Throughout this sheet, the symbol \(k \) will denote an algebraically closed field.

1. Let \(X \subset \mathbb{P}^2 \) be a projective variety. A morphism \(\mathbb{P}^1 \to X \) is a polynomial map
 \[
 \varphi([X_0 : X_1]) = (f_0([X_0 : X_1]), f_1([X_0 : X_1]), f_2([X_0 : X_1]))
 \]
 where \(f_i \) are homogeneous of the same degree, such that \(f(\mathbb{P}^1) \subset X \). For any irreducible conic \(C \subset \mathbb{P}^2 \), there is a bijective morphism
 \[
 \varphi : \mathbb{P}^1 \to C.
 \]

2. Let \(X = \mathbb{V}(F) \) be a hypersurface in \(\mathbb{P}^n \) and let \(\ell \) be a line, i.e. a subvariety defined by \(n - 1 \) linearly independent linear homogeneous polynomials. Show that \(X \) intersects \(\ell \) in a nonempty set.

3. A quasi-projective variety \(X \) (or simply a variety in this course) is a complement \(Y \setminus W \) where \(Y \) is a projective variety and \(W \subset Y \) is a (possibly empty) closed subvariety. Give examples of quasi-projective varieties that are neither affine nor projective. Prove that any quasi-projective variety \(X \) is covered by affine varieties.

4. Consider the morphism \(\mathbb{A}^2 \to \mathbb{A}^2 \) sending \((x,y) \) to \((x,xy) \). Prove that the image of this morphism is not quasi-projective.

5. Let \(I \subset k[z_1, \ldots, z_n] \) be an ideal. Let \(f_1, \ldots, f_r \) be generators for this ideal. Prove or give a counterexample to the following statement relating homogenizations of polynomials and ideals:
 \[
 I^h = \langle f_1^h, \ldots, f_r^h \rangle \subset k[Z_0, \ldots, Z_n].
 \]

6. A collection of points in \(\mathbb{P}^n \) is said to be in general position if no subset of \(n + 1 \) or fewer points is linear dependent (as vectors in \(k^{n+1} \)). If \(S \) is a collection of \(2n \) points in \(\mathbb{P}^n \), prove that \(S \) is the zero locus of a collection of quadratic polynomials.

7. Recall that the Segre surface \(\Sigma_{1,1} \subset \mathbb{P}^3 \) is given by \(\mathbb{V}(Z_0Z_3 - Z_1Z_2) \). Calculate the field of rational functions of \(\Sigma_{1,1} \). Describe the set of all lines contained on this surface.

8. Consider the cubic surface \(S \subset \mathbb{P}^3 \) given by \(\mathbb{V}(Z_0^3 + \ldots + Z_3^3) \). Find a line \(\ell \) contained on this surface\(^1\). Consider the collection of planes in \(\mathbb{P}^3 \) passing through this \(\ell \) and describe the corresponding collection of equations for these planes. Given such a plane \(H \) containing \(\ell \), describe the curve \(H \cap S \). Given a general plane in \(\mathbb{P}^3 \) (in particular, not necessarily containing \(\ell \)) describe its intersection with \(S \).

9. Construct two non-isomorphic irreducible cubic plane curves \(C_1 \) and \(C_2 \) in \(\mathbb{P}^2 \), such that the fraction field of the coordinate rings of \(C_1 \) and \(C_2 \) are both isomorphic to \(k(z) \). Draw appropriate pictures.

Dhruv Ranganathan, dr508@cam.ac.uk

\(^1\)This is part of a famous geometry. A (smooth) cubic surface contains exactly 27 lines no matter what the equation is. Can you find the 27 lines in this case?
10. (Veronese varieties) Let \(\{F_i\} \) be the set of degree \(d \) monomials in \(n + 1 \) variables \(Z_0, \ldots, Z_n \). Consider the map
\[
\nu_d : \mathbb{P}^n \to \mathbb{P}^{\binom{n+d}{d}-1}
\]
sending a tuple \([Z_0 : \cdots : Z_n]\) to \([\cdots : F_d : \cdots]\), i.e. to the tuple of monomials of degree \(d \). Find generators for the image of \(\nu_d \) and prove that \(\nu_d \) is an isomorphism onto its image.

11. Write down the projective closures of the following curves, determine the points at infinity, and find all singular points:
- \(xy = x^6 + y^6 \)
- \(x^3 = y^2 + x^4 + y^4 \)
- \(y^2 = f(x) \) with \(f(x) \) a polynomial of degree \(d \).

12. (Dual projective space) Let \(V \) be a finite dimensional vector space. Prove that the set of hyperplanes in \(\mathbb{P}(V) \) is naturally isomorphic to \(\mathbb{P}(V^*) \), where \(V^* \) is the dual vector space. Using the fact that two distinct lines intersect at a unique point in \(\mathbb{P}^2 \), deduce the fact that there is a unique line through two distinct points in \(\mathbb{P}^2 \).

13. (Grassmannian) In this exercise, you will contemplate an important generalization of projective space known as the Grassmannian. Let \(V \) be an \(n \)-dimensional vector space and \(0 \leq k \leq n \) an integer. Let \(G(k, V) \) be the set of \(k \)-dimensional linear subspaces of \(V \).
 (a) Consider \(k \) linearly independent vectors \(v_1, \ldots, v_k \) in \(V \) and choose a basis to represent them as a \(k \times n \) matrix \(M \). Observe that \(GL(k) \) acts on the set of such matrices by left multiplication without affecting the associated vector space. Prove that the \(k \times k \) minors of such a matrix give rise to a well-defined map
\[
\iota : G(k, V) \to \mathbb{P}^{\binom{n}{k}-1}.
\]
 (b) Prove that \(\iota \) is injective.
 (c) \(\star \) Prove that the image of \(\iota \) is Zariski closed. (Hint: Given a subspace \(W \) represented by a matrix \(M_W \), you may assume that the first \(k \times k \) block of \(M_W \) is the identity. The rest of \(M_W \) is a \(k \times (n-k) \) matrix \(A \). How are the maximal minors of \(M_W \) related to the minors of \(A \)? The minors of \(A \) satisfy relations coming from Laplace expansion. This gives you equations on an affine patch.)

14. Consider \(C \) a smooth curve given by the projective closure of an affine curve of the form \(y^2 = f(x) \) over the complex numbers. Construct a morphism
\[
\pi : C \to \mathbb{P}^1
\]
such that at all but finitely many points \(q \) of \(\mathbb{P}^1 \), the preimage \(\pi^{-1}(q) \) consists of exactly two points\(^2\).

15. \(\star \) Let \(d \geq 1 \) be an integer and \(C \subset \mathbb{P}_C^2 \) the union of a collection of \(d \) lines. Assume the lines are chosen generically. In the Euclidean topology in \(\mathbb{P}^2 \), describe the topological space of \(C \) and draw a picture of it. Let \(f_d \) be a degree \(d \) homogeneous polynomial
\[\text{2Given a morphism } C \to \mathbb{P}^1 \text{, the number of preimages of a generic point on } \mathbb{P}^1 \text{ is the degree of the map, which in this case will be 2.}\]
in 3 variables, and assume the coefficients of f_d are chosen generically. Based on your analysis above, can you guess a description of the Euclidean topological space $V(f_d)$? It may help you to carefully compare $V(Z_0Z_1)$ and $V(Z_0Z_1 - Z_2^2)$.