Mathematical Tripos: Part IB

Statistics: Example Sheet 3 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

- 1. (a) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let A be an arbitrary $m \times n$ matrix. Prove directly from the definition that $A\mathbf{X}$ has an m-variate normal distribution. Show that $\operatorname{cov}(A\mathbf{X}) = A\boldsymbol{\Sigma}A^T$, and that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^T)$. Give an alternative proof that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A^T)$ using moment generating functions.
 - (b) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let \mathbf{X}_1 denote the first n_1 components of \mathbf{X} . Let $\boldsymbol{\mu}_1$ denote the first n_1 components of $\boldsymbol{\mu}$, and let $\boldsymbol{\Sigma}_{11}$ denote the upper left $n_1 \times n_1$ block of $\boldsymbol{\Sigma}$. Show that $\mathbf{X}_1 \sim N_{n_1}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$.
- 2. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where σ^2 is unknown, and suppose we are interested in testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Letting $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $S_{XX} = \sum_{i=1}^n (X_i \bar{X})^2$, show that the likelihood ratio can be expressed as

$$\Lambda_{\mathbf{X}}(H_0, H_1) = \left(1 + \frac{T^2}{n-1}\right)^{n/2},$$

where $T = \frac{n^{1/2}(\bar{X}-\mu_0)}{\{S_{XX}/(n-1)\}^{1/2}}$. Determine the distribution of T under H_0 , and hence determine the size α likelihood ratio test.

- 3. Statisticians A and B obtain independent samples X_1, \ldots, X_{10} and Y_1, \ldots, Y_{17} respectively, both from a $N(\mu, \sigma^2)$ distribution with both μ and σ^2 unknown. They estimate (μ, σ^2) by $(\bar{X}, S_{XX}/9)$ and $(\bar{Y}, S_{YY}/16)$ respectively, where, for example, $\bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$ and $S_{XX} = \sum_{i=1}^{10} (X_i \bar{X})^2$. Given that $\bar{X} = 5.5$ and $\bar{Y} = 5.8$, which statistician's estimate of σ^2 is more probable to have exceeded the true value by more than 50%? Find this probability (approximately) in each case. [Hint: This is something of a 'trick' question. Why? You may find χ^2 tables helpful.]
- 4. Suppose that X_1, \ldots, X_m are iid $N(\mu_X, \sigma_X^2)$, and, independently, Y_1, \ldots, Y_n are iid $N(\mu_Y, \sigma_Y^2)$, with μ_X, μ_Y, σ_X^2 and σ_Y^2 unknown. Write down the distributions of S_{XX}/σ_X^2 and S_{YY}/σ_Y^2 . Derive a 100(1 α)% confidence interval for σ_X^2/σ_Y^2 .
- 5. Consider the simple linear regression model $Y_i = a + bx_i + \varepsilon_i$, i = 1, ..., n, where $\varepsilon_1, \ldots, \varepsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$ and $\sum_{i=1}^n x_i = 0$. Derive from first principles explicit expressions for the MLEs \hat{a} , \hat{b} and $\hat{\sigma}^2$. Show that we can obtain the same expressions if we regard the simple linear regression model as a special case of the general linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y}$ and $\hat{\sigma}^2 = n^{-1} ||\mathbf{Y} X\hat{\boldsymbol{\beta}}||^2$.

6. Consider the model $Y_i = bx_i + \varepsilon_i$, i = 1, ..., n, where the ε_i are independent with mean zero and variance σ^2 (regression through the origin). Write this in the form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the least squares estimator of b.

The relationship between the range in metres, Y, of a howitzer with muzzle velocity v metres per second fired at angle of elevation α degrees is assumed to be $Y = \frac{v^2}{g}\sin(2\alpha) + \varepsilon$, where g = 9.81 and where ε has mean zero and variance σ^2 . Estimate v from the following independent observations made on 9 shells.

$\alpha ~(\text{deg})$	5	10	15	20	25	30	35	40	45
$\sin 2lpha$	0.1736	0.3420	0.5	0.6428	0.7660	0.8660	0.9397	0.9848	1
range (m)	4860	9580	14080	18100	21550	24350	26400	27700	28300

- 7. Consider the model $Y_i = \mu + \varepsilon_i$, i = 1, ..., n, where ε_i are iid $N(0, \sigma^2)$ random variables. Write this in matrix form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the MLE $\hat{\boldsymbol{\beta}}$. Find the fitted values, the residuals and the residual sum of squares. Show how applying Theorem 13.2 (in lectures) to this case gives the independence of \bar{Y} and S_{YY} for an iid sample from $N(\mu, \sigma^2)$. Write down an unbiased estimate $\tilde{\sigma}^2$ of σ^2 .
- 8. Consider the one-way analysis of variance (ANOVA) model $Y_{ij} = \mu_i + \varepsilon_{ij}$, $i = 1, \ldots, I$, $j = 1, \ldots, n_i$, where $(\varepsilon_{ij}) \stackrel{iid}{\sim} N(0, \sigma^2)$. Derive from first principles explicit expressions for the MLEs $\hat{\mu}_1, \ldots, \hat{\mu}_I$ and $\hat{\sigma}^2$. Show that we can obtain the same expressions if we regard the ANOVA model as a special case of the general linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y}$ and $\hat{\sigma}^2 = n^{-1} \|\mathbf{Y} - X\hat{\boldsymbol{\beta}}\|^2$.
- 9. Consider the linear model **Y** = Xβ + ε where **Y** is an n × 1 vector of observations, X is a known n × p matrix of rank p, β is a p × 1 unknown parameter vector and ε is an n × 1 vector of uncorrelated random variables with mean zero and variance σ² (i.e. we are not assuming that the ε_i are normally distributed). Let β denote the least squares estimate of β, Ŷ denote the vector of fitted values, and let **R** be the vector of residuals. Find E(**R**) and cov(**R**). Show that cov(**R**, β) = 0 and cov(**R**, Ŷ) = 0.
- 10. For the simple linear regression model $Y_i = a + bx_i + \varepsilon_i$, i = 1, ..., n, where $\sum_i x_i = 0$ and where the ε_i are iid $N(0, \sigma^2)$ random variables, the MLEs \hat{a} and \hat{b} were found in Question 5. Find the distribution of $\hat{\beta} = (\hat{a}, \hat{b})^T$. Find a 95% confidence interval for b and for the mean value of Y when x = 1. [Hint: Look at "Applications of the distribution theory" in lectures.]
- +11 Consider the one-way ANOVA model of Question 8. Letting $\bar{Y}_{i+} = n_i^{-1} \sum_{j=1}^{n_i} Y_{ij}$ and $\bar{Y}_{i+} = n^{-1} \sum_{i=1}^{I} \sum_{j=1}^{n_i} Y_{ij}$ with $n = n_1 + \ldots + n_I$, show from first principles that the size α likelihood ratio test of equality of means rejects H_0 if

$$F \equiv \frac{\frac{1}{I-1} \sum_{i=1}^{I} n_i (\bar{Y}_{i+} - \bar{Y}_{i+})^2}{\frac{1}{n-I} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i+})^2} > F_{I-1,n-I}(\alpha),$$

i.e. if 'the ratio of the between groups sum of squares to the within groups sum of squares is large'.