1. Ask your supervisor to test you on the sheet of common distributions on the course website.
2. If $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$ are independent, derive the distribution of $\min (X, Y)$. If $X \sim$ $\Gamma(\alpha, \lambda)$ and $Y \sim \Gamma(\beta, \lambda)$ are independent, derive the distributions of $X+Y$ and $X /(X+Y)$.
3. (a) Let X_{1}, \ldots, X_{n} be independent Poisson random variables with X_{i} having parameter $i \theta$ for some $\theta>0$. Find a real-valued sufficient statistic T, and compute its distribution. Show that the maximum likelihood estimator $\hat{\theta}$ of θ is unbiased.
(b) For some $n \geq 2$, let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\theta)$. Find a minimal sufficient statistic T, and compute its distribution. Show that the maximum likelihood estimator $\hat{\theta}$ of θ is biased but asymptotically unbiased. Find an injective function h on $(0, \infty)$ such that, writing $\psi=h(\theta)$, the maximum likelihood estimator $\hat{\psi}$ of the new parameter ψ is unbiased.
4. For some $n \geq 2$ let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(\theta, 2 \theta)$ for some $\theta>0$. Show that $\tilde{\theta}=2 X_{1} / 3$ is an unbiased estimator of θ. Use the Rao-Blackwell theorem to find an unbiased estimator $\hat{\theta}$ which is a function of a minimal sufficient statistic and which satisfies $\operatorname{Var}(\hat{\theta})<\operatorname{Var}(\tilde{\theta})$ for all $\theta>0$.
5. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Unif}(0, \theta)$. Find the maximum likelihood estimator $\hat{\theta}$ of θ. By considering the distribution of $\hat{\theta} / \theta$ and for $\alpha \in(0,1)$, find an appropriate, one-sided $100(1-\alpha) \%$ confidence interval for θ based on $\hat{\theta}$.
6. Suppose that $X_{1} \sim N\left(\theta_{1}, 1\right)$ and $X_{2} \sim N\left(\theta_{2}, 1\right)$ independently, where θ_{1} and θ_{2} are unknown. Show that both the square S and the circle C in \mathbb{R}^{2} given by

$$
\begin{aligned}
& S=\left\{\left(\theta_{1}, \theta_{2}\right):\left|\theta_{1}-X_{1}\right| \leq 2.236,\left|\theta_{2}-X_{2}\right| \leq 2.236\right\} \\
& C=\left\{\left(\theta_{1}, \theta_{2}\right):\left(\theta_{1}-X_{1}\right)^{2}+\left(\theta_{2}-X_{2}\right)^{2} \leq 5.991\right\}
\end{aligned}
$$

are 95% confidence sets for $\left(\theta_{1}, \theta_{2}\right)$. Hint: $\Phi(2.236)=(1+\sqrt{0.95}) / 2$ where Φ is the distribution function of a $N(0,1)$ random variable. What might be a sensible criterion for choosing between S and C ?
7. Suppose the number of defects in a silicon wafer can be modelled with a Poisson distribution for which the parameter λ is known to be either 1 or 1.5 . Suppose the prior mass function for λ is

$$
\pi_{\lambda}(1)=0.4, \quad \pi_{\lambda}(1.5)=0.6
$$

A random sample of five wafers finds $x=(3,1,4,6,2)$ defects respectively. Show that the posterior distribution for λ given x is

$$
\pi_{\lambda \mid Z}(1 \mid x)=0.012, \quad \pi_{\lambda \mid X}(1.5 \mid x)=0.988
$$

8. (a) Suppose $X=\left(X_{1}, \ldots, X_{n}\right)$ has probability density function $f_{X}(\cdot ; \theta)$, and suppose T is a sufficient statistic for θ. Let $\hat{\theta}_{\text {MLE }}$ be the unique maximum likelihood estimator of θ. Show that $\hat{\theta}_{\text {MLE }}$ is a function of T.
(b) Now adopt a Bayesian perspective, and suppose that the parameter θ has a prior density function π_{θ}. Let the estimator $\hat{\theta}_{\text {Bayes }}$ be the unique minimiser of the expected value of the loss function L under the posterior distribution. Show that $\hat{\theta}_{\text {Bayes }}$ is also a function of T.
9. Let X_{1}, \ldots, X_{n} be independent and identically distributed with conditional probability density function $f(x \mid \theta)=\theta x^{\theta-1} \mathbb{1}_{\{0 \leq x \leq 1\}}$ for some $\theta>0$. Suppose the prior distribution for θ is $\Gamma(\alpha, \lambda)$. Find the posterior distribution of θ given $X=\left(X_{1}, \ldots, X_{n}\right)$ and the Bayesian point estimator of θ under the quadratic loss function.
10. (Law of small numbers) For each $n \in \mathbb{N}$, let $X_{n 1}, \ldots, X_{n n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}\left(p_{n}\right)$ and let $S_{n}=$ $\sum_{i=1}^{n} X_{n i}$. Prove that if $n p_{n} \rightarrow \lambda \in(0, \infty)$ as $n \rightarrow \infty$, then for each $x \in\{0,1,2, \ldots\}$,

$$
\mathbb{P}\left(S_{n}=x\right) \rightarrow \mathbb{P}(Y=x)
$$

as $n \rightarrow \infty$ where $Y \sim \operatorname{Poisson}(\lambda)$.
11. For some $n \geq 3$, let $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{\text { iid }}{\sim} N(0,1)$, set $X_{1}=\varepsilon_{1}$ and $X_{i}=\theta X_{i-1}+\left(1-\theta^{2}\right)^{1 / 2} \varepsilon_{i}$ for $i=2, \ldots, n$ and some $\theta \in(-1,1)$. Find a sufficient statistic for θ that takes values in a subset of \mathbb{R}^{3}.
12. (Harder) Let $\hat{\theta}$ be an unbiased estimator of $\theta \in \Theta=\mathbb{R}$ satisfying $\mathbb{E}_{\theta}\left(\hat{\theta}^{2}\right)<\infty$ for all $\theta \in \Theta$. We say that $\hat{\theta}$ is a uniform minimum variance unbiased (UMVU) estimator if $\operatorname{Var}_{\theta}(\hat{\theta}) \leq \operatorname{Var}_{\theta}(\tilde{\theta})$ for all $\theta \in \Theta$ and any other unbiased estimator $\tilde{\theta}$. Prove that a necessary and sufficient condition for $\hat{\theta}$ to be a UMVU estimator is that $\mathbb{E}_{\theta}(\hat{\theta} U)=0$ for all $\theta \in \Theta$ and all estimators U with $\mathbb{E}_{\theta}(U)=0$ and $\mathbb{E}_{\theta}\left(U^{2}\right)<\infty$ (i.e. ' $\hat{\theta}$ is uncorrelated with every unbiased estimator of 0 '). Is the estimator $\hat{\theta}$ in Question 4 a UMVU estimator?

