ALGEBRAIC GEOMETRY, SHEET II: LENT 2022

Projective Space Basics

1. Prove that any two distinct lines in \mathbb{P}^{2} intersect at a single point.
2. Let V be a hypersurface in \mathbb{P}^{n} and let L be a projective line in \mathbb{P}^{n}. Show that V and L intersect in a non-empty set.
3. Given distinct points P_{0}, \ldots, P_{n+1} in \mathbb{P}^{n}, no $(n+1)$ of which are contained in a hyperplane, show that there is a change of coordinates on \mathbb{P}^{n} so that the points are given by $(1: 0: \cdots: 0), \ldots,(0: 0: \cdots: 0: 1)$ and $(1: \cdots: 1)$.
4. A coordinate line in \mathbb{P}^{2} is the vanishing locus of a homogeneous coordinate function. Write down the projective closures of the following affine plane curves and calculate their intersections with the three coordinate lines in \mathbb{P}^{2}.
(i) $x y=x^{6}+y^{6}$.
(ii) $x^{3}=y^{2}+x^{4}+y^{4}$
5. Give an example of a smooth affine variety $V \subset \mathbb{A}^{n}$ whose projective closure $\bar{V} \subset$ \mathbb{P}^{n} is not smooth. Give an example of a reducible projective variety $W \subset \mathbb{P}^{n}$ whose intersection with a standard affine patch $\mathbb{A}^{n} \subset \mathbb{P}^{n}$ is nonempty and irreducible.
6. Prove that the following two topologies on \mathbb{P}^{n} are equivalent:
(i) A set is closed if and only if it is the vanishing set of a homogeneous ideal.
(ii) A set $Z \subset \mathbb{P}^{n}$ is closed if and only if it its preimage under $\mathbb{C}^{n+1} \backslash\{\underline{0}\} \rightarrow \mathbb{P}^{n}$ is closed in the Zariski subspace topology on $\mathbb{C}^{n+1} \backslash\{\underline{0}\}$.

Some Projective Varieties

7. The Segre surface $\Sigma_{1,1} \subset \mathbb{P}^{3}$ is given by $\mathbb{V}\left(X_{0} X_{3}-X_{1} X_{2}\right)$. Find a pair of disjoint lines that are contained in $\Sigma_{1,1}$. Find a pair of intersecting lines that are contained in $\Sigma_{1,1}$.
8. Consider $V=\left\{\left(t, t^{2}, t^{3}\right): t \in \mathbb{C}\right\} \subset \mathbb{A}^{3}$. Observe that V is the vanishing locus of $y_{2}-y_{1}^{2}$ and $y_{3}-y_{1}^{3}$. Show that the vanishing locus in \mathbb{P}^{3} of $X_{2} X_{0}-X_{1}^{2}$ and $X_{0}^{2} X_{3}-X_{1}^{3}$ is not irreducible. Calculate generators for the ideal of the projective closure of V.
9. Consider the cubic surface $S \subset \mathbb{P}^{3}$ given by $\mathbb{V}\left(Z_{0}^{3}-Z_{1}^{3}+Z_{2}^{3}-Z_{3}^{3}\right)$. Find a line ℓ contained on this surface ${ }^{1} .(\star)$ Find a projective plane $P \subset \mathbb{P}^{3}$ that contains your line ℓ, such that $S \cap P$ is the union of three lines.

Rational maps and Morphisms

10. The Cremona transformation is the map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ defined by

$$
\left(X_{0}: X_{1}: X_{2}\right) \mapsto\left(X_{1} X_{2}: X_{0} X_{2}: X_{1} X_{0}\right)
$$

[^0]Let ℓ be the line $\mathbb{V}\left(X_{0}+X_{1}+X_{2}\right)$ and let $U \subset \mathbb{P}^{2}$ be a nonempty open in $\operatorname{dom}(\varphi)$. Calculate ideal of the Zariski closure of $\varphi(U \cap \ell)$.
11. Let $Q \subset \mathbb{P}^{n+1}$ be an irreducible quadric hypersurface. Prove that Q is birational to \mathbb{P}^{n} and use this to calculate the function field of Q.
12. (Weighted projective space, \star) Let $\underline{w}=\left(w_{0}, \ldots, w_{n}\right)$ be a tuple of positive integers. The weighted projective space $\mathbb{P}(\underline{w})$ is defined by

$$
\mathbb{P}(\underline{w}):=\frac{\mathbb{C}^{n+1} \backslash\{(0, \ldots, 0)\}}{\sim}
$$

where \sim is the relation that declares $\left(a_{0}, \ldots, a_{n}\right) \sim\left(\lambda^{w_{0}} a_{0}, \ldots, \lambda^{w_{n}} a_{n}\right)$ for any scalar $\lambda \in \mathbb{C}^{\star}$. Define homogeneous coordinates on $\mathbb{P}(\underline{w})$ in analogy with \mathbb{P}^{n}. Let X_{0}, X_{1}, X_{2} be such coordinates on $\mathbb{P}(1,1,2)$. Prove that

$$
\mathbb{P}(1,1,2) \rightarrow \mathbb{P}^{3} \quad ; \quad\left(X_{0}: X_{1}: X_{2}\right) \mapsto\left(X_{0}^{2}: X_{1}^{2}: X_{0} X_{1}: X_{2}\right)
$$

is well-defined. Prove the image is Zariski closed and calculate its homogeneous ideal.

[^0]: Dhruv Ranganathan, dr508@cam.ac.uk
 ${ }^{1}$ This is part of a famous geometry. A (smooth) cubic surface contains exactly 27 lines no matter what the equation is. How many lines can you find?

