap V}$. Show this relation is an equivalence relation.
4. Let M_{1} be the matrix

$$
\left(\begin{array}{ccccc}
x_{0} & x_{1} & x_{2} & \cdots & x_{n-1} \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right) .
$$

Show that the set of points

$$
C:=\left\{\left(a_{0}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid \operatorname{rank} M_{2}\left(a_{0}, \ldots, a_{n}\right)=1\right\}
$$

is isomorphic to \mathbb{P}^{1}. This embedding of \mathbb{P}^{1} in \mathbb{P}^{n} is called the rational normal curve. You have already seen the special case $n=3$, where the rational normal curve is called the twisted cubic.

Let M_{2} be the matrix

$$
\left(\begin{array}{ccccc}
x_{0} & x_{2} & x_{3} & \cdots & x_{n-1} \\
x_{1} & x_{3} & x_{4} & \cdots & x_{n}
\end{array}\right) .
$$

Show that the set of points

$$
X:=\left\{\left(a_{0}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid \operatorname{rank} M_{1}\left(a_{0}, \ldots, a_{n}\right)=1\right\}
$$

has a map $f: X \rightarrow \mathbb{P}^{1}$ (you do not need to show this map is a morphism, but be sure you think it is a morphism), and that for $p \in \mathbb{P}^{1}$ we have $f^{-1}(p) \cong \mathbb{P}^{1}$. The variety X is called the rational normal scroll. (A variety X with a morphism $X \rightarrow Y$ all of whose fibres are projective lines is called a scroll; this is a particular example of a scroll.)
5. Let $V \subset \mathbb{P}^{2}$ be defined by $x_{1}^{2} x_{2}=x_{0}^{3}$.
(a) Show that the formula $(u: v) \mapsto\left(u^{2} v: u^{3}: v^{3}\right)$ defines a morphism $\phi: \mathbb{P}^{1} \rightarrow V$.
(b) Write down a rational map $\psi: V \rightarrow \mathbb{P}^{1}$, a morphism on $U=V \backslash\{(0: 0$: 1) $\}$ which is inverse to ϕ on U. What is the geometric interpretation of ψ ?
(c) Show that ψ does not extend to a morphism at $(0: 0: 1)$.
6. Let $V \subset \mathbb{P}^{2}$ be defined by $x_{1}^{2} x_{2}=x_{0}^{2}\left(x_{0}+x_{2}\right)$. Find a surjective morphism $\phi: \mathbb{P}^{1} \rightarrow V$ such that, for $P \in V$,

$$
\# \phi^{-1}(P)= \begin{cases}2 & \text { if } P=(0: 0: 1) \\ 1 & \text { otherwise }\end{cases}
$$

Is there a rational map $\psi: V \rightarrow \mathbb{P}^{1}$, a morphism on $U=V \backslash\{(0: 0: 1)\}$, which coincides with ϕ^{-1} on U ?
7. Let V be the quadric $Z\left(x_{0} x_{3}-x_{1} x_{2}\right) \subset \mathbb{P}^{3}$, and H the plane $x_{0}=0$. Let $P=(1: 0: 0: 0)$. Show that $\phi=\left(0: x_{1}: x_{2}: x_{3}\right)$ defines a rational map $\phi: V \rightarrow H$ such that for $Q \in V$, the line $P Q$ meets H in $\phi(Q)$ whenever this is defined.

Let $V_{1}=V \cap\left\{x_{1}=x_{2}\right\}$ and $L=H \cap\left\{x_{1}=x_{2}\right\}$. Verify explicitly that ϕ induces an isomorphism $V_{1} \xrightarrow{\cong} L$.
8. Consider the birational map $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ given by $\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)$, and let $P_{0}=(1: 0: 0), P_{1}=(0: 1: 0)$ and $P_{2}=(0: 0: 1)$ be the points, at which ϕ is not a morphism. Let $L \subset \mathbb{P}^{2}$ be a line. Show that ϕ gives a morphism $L \rightarrow \mathbb{P}^{2}$ such that:
(i) if $L \cap\left\{P_{i}\right\}=\emptyset$ then ϕ is an isomorphism of L with a conic in \mathbb{P}^{2} which passes through all of the $\left\{P_{i}\right\}$;
(ii) if L contains just one P_{i} then ϕ is an isomorphism of L with another line in \mathbb{P}^{2}
Determine the effect of ϕ on the cubic C with defining polynomial $x_{0}\left(x_{1}^{2}+x_{2}^{2}\right)+$ $x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$. (Assume $\operatorname{char}(k) \neq 2$.) What happens to the singularity of C ? Draw appropriate pictures.
9. (i) Let $\phi: X \rightarrow Y$ be a morphism of affine varieties. Using the definition of tangent space in terms of the derivatives of elements of the ideal, show that for all $p \in X$, there is a linear map

$$
d \phi: T_{p} X \rightarrow T_{\phi(p)} Y .
$$

(ii) In the situation of (i), if ϕ is defined by an m-tuple of polynomials $\left(\Phi_{1}, \ldots, \Phi_{m}\right) \in$ $A(X)^{m}$, write $d \phi$ in terms of the Φ_{i}.
(iii) Now assume that X and Y are arbitrary varieties. Using the definition of Zariski tangent space, show (i) in this more general context. Show the your answer coincides with your answer in (i).
10 . Let $Y \subseteq \mathbb{A}^{3}$ be the surface given by the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$. Consider the blow-up $X \subseteq \mathbb{A}^{3} \times \mathbb{P}^{2}$ of \mathbb{A}^{3}, with $\varphi: X \rightarrow \mathbb{A}^{3}$ the projection and $E=\varphi^{-1}(0)$. Recall that the blowup of Y is the closure of $\varphi^{-1}(Y) \backslash E$ in X. Describe the proper transform \tilde{Y} of Y. Describe the fibres of the map $\left.\varphi\right|_{\tilde{Y}}: \tilde{Y} \rightarrow Y$. Show that \tilde{Y} is non-singular.

