Statistics: Example Sheet 3 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

1. (a) Let $\mathbf{X} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$, and let A be an arbitrary $m \times n$ matrix. Prove directly from the definition that $A \mathbf{X}$ has an m-variate normal distribution. Show that $\operatorname{cov}(A \mathbf{X})=A \Sigma A^{T}$, and that $A \mathbf{X} \sim N_{m}\left(A \boldsymbol{\mu}, A \Sigma A^{T}\right)$. Give an alternative proof that $A \mathbf{X} \sim N_{m}\left(A \boldsymbol{\mu}, A \Sigma A^{T}\right)$ using moment generating functions.
(b) Let $\mathbf{X} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$, and let $\mathbf{X}_{\mathbf{1}}$ denote the first n_{1} components of \mathbf{X}. Let $\boldsymbol{\mu}_{\mathbf{1}}$ denote the first n_{1} components of $\boldsymbol{\mu}$, and let Σ_{11} denote the upper left $n_{1} \times n_{1}$ block of Σ. Show that $\mathbf{X}_{\mathbf{1}} \sim N_{n_{1}}\left(\boldsymbol{\mu}_{1}, \Sigma_{11}\right)$.
2. Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$, where σ^{2} is unknown, and suppose we are interested in testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$. Letting $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $S_{X X}=$ $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, show that the likelihood ratio can be expressed as

$$
\Lambda_{\mathbf{X}}\left(H_{0}, H_{1}\right)=\left(1+\frac{T^{2}}{n-1}\right)^{n / 2}
$$

where $T=\frac{n^{1 / 2}\left(\bar{X}-\mu_{0}\right)}{\left\{S_{X X} /(n-1)\right\}^{1 / 2}}$. Determine the distribution of T under H_{0}, and hence determine the size α likelihood ratio test.
3. Statisticians A and B obtain independent samples X_{1}, \ldots, X_{10} and Y_{1}, \ldots, Y_{17} respectively, both from a $N\left(\mu, \sigma^{2}\right)$ distribution with both μ and σ^{2} unknown. They estimate $\left(\mu, \sigma^{2}\right)$ by $\left(\bar{X}, S_{X X} / 9\right)$ and ($\bar{Y}, S_{Y Y} / 16$) respectively, where, for example, $\bar{X}=\frac{1}{10} \sum_{i=1}^{10} X_{i}$ and $S_{X X}=\sum_{i=1}^{10}\left(X_{i}-\bar{X}\right)^{2}$. Given that $\bar{X}=5.5$ and $\bar{Y}=5.8$, which statistician's estimate of σ^{2} is more probable to have exceeded the true value by more than 50% ? Find this probability (approximately) in each case. [Hint: This is something of a 'trick' question. Why? You may find χ^{2} tables helpful.]
4. Suppose that X_{1}, \ldots, X_{m} are iid $N\left(\mu_{X}, \sigma_{X}^{2}\right)$, and, independently, Y_{1}, \ldots, Y_{n} are iid $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, with $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}$ and σ_{Y}^{2} unknown. Write down the distributions of $S_{X X} / \sigma_{X}^{2}$ and $S_{Y Y} / \sigma_{Y}^{2}$. Derive a $100(1-\alpha) \%$ confidence interval for $\sigma_{X}^{2} / \sigma_{Y}^{2}$.
5. Consider the simple linear regression model $Y_{i}=a+b x_{i}+\varepsilon_{i}, i=1, \ldots, n$, where $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ and $\sum_{i=1}^{n} x_{i}=0$. Derive from first principles explicit expressions for the MLEs \hat{a}, \hat{b} and $\hat{\sigma}^{2}$. Show that we can obtain the same expressions if we regard the simple linear regression model as a special case of the general linear model $\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{Y}$ and $\hat{\sigma}^{2}=n^{-1}\|\mathbf{Y}-X \hat{\boldsymbol{\beta}}\|^{2}$.
6. Consider the model $Y_{i}=b x_{i}+\varepsilon_{i}, i=1, \ldots, n$, where the ε_{i} are independent with mean zero and variance σ^{2} (regression through the origin). Write this in the form $\mathbf{Y}=X \boldsymbol{\beta}+\varepsilon$, and find the least squares estimator of b.

The relationship between the range in metres, Y, of a howitzer with muzzle velocity v metres per second fired at angle of elevation α degrees is assumed to be $Y=$ $\frac{v^{2}}{g} \sin (2 \alpha)+\varepsilon$, where $g=9.81$ and where ε has mean zero and variance σ^{2}. Estimate v from the following independent observations made on 9 shells.

$\alpha(\mathrm{deg})$	5	10	15	20	25	30	35	40	45
$\sin 2 \alpha$	0.1736	0.3420	0.5	0.6428	0.7660	0.8660	0.9397	0.9848	1
range (m)	4860	9580	14080	18100	21550	24350	26400	27700	28300

7. Consider the model $Y_{i}=\mu+\varepsilon_{i}, i=1, \ldots, n$, where ε_{i} are iid $N\left(0, \sigma^{2}\right)$ random variables. Write this in matrix form $\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, and find the MLE $\hat{\boldsymbol{\beta}}$. Find the fitted values, the residuals and the residual sum of squares. Show how applying Theorem 13.2 (in lectures) to this case gives the independence of \bar{Y} and $S_{Y Y}$ for an iid sample from $N\left(\mu, \sigma^{2}\right)$. Write down an unbiased estimate $\tilde{\sigma}^{2}$ of σ^{2}.
8. Consider the one-way analysis of variance (ANOVA) model $Y_{i j}=\mu_{i}+\varepsilon_{i j}, i=1, \ldots, I$, $j=1, \ldots, n_{i}$, where $\left(\varepsilon_{i j}\right) \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. Derive from first principles explicit expressions for the MLEs $\hat{\mu}_{1}, \ldots, \hat{\mu}_{I}$ and $\hat{\sigma}^{2}$. Show that we can obtain the same expressions if we regard the ANOVA model as a special case of the general linear model $\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{Y}$ and $\hat{\sigma}^{2}=n^{-1}\|\mathbf{Y}-X \hat{\boldsymbol{\beta}}\|^{2}$.
9. Consider the linear model $\mathbf{Y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \mathbf{Y} is an $n \times 1$ vector of observations, X is a known $n \times p$ matrix of $\operatorname{rank} p, \boldsymbol{\beta}$ is a $p \times 1$ unknown parameter vector and $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector of uncorrelated random variables with mean zero and variance σ^{2} (i.e. we are not assuming that the ε_{i} are normally distributed). Let $\hat{\boldsymbol{\beta}}$ denote the least squares estimate of $\boldsymbol{\beta}, \hat{\mathbf{Y}}$ denote the vector of fitted values, and let \mathbf{R} be the vector of residuals. Find $\mathbb{E}(\mathbf{R})$ and $\operatorname{cov}(\mathbf{R})$. Show that $\operatorname{cov}(\mathbf{R}, \hat{\boldsymbol{\beta}})=0$ and $\operatorname{cov}(\mathbf{R}, \hat{\mathbf{Y}})=0$.
10. For the simple linear regresssion model $Y_{i}=a+b x_{i}+\varepsilon_{i}, i=1, \ldots, n$, where $\sum_{i} x_{i}=0$ and where the ε_{i} are iid $N\left(0, \sigma^{2}\right)$ random variables, the MLEs \hat{a} and \hat{b} were found in Question 5. Find the distribution of $\hat{\boldsymbol{\beta}}=(\hat{a}, \hat{b})^{T}$. Find a 95% confidence interval for b and for the mean value of Y when $x=1$. [Hint: Look at "Applications of the distribution theory" in lectures.]
+11 Consider the one-way ANOVA model of Question 8. Letting $\bar{Y}_{i+}=n_{i}^{-1} \sum_{j=1}^{n_{i}} Y_{i j}$ and $\bar{Y}_{++}=n^{-1} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} Y_{i j}$ with $n=n_{1}+\ldots+n_{I}$, show from first principles that the size α likelihood ratio test of equality of means rejects H_{0} if

$$
F \equiv \frac{\frac{1}{I-1} \sum_{i=1}^{I} n_{i}\left(\bar{Y}_{i+}-\bar{Y}_{++}\right)^{2}}{\frac{1}{n-I} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i+}\right)^{2}}>F_{I-1, n-I}(\alpha),
$$

i.e. if 'the ratio of the between groups sum of squares to the within groups sum of squares is large'.

