

Statistics: Example Sheet 3 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

1. Let $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where σ^2 is unknown, and suppose we are interested in testing $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$. Letting $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $S_{XX} = \sum_{i=1}^n (X_i - \bar{X})^2$, show that the likelihood ratio can be expressed as

$$\Lambda_{\mathbf{X}}(H_0, H_1) = \left(1 + \frac{T^2}{n-1}\right)^{n/2},$$

where $T = \frac{n^{1/2}(\bar{X} - \mu_0)}{\{S_{XX}/(n-1)\}^{1/2}}$. Determine the distribution of T under H_0 , and hence determine the size α likelihood ratio test.

2. Statisticians A and B obtain independent samples X_1, \dots, X_{10} and Y_1, \dots, Y_{17} respectively, both from a $N(\mu, \sigma^2)$ distribution with both μ and σ^2 unknown. They estimate (μ, σ^2) by $(\bar{X}, S_{XX}/9)$ and $(\bar{Y}, S_{YY}/16)$ respectively, where, for example, $\bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$ and $S_{XX} = \sum_{i=1}^{10} (X_i - \bar{X})^2$. Given that $\bar{X} = 5.5$ and $\bar{Y} = 5.8$, which statistician's estimate of σ^2 is more probable to have exceeded the true value by more than 50%? Find this probability (approximately) in each case. [Hint: This is something of a 'trick' question. Why? You may find χ^2 tables helpful.]

3. Suppose that X_1, \dots, X_m are iid $N(\mu_X, \sigma_X^2)$, and, independently, Y_1, \dots, Y_n are iid $N(\mu_Y, \sigma_Y^2)$, with μ_X , μ_Y , σ_X^2 and σ_Y^2 unknown. Write down the distributions of S_{XX}/σ_X^2 and S_{YY}/σ_Y^2 . Derive a $100(1 - \alpha)\%$ confidence interval for σ_X^2/σ_Y^2 .

4. (a) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \Sigma)$, and let A be an arbitrary $m \times n$ matrix. Prove directly from the definition that $A\mathbf{X}$ has an m -variate normal distribution. Show that $\text{cov}(A\mathbf{X}) = A\Sigma A^T$, and that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\Sigma A^T)$. Give an alternative proof that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\Sigma A^T)$ using moment generating functions.

(b) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \Sigma)$, and let \mathbf{X}_1 denote the first n_1 components of \mathbf{X} . Let $\boldsymbol{\mu}_1$ denote the first n_1 components of $\boldsymbol{\mu}$, and let Σ_{11} denote the upper left $n_1 \times n_1$ block of Σ . Show that $\mathbf{X}_1 \sim N_{n_1}(\boldsymbol{\mu}_1, \Sigma_{11})$.

5. Consider the simple linear regression model $Y_i = a + b x_i + \varepsilon_i$, $i = 1, \dots, n$, where $\varepsilon_1, \dots, \varepsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$ and $\sum_{i=1}^n x_i = 0$. Derive from first principles explicit expressions for the MLEs \hat{a} , \hat{b} and $\hat{\sigma}^2$. Show that we can obtain the same expressions if we regard the simple linear regression model as a special case of the general linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y}$ and $\hat{\sigma}^2 = n^{-1} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$.

6. Consider the model $Y_i = bx_i + \varepsilon_i$, $i = 1, \dots, n$, where the ε_i are independent with mean zero and variance σ^2 (regression through the origin). Write this in the form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the least squares estimator of b .

The relationship between the range in metres, Y , of a howitzer with muzzle velocity v metres per second fired at angle of elevation α degrees is assumed to be $Y = \frac{v^2}{g} \sin(2\alpha) + \varepsilon$, where $g = 9.81$ and where ε has mean zero and variance σ^2 . Estimate v from the following independent observations made on 9 shells.

α (deg)	5	10	15	20	25	30	35	40	45
$\sin 2\alpha$	0.1736	0.3420	0.5	0.6428	0.7660	0.8660	0.9397	0.9848	1
range (m)	4860	9580	14080	18100	21550	24350	26400	27700	28300

7. Consider the model $Y_i = \mu + \varepsilon_i$, $i = 1, \dots, n$, where ε_i are iid $N(0, \sigma^2)$ random variables. Write this in matrix form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the MLE $\hat{\boldsymbol{\beta}}$. Find the fitted values, the residuals and the residual sum of squares. Show how applying Theorem 13.3 (in lectures) to this case gives the independence of \bar{Y} and S_{YY} for an iid sample from $N(\mu, \sigma^2)$. Write down an unbiased estimate $\tilde{\sigma}^2$ of σ^2 .

8. Consider the linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \mathbf{Y} is an $n \times 1$ vector of observations, X is a known $n \times p$ matrix of rank p , $\boldsymbol{\beta}$ is a $p \times 1$ unknown parameter vector and $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector of uncorrelated random variables with mean zero and variance σ^2 (i.e. we are *not* assuming that the ε_i are normally distributed). Let $\hat{\boldsymbol{\beta}}$ denote the least squares estimate of $\boldsymbol{\beta}$, $\hat{\mathbf{Y}}$ denote the vector of fitted values, and let \mathbf{R} be the vector of residuals. Find $\mathbb{E}(\mathbf{R})$ and $\text{cov}(\mathbf{R})$. Show that $\text{cov}(\mathbf{R}, \hat{\boldsymbol{\beta}}) = 0$ and $\text{cov}(\mathbf{R}, \hat{\mathbf{Y}}) = 0$.

9. For the simple linear regression model $Y_i = a + bx_i + \varepsilon_i$, $i = 1, \dots, n$, where $\sum_i x_i = 0$ and where the ε_i are iid $N(0, \sigma^2)$ random variables, the MLEs \hat{a} and \hat{b} were found in Question 5. Find the distribution of $\hat{\boldsymbol{\beta}} = (\hat{a}, \hat{b})^T$. Find a 95% confidence interval for b and for the mean value of Y when $x = 1$. [Hint: Look at “Applications of the distribution theory” in lectures.]

10. *Question 19H from 2013 Part II paper*

Consider the general linear model $Y = X\theta + \epsilon$ where X is a known $n \times p$ matrix, θ is an unknown $p \times 1$ vector of parameters, and ϵ is an $n \times 1$ vector of independent $N(0, \sigma^2)$ random variables with unknown variance σ^2 . Assume the $p \times p$ matrix $X^T X$ is invertible. Let

$$\begin{aligned}\hat{\theta} &= (X^T X)^{-1} X^T Y \\ \hat{\epsilon} &= Y - X\hat{\theta}\end{aligned}$$

What are the distributions of $\hat{\theta}$ and $\hat{\epsilon}$? Show that $\hat{\theta}$ and $\hat{\epsilon}$ are uncorrelated.

Four apple trees stand in a 2×2 rectangular grid. The annual yield of the tree at coordinate (i, j) conforms to the model

$$y_{ij} = \alpha_i + \beta x_{ij} + \epsilon_{ij}, \quad i, j \in \{1, 2\},$$

where x_{ij} is the amount of fertilizer applied to tree (i, j) , α_1, α_2 may differ because of varying soil across rows, and the ϵ_{ij} are $N(0, \sigma^2)$ random variables that are independent of one another and from year to year. The following two possible experiments are to be compared:

$$I : (x_{ij}) = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \text{ and } II : (x_{ij}) = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}.$$

Represent these as general linear models, with $\theta = (\alpha_1, \alpha_2, \beta)$. Compare the variances of estimates of β under I and II.

With II the following yields are observed:

$$(y_{ij}) = \begin{pmatrix} 100 & 300 \\ 600 & 400 \end{pmatrix}.$$

Forecast the total yield that will be obtained next year if no fertilizer is used. What is the 95% predictive interval for this yield?