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1. If X ∼ N(0, 1) and Y ∼ χ2
n are independent, we say that T = X√

Y/n
has a t-

distribution with n degrees of freedom and write T ∼ tn. Show that the probability

density function of T is fT (t) =
Γ(
n+1

2 )

Γ(
n
2 )

1
(nπ)1/2

1
(1+t2/n)(n+1)/2 , t ∈ R.

2. Let X1, . . . , Xn
iid∼ N(µ, σ2), where σ2 is unknown, and suppose we are interested in

testing H0 : µ = µ0 against H1 : µ 6= µ0. Letting X̄ = n−1
∑n

i=1Xi and SXX =∑n
i=1(Xi − X̄)2, show that the likelihood ratio can be expressed as

ΛX(H0, H1) =

(
1 +

T 2

n− 1

)n/2
,

where T = n1/2(X̄−µ0)

{SXX/(n−1)}1/2 . Determine the distribution of T under H0, and hence

determine the size α likelihood ratio test.

3. Suppose that X1, . . . , Xm and Y1, . . . , Yn are independent, with Xi ∼ N(µX , σ
2),

i = 1, . . . ,m, and Yi ∼ N(µY , σ
2), i = 1, . . . , n, where µX , µY and σ2 are unknown.

Write down the distributions of X̄ − Ȳ and SXX+SY Y
σ2 . Find a 100(1−α)% confidence

interval for µX − µY .

4. Statisticians A and B obtain independent samples X1, . . . , X10 and Y1, . . . , Y17 re-
spectively, both from a N(µ, σ2) distribution with both µ and σ2 unknown. They
estimate (µ, σ2) by (X̄, SXX/9) and (Ȳ , SY Y /16) respectively, where, for example,
X̄ = 1

10

∑10
i=1Xi and SXX =

∑10
i=1(Xi − X̄)2. Given that X̄ = 5.5 and Ȳ = 5.8,

which statistician’s estimate of σ2 is more probable to have exceeded the true value
by more than 50%? Find this probability (approximately) in each case. [Hint: This
is something of a ‘trick’ question. Why? You may find χ2 tables helpful.]

5. Suppose that X1, . . . , Xm are iid N(µX , σ
2
X), and, independently, Y1, . . . , Yn are iid

N(µY , σ
2
Y ), with µX , µY , σ2

X and σ2
Y unknown. Write down the distributions of

SXX/σ
2
X and SY Y /σ

2
Y . Derive a 100(1− α)% confidence interval for σ2

X/σ
2
Y .

6. Consider the simple linear regression model Yi = a + bxi + εi, i = 1, . . . , n, where

ε1, . . . , εn
iid∼ N(0, σ2) and

∑n
i=1 xi = 0. Derive from first principles explicit expres-

sions for the MLEs â, b̂ and σ̂2. Show that we can obtain the same expressions if we
regard the simple linear regression model as a special case of the general linear model
Y = Xβ+ε and specialise the formulae β̂ = (XTX)−1XTY and σ̂2 = n−1‖Y−Xβ̂‖2.
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7. Consider the model Yi = bxi + εi, i = 1, . . . , n, where the εi are independent with
mean zero and variance σ2 (regression through the origin). Write this in the form
Y = Xβ + ε, and find the least squares estimator of b.

The relationship between the range in metres, Y , of a howitzer with muzzle velocity
v metres per second fired at angle of elevation α degrees is assumed to be Y =
v2

g sin(2α) + ε, where g = 9.81 and where ε has mean zero and variance σ2. Estimate
v from the following independent observations made on 9 shells.

α (deg) 5 10 15 20 25 30 35 40 45
sin 2α 0.1736 0.3420 0.5 0.6428 0.7660 0.8660 0.9397 0.9848 1
range (m) 4860 9580 14080 18100 21550 24350 26400 27700 28300

8. Consider the model Yi = µ + εi, i = 1, . . . , n, where εi are iid N(0, σ2) random
variables. Write this in matrix form Y = Xβ + ε, and find the MLE β̂. Find
the fitted values, the residuals and the residual sum of squares. Show how applying
Theorem 3.7 (in lectures) to this case gives the independence of Ȳ and SY Y for an iid
sample from N(µ, σ2). Write down an unbiased estimate σ̃2 of σ2.

9. Consider the one-way analysis of variance (ANOVA) model Yij = µi+εij , i = 1, . . . , I,

j = 1, . . . , ni, where (εij)
iid∼ N(0, σ2). Derive from first principles explicit expressions

for the MLEs µ̂1, . . . , µ̂I and σ̂2. Show that we can obtain the same expressions if we
regard the ANOVA model as a special case of the general linear model Y = Xβ + ε
and specialise the formulae β̂ = (XTX)−1XTY and σ̂2 = n−1‖Y −Xβ̂‖2.

10. Consider the linear model Y = Xβ + ε where Y is an n × 1 vector of observations,
X is a known n × p matrix of rank p, β is a p × 1 unknown parameter vector and ε
is an n × 1 vector of uncorrelated random variables with mean zero and variance σ2

(i.e. we are not assuming that the εi are normally distributed). Let β̂ denote the least
squares estimate of β, Ŷ denote the vector of fitted values, and let R be the vector
of residuals. Find E(R) and cov(R). Show that cov(R, β̂) = 0 and cov(R, Ŷ) = 0.

11. For the simple linear regresssion model Yi = a+bxi+εi, i = 1, . . . , n, where
∑

i xi = 0

and where the εi are iid N(0, σ2) random variables, the MLEs â and b̂ were found
in Question 6. Find the distribution of β̂ = (â, b̂)T . Find a 95% confidence interval
for b and for the mean value of Y when x = 1. [Hint: Look at “Applications of the
distribution theory” in lectures.]

+12 Consider the one-way ANOVA model of Question 9. Letting Ȳi+ = n−1
i

∑ni
j=1 Yij and

Ȳ++ = n−1
∑I

i=1

∑ni
j=1 Yij with n = n1 + . . .+ nI , show from first principles that the

size α likelihood ratio test of equality of means rejects H0 if

F ≡
1
I−1

∑I
i=1 ni(Ȳi+ − Ȳ++)2

1
n−I

∑I
i=1

∑ni
j=1(Yij − Ȳi+)2

> FI−1,n−I(α),

i.e. if ‘the ratio of the between groups sum of squares to the within groups sum of
squares is large’.
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