

Linear Algebra: Example Sheet 1 of 4

- Suppose that the vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$ form a basis for a real vector space V . Which of the following are also bases?
 - $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n$;
 - $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1$;
 - $\mathbf{e}_1 - \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1$.
- Let T, U and W be subspaces of V .
 - Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.
 - Give explicit counter-examples to the following statements:
 - $T + (U \cap W) = (T + U) \cap (T + W)$;
 - $(T + U) \cap W = (T \cap W) + (U \cap W)$.
 - Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.
- For each of the following pairs of vector spaces (V, W) over \mathbb{R} , either give an isomorphism $V \rightarrow W$ or show that no such isomorphism can exist. [Here P denotes the space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.]
 - $V = \mathbb{R}^4, W = \{\mathbf{x} \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0\}$.
 - $V = \mathbb{R}^5, W = \{p \in P : \deg p \leq 5\}$.
 - $V = C[0, 1], W = C[-1, 1]$.
 - $V = C[0, 1], W = \{f \in C[0, 1] : f(0) = 0, f$ continuously differentiable $\}$.
 - $V = \mathbb{R}^2, W = \{\text{real solutions of } \ddot{x}(t) + x(t) = 0\}$.
 - $V = \mathbb{R}^4, W = C[0, 1]$.
 - (Harder:) $V = P, W = \mathbb{R}^{\mathbb{N}}$.
- (i) If α and β are linear maps from U to V show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements:
 - $\text{Im}(\alpha + \beta) = \text{Im}(\alpha) + \text{Im}(\beta)$;
 - $\text{Ker}(\alpha + \beta) = \text{Ker}(\alpha) \cap \text{Ker}(\beta)$.
 Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other.
 - Let α be a linear map from V to V . Show that if $\alpha^2 = \alpha$ then $V = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$. Does your proof still work if V is infinite dimensional? Is the result still true?
- Let

$$U = \{\mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, 2x_1 + 2x_2 + x_5 = 0\}, \quad W = \{\mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, x_2 = x_3 = x_4\}.$$
 Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U + W$ and show that

$$U + W = \{\mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4\}.$$
- (i) Let $\alpha : V \rightarrow V$ be an endomorphism of a finite dimensional vector space V . Show that

$$V \geq \text{Im}(\alpha) \geq \text{Im}(\alpha^2) \geq \dots \quad \text{and} \quad \{0\} \leq \text{Ker}(\alpha) \leq \text{Ker}(\alpha^2) \leq \dots$$
 If $r_k = r(\alpha^k)$, deduce that $r_k \geq r_{k+1}$ and that $r_k - r_{k+1} \geq r_{k+1} - r_{k+2}$. Conclude that if, for some $k \geq 0$, we have $r_k = r_{k+1}$, then $r_k = r_{k+\ell}$ for all $\ell \geq 0$.
 (ii) Suppose that $\dim(V) = 5, \alpha^3 = 0$, but $\alpha^2 \neq 0$. What possibilities are there for $r(\alpha)$ and $r(\alpha^2)$?
- Let $\alpha : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear map given by $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix representing α relative to the basis $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for both the domain and the range.
 Write down bases for the domain and range with respect to which the matrix of α is the identity.

8. Let U_1, \dots, U_k be subspaces of a vector space V and let B_i be a basis for U_i . Show that the following statements are equivalent:

- (i) $U = \sum_i U_i$ is a direct sum, *i.e.* every element of U can be written uniquely as $\sum_i u_i$ with $u_i \in U_i$.
- (ii) $U_j \cap \sum_{i \neq j} U_i = \{0\}$ for all j .
- (iii) The B_i are pairwise disjoint and their union is a basis for $\sum_i U_i$.

Give an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, yet $U_1 + \dots + U_k$ is not a direct sum.

9. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a common complementary subspace.

10. Let Y and Z be subspaces of the finite dimensional vector spaces V and W , respectively. Show that $R = \{\alpha \in \mathcal{L}(V, W) : \alpha(Y) \leq Z\}$ is a subspace of the space $\mathcal{L}(V, W)$ of all linear maps from V to W . What is the dimension of R ?

11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \rightarrow W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\alpha|_Y: Y \rightarrow Z$ via $\alpha|_Y(y) = \alpha(y)$ and $\bar{\alpha}: V/Y \rightarrow W/Z$ via $\bar{\alpha}(v+Y) = \alpha(v) + Z$. Consider a basis (v_1, \dots, v_n) for V containing a basis (v_1, \dots, v_k) for Y and a basis (w_1, \dots, w_m) for W containing a basis (w_1, \dots, w_l) for Z . Show that the matrix representing α with respect to (v_1, \dots, v_n) and (w_1, \dots, w_m) is a block matrix of the form $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Explain how to determine the matrices representing $\alpha|_Y$ with respect to the bases (v_1, \dots, v_k) and (w_1, \dots, w_l) and representing $\bar{\alpha}$ with respect to the bases $(v_{k+1} + Y, \dots, v_n + Y)$ and $(w_{l+1} + Z, \dots, w_m + Z)$ from this block matrix.

12. Let T, U, V, W be vector spaces over \mathbb{F} and let $\alpha: T \rightarrow U$, $\beta: V \rightarrow W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \rightarrow \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ .