ALGEBRAIC GEOMETRY, SHEET IV: LENT 2022

1. Let X be the projective closure of the affine curve $y^{3}=x^{4}+1$. Prove that this curve is smooth and prove that it has a unique point at infinity. Calculate the zeroes and poles of the differential

$$
\omega=\frac{d x}{y^{2}} .
$$

2. Prove that a smooth plane quartic curve is not hyperelliptic by examining the map determined by the canonical divisor.
3. Let V be a curve and $p \in V$. Prove that there exists a non-constant rational function on V that is regular away from p.
4. Let V be a curve and $p \in V$. Prove that the variety $V \backslash\{p\}$ is affine.
5. Let V be a curve of genus $g \geq 2$. Prove that V admits a degree 2 morphism to \mathbb{P}^{1} if and only if there exists an effective divisor D on V of degree 2 such that $\ell(D) \geq 2$.
6. (\star) Let F be a bihomogeneous polynomial of bidegree $\left(d_{1}, d_{2}\right)$ in in 4 variables X_{0}, X_{1} and Y_{0}, Y_{1}. Assume that $\mathbb{V}(F) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a smooth curve V. By adapting the calculation for \mathbb{P}^{2} from lectures, calculate the degree of the canonical divisor of V and deduce that the genus of C is $\left(d_{1}-1\right)\left(d_{2}-1\right)$.
7. Let Q_{1} and Q_{2} be two smooth quadric surfaces in \mathbb{P}^{3}. Assume that their intersection $Q_{1} \cap Q_{2}$ is a smooth curve. Calculate the genus of this curve. [One way to go about this is via the geometry of the Segre embedding].
8. Prove that if V and W are smooth projective curves then $\mathbb{C}(V) \cong \mathbb{C}(W)$ if and only if V is isomorphic to W.
9. Let $\varphi: V \rightarrow W$ is a morphism of smooth curves. Given a point $q \in W$, define the pullback $\varphi^{\star}([q])$ of the divisor $[q]$ as $\sum_{p \mapsto q} e_{p}[p]$ where e_{p} is the ramification index. The pullback on divisors is defined by linear extension. Prove that this determines a well-defined map on class groups:

$$
\varphi^{\star}: C l(W) \rightarrow C l(V) .
$$

10. (\star) Construct a smooth projective variety S of dimension 2 and a morphism $\pi: S \rightarrow \mathbb{P}^{1}$ such that (i) away from a finite set of points on \mathbb{P}^{1}, the π-preimage of $p \in \mathbb{P}^{1}$ is a smooth curve of genus 1 , and (ii) there exists a point $q \in \mathbb{P}^{1}$ such that $\pi^{-1}(q)$ is a singular curve ${ }^{1}$.
[^0]
[^0]: Dhruv Ranganathan, dr508@cam.ac.uk
 ${ }^{1}$ This is an example of a type of surface called an elliptic fibration

