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Course schedule
Definition of a vector space (over R or C), subspaces, the space spanned by a subset.
Linear independence, bases, dimension. Direct sums and complementary subspaces. [3]

Linear maps, isomorphisms. Relation between rank and nullity. The space of linear
maps from U to V , representation by matrices. Change of basis. Row rank and column
rank. [4]

Determinant and trace of a square matrix. Determinant of a product of two matrices
and of the inverse matrix. Determinant of an endomorphism. The adjugate matrix. [3]

Eigenvalues and eigenvectors. Diagonal and triangular forms. Characteristic and min-
imal polynomials. Cayley-Hamilton Theorem over C. Algebraic and geometric multi-
plicity of eigenvalues. Statement and illustration of Jordan normal form. [4]

Dual of a finite-dimensional vector space, dual bases and maps. Matrix representation,
rank and determinant of dual map. [2]

Bilinear forms. Matrix representation, change of basis. Symmetric forms and their link
with quadratic forms. Diagonalisation of quadratic forms. Law of inertia, classification
by rank and signature. Complex Hermitian forms. [4]

Inner product spaces, orthonormal sets, orthogonal projection, V = W ⊕W⊥. Gram-
Schmidt orthogonalisation. Adjoints. Diagonalisation of Hermitian matrices. Orthogo-
nality of eigenvectors and properties of eigenvalues. [4]
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1 Vector spaces

1.1 Definitions
5 OctWe start by fixing a field, F. We say that F is a field if:

• F is an abelian group under an operation called addition, (+), with additive iden-
tity 0;

• F\{0} is an abelian group under an operation called multiplication, (·), with mul-
tiplicative identity 1;

• Multiplication is distributive over addition; that is, a (b+ c) = ab + ac for all
a, b, c ∈ F.

Fields we’ve encountered before include the reals R, the complex numbers C, the ring of
integers modulo p, Z/p = Fp, the rationals Q, as well as Q(

√
3 ) =

{
a+ b

√
3 : a, b ∈ Q

}
,

...

Everything we will discuss works over any field, but it’s best to have R and C in mind,
since that’s what we’re most familiar with.

Definition. A vector space over F is a tuple (V,+, ·) consisting of a set V , opera-
tions + : V × V → V (vector addition) and · : F × V → V (scalar multiplication)
such that

(i) (V,+) is an abelian group, that is:

• Associative: for all v1, v2, v3 ∈ V , (v1 + v2) + v3 = v1 + (v2 + v3);
• Commutative: for all v1, v2 ∈ V , v1 + v2 = v2 + v1;
• Identity: there is some (unique) 0 ∈ V such that, for all v ∈ V , 0 + v =
v = v + 0;

• Inverse: for all v ∈ V , there is some u ∈ V with u+ v = v + u = 0.
This inverse is unique, and often denoted −v.

(ii) Scalar multipication satisfies

• Associative: for all λ1, λ2 ∈ F, v ∈ V , λ1 · (λ2 · v) = (λ1λ2) · v;
• Identity: for all v ∈ V , the unit 1 ∈ F acts by 1 · v = v;
• · distributes over +V : for all λ ∈ F, v1, v2 ∈ V , λ·(v1 + v2) = λ·v1+λ·v2;
• +F distributes over ·: for all λ1, λ2 ∈ F, v ∈ V , (λ1 + λ2)·v = λ1·v+λ2·v;

We usually say “the vector space V ” rather than (V,+, ·).

http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Vector_space


4 | Linear Algebra

Let’s look at some examples:

Examples 1.1.

(i) {0} is a vector space.
(ii) Vectors in the plane under vector addition form a vector space.
(iii) The space of n-tuples with entries in F, denoted Fn =

{
(a1, . . . , an) : ai ∈ F

}
with component-wise addition

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and scalar multiplication

λ · (a1, . . . , an) = (λa1, . . . , λan)

Proving that this is a vector space is an exercise. It is also a special case of
the next example.

(iv) Let X be any set, and FX = {f : X → F} be the set of all functions X → F.
This is a vector space, with addition defined pointwise:

(f + g)(x) = f(x) + g(x)

and multiplication also defined pointwise:

(λ · f)(x) = λf(x)

if λ ∈ F, f, g ∈ FX , x ∈ X. If X = {1, . . . , n}, then FX = Fn and we have the
previous example.
Proof that FX is a vector space.

• As + in F is commutative, we have

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x),

so f + g = g + f . Similarly, f in F associative implies f + (g + h) =
(f + g) + h, and that (−f)(x) = −f(x) and 0(x) = 0.

• Axioms for scalar multiplication follow from the relationship between ·
and + in F. Check this yourself!

(v) C is a vector space over R.

Lemma 1.2. Let V be a vector space over F.

(i) For all λ ∈ F, λ · 0 = 0, and for all v ∈ V , 0 · v = 0.
(ii) Conversely, if λ · v = 0 and λ ∈ F has λ ̸= 0, then v = 0.

(iii) For all v ∈ V , −1 · v = −v.

Proof.

(i) λ · 0 = λ · (0 + 0) = λ · 0 + λ · 0 =⇒ λ · 0 = 0.
0 · v = (0 + 0) · v = 0 · v + 0 · v =⇒ 0 · v = 0.

(ii) As λ ∈ F, λ ̸= 0, there exists λ−1 ∈ F such that λ−1λ = 1, so v = (λ−1λ) · v =
λ−1 (λ · v), hence if λ · v = 0, we get v = λ−1 · 0 = 0 by (i).

(iii) 0 = 0 · v = (1 + (−1)) · v = 1 · v + (−1 · v) = v + (−1 · v) =⇒ −1 · v = −v.

We will write λv rather than λ · v from now on, as the lemma means this will not cause
any confusion.
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1.2 Subspaces

Definition. Let V be a vector space over F. A subset U ⊆ V is a vector subspace
(or just a subspace), written U ≤ V , if the following holds:

(i) 0 ∈ U ;
(ii) If u1, u2 ∈ U , then u1 + u2 ∈ U ;
(iii) If u ∈ U , λ ∈ F, then λu ∈ U .

Equivalently, U is a subspace if U ⊆ V , U ̸= ∅ (U is non-empty) and for all
u, v ∈ U , λ, µ ∈ F, λu+ µv ∈ U .

Lemma 1.3. If V is a vector space over F and U ≤ V , then U is a vector space over
F under the restriction of the operations + and · on V to U . (Proof is an exercise.)

Examples 1.4.

(i) {0} and V are always subspaces of V .

(ii) {(r1, . . . , rn, 0, . . . , 0) : ri ∈ R} ⊆ Rn+m is a subspace of Rn+m.

(iii) The following are all subspaces of sets of functions:

C1(R) =
{
f : R→ R | f continuous and differentiable

}
⊆ C(R) =

{
f : R→ R | f continuous

}
⊆ RR = {f : R→ R} .

Proof. f, g continuous implies f + g is, and λf is, for λ ∈ R; the zero function
is continuous, so C(R) is a subspace of RR, similarly for C1(R).

(iv) Let X be any set, and write

F[X] = (FX)fin =
{
f : X → F | f(x) ̸= 0 for only finitely many x ∈ X

}
.

This is the set of finitely supported functions, which is is a subspace of FX .

Proof that this is a subspace. f(x) = 0 =⇒ λ f(x) = 0, so if f ∈ (FX)fin,
then so is λf . Similarly,

(f + g)−1 (F\{0}) ⊆ f−1(F\{0}) ∪ g−1(F\{0})

and if these two are finite, so is the LHS.

Special case. Consider the case X = N, so

F[N] = (FN)fin =
{
(λ0, λ1, . . .) | only finitely many λi are non-zero

}
.

We write xi for the function which sends i 7→ 1, j 7→ 0 if j ̸= i; that is, for
the tuple (0, . . . , 0, 1, 0, . . .) in the ith place. Thus

F[N] =
{∑

λi | only finitely many λi non-zero
}
.

http://en.wikipedia.org/wiki/Linear_subspace
http://en.wikipedia.org/wiki/Linear_subspace
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Note that we can do better than a vector space here; we can define multipli-
cation by (∑

λi x
i
) (∑

µj x
j
)
=
∑
λi µj · xi+j .

This is still in F[N]. It is more usual to denote this F[x], the polynomials in x
over F (and this is a formal definition of the polynomial ring).

1.3 Bases
8 Oct

Definition. Suppose V is a vector space over F, and S ⊆ V is a subset of V . Then
v is a linear combination of elements of S if there is some n > 0 and λ1, . . . , λn ∈ F,
v1, . . . , vn ∈ S such that v = λ1v1 + · · ·+ λnvn or if v = 0.

Write ⟨S⟩ for the span of S, the set of all linear combinations of elements of S.

Notice that it is important in the definition to use only finitely many elements – infinite
sums do not make sense in arbitrary vector spaces.

We will see later why it is convenient notation to say that 0 is a linear combination of
n = 0 elements of S.

Example 1.5.
⟨
∅
⟩
= {0}.

Lemma 1.6.

(i) ⟨S⟩ is a subspace of V .
(ii) If W ≤ V is a subspace, and S ⊆ W , then ⟨S⟩ ≤ W ; that is, ⟨S⟩ is the smallest

subset of V containing S.

Proof. (i) is immediate from the definition. (ii) is immediate, by (i) applied to W .

Definition. We say that S spans V if ⟨S⟩ = V .

Example 1.7. The set {(1, 0, 0), (0, 1, 0), (1, 1, 0), (7, 8, 0)} spansW =
{
(x, y, z) | z = 0

}
≤

R3.

Definition. Let v1, . . . , vn be a sequence of elements in V . We say they are linearly
dependent if there exist λ1, . . . , λn ∈ F, not all zero, such that

n∑
i=1

λi vi = 0,

which we call a linear relation among the vi. We say that v1, . . . , vn are linearly
independent if they are not linearly dependent; that is, if there is no linear relation
among them, or equivalently if

n∑
i=1

λi vi = 0 =⇒ λi = 0 for all i.

We say that a subset S ⊆ V is linearly independent if every finite sequence of
distinct elements in S is linearly independent.

http://en.wikipedia.org/wiki/Polynomial_ring
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Linear_span
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Note that if v1, . . . , vn is linearly independent, then so is every reordering vπ(1), . . . , vπ(n).

• If v1, . . . , vn are linearly independent, and vi1 , . . . , vik is a subsequence, then the
subsequence is also linearly independent.

• If some vi = 0, then 1 · 0 = 0 is a linear relation, so v1, . . . , vn is not linearly
independent.

• If vi = vj for some i ̸= j, then 1 · vi + (−1) vj = 0 is a linear relation, so the
sequence isn’t linearly independent.

• If |S| < ∞, say S = {v1, . . . , vn}, then S is linearly independent if and only if
v1, . . . , vn are linearly independent.

Example 1.8. Let V = R3, S =


1
0
0

 ,

0
1
0


, and then

λ1

1
0
0

+ λ2

0
1
0

 =

λ1λ2
0


is zero if and only if λ1 = λ2 = 0, and so S is linearly independent.

Exercises:

(i) Show that v1, v2 ∈ V are linearly dependent if and only if v1 = 0 or v2 = λv1 for
some λ ∈ F.

(ii) Let S =


1
0
1

 ,

1
2
0

 ,

2
1
0


, then

λ1

1
0
1

+ λ2

1
2
0

+ λ3

2
1
0

 =

1 1 2
0 2 1
1 0 0


︸ ︷︷ ︸

A

λ1λ2
λ3

 ,

so linear independence of S is the same as Aλ = 0 =⇒ λ = 0. Show that in this
example, there are no non-zero solutions.

(iii) If S ⊆ Fn, S = {v1, . . . , vm}, then show that finding a relation of linear dependence∑m
i=1 λi vi is equivalent to solving Aλ = 0, where A = (v1 . . . vm) is an n × m

matrix whose columns are the vi.

(iv) Hence show that every collection of four vectors in R3 has a relation of linear
dependence.

Definition. The set S ⊆ V is a basis for V if

(i) S is linearly independent and;
(ii) S spans V .

Remark. This is slightly the wrong notion. We should order S, but we’ll deal with this
later.

http://en.wikipedia.org/wiki/Basis_(linear_algebra)
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Examples 1.9.

(i) By convention, the vector space {0} has ∅ as a basis.
(ii) S = {e1, . . . , en}, where ei is a vector of all zeroes except for a one in the ith

position, is a basis of Fn called the standard basis.
(iii) F[x] = F[N] = (FN)fin has basis

{
1, x, x2, . . .

}
.

More generally, F[X] has
{
δx | x ∈ X

}
as a basis, where

δx(y) =

{
1 if x = y,

0 otherwise,

so F[X] is, formally, the set of linear combinations of elements of X.
For amusement: F[N] ≤ FN, and 1, x, x2, . . . are linearly independent in
FN as they are linearly independent in F[N], but they do not span FN, as
(1, 1, 1, . . .) ̸∈ F[N].
Show that if a basis of FN exists, then it is uncountable.

Lemma 1.10. A set S is a basis of V if and only if every vector v ∈ V can be written
uniquely as a linear combination of elements of S.

Proof. (⇐) Writing v as a linear combination of elements of S for every v ∈ V means
that ⟨S⟩ = V . Uniquely means that, in particular, 0 can be written uniquely, and so S
is linearly independent.

(⇒) If v =
∑n

i=1 λi vi =
∑n

i=1 µivi, where vi ∈ S and i = 1, . . . , n, then
∑n

i=1 (λi − µi) vi =
0, and since the vi are linearly independent, λi = µi for all i.

Observe: if S is a basis of V , |S| = d and |F| = q < ∞ (for example, F = Z/pZ, and
q = p), then the lemma gives |V | = qd, which implies that d is the same, regardless of
choice of basis for V , that is every basis of V has the same size. In fact, this is true
when F = R or indeed when F is arbitrary, which means we must give a proof without
counting. We will now slowly show this, showing that the language of vector spaces
reduces the proof to a statement about matrices – Gaussian elimination (row reduction)
– we’re already familiar with.

Definition. V is finite dimensional if there exists a finite set S which spans V .

10 Oct ..Theorem 1.11

Let V be a vector space over F, and let S span V . If S is finite, then S has a subset
which is a basis for V . In particular, if V is finite dimensional, then V has a basis.

Proof. If S is linearly independent, then we’re done. Otherwise, there exists a relation
of linear dependence,

∑n
i=1 ci vi = 0, where not all ci are zero (for ci ∈ F). Sup-

pose ci0 ̸= 0, then we get ci0vi0 = −
∑

j ̸=i0 cjvj , so vi0 = −
∑
cjvj/ci0 , and hence we

claim ⟨v1, . . . , vm⟩ =
⟨
v1, . . . , vi0−1, vi0+1, . . . , vm

⟩
(proof is an exercise). So removing vi0

doesn’t change the span. We repeat this process, continuing to remove elements until
we have a basis.
Remark. If S = {0}, say with V = {0}, then the proof says remove 0 from the set S to
get ∅, which is why it is convenient to say that ∅ is a basis of {0}.
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..Theorem 1.12

Let V be a vector space over F, and V finite dimensional. If v1, . . . , vr are lin-
early independent vectors, then there exist elements vr+1, . . . , vn ∈ V such that
{v1, . . . , vr, vr+1, . . . , vn} is a basis.

That is, any linearly independent set can be extended to a basis of V .

Remark. This theorem is true without the assumption that V is finite dimensional –
any vector space has a basis. The proof is similar to what we give below, plus a bit
of fiddling with the axiom of choice. The interesting theorems in this course are about
finite dimensional vector spaces, so you’re not missing much by this omission.

First, we prove a lemma.

Lemma 1.13. Let v1, . . . , vm be linearly independent, and v ∈ V . Then v /∈ ⟨v1, . . . , vm⟩
if and only if v1, . . . , vm, v are linearly independent.

Proof. (⇐) If v ∈ ⟨v1, . . . , vm⟩, then v =
∑m

i=1 civi for some ci ∈ F, so
∑m

i=1 civi+(−1)·v
is a non-trivial relation of linear dependence.

(⇒) Conversely, if v1, . . . , vm, v are linearly dependent, then there exist ci, b such that∑
civi + bv = 0, with not all ci, b zero. Then if b = 0, we get

∑
civi = 0, which is a

non-trivial relation on the linearly independent vi, which is not possible, so b ̸= 0. So
v = −

∑
civi/b and v ∈ ⟨v1, . . . , vm⟩.

Proof of theorem 1.12. Since V is finite dimensional, there is a finite spanning set S =
{w1, . . . , wd}. Now, if wi ∈ ⟨v1, . . . , vr⟩ for all i, then V = ⟨w1, . . . , wd⟩ ⊆ ⟨v1, . . . , vr⟩,
so in this case v1, . . . , vr is already a basis.

Otherwise, there is some wi ̸∈ ⟨v1, . . . , vr⟩. But then the lemma implies that v1, . . . , vr, wi
is linearly independent.

We repeat this process, adding elements in S, till we have a basis.

..Theorem 1.14

Let V be a vector space over F. Let S = {v1, . . . , vm} span V and L = {w1, . . . , wn}
be linearly independent. Then m ≥ n.

In particular, if B1,B2 are two bases of V , then |B1| = |B2|.

Proof. As the vk’s span V , we can write each wi as a linear combination of the vk’s,
wi =

∑m
k=1 cki vk, for some cki ∈ F. Now we know the wi’s are linearly independent,

which means
∑

i λiwi = 0 =⇒ λi = 0 for all i. But∑
i λiwi =

∑
i λi
(∑

k cki vk
)
=
∑

k

(∑
i cki λi

)
vk.

We write C = (cki) for the m × n matrix formed by the coefficients cki. Observe that
the rules of matrix multiplication are such that the coefficient of vk in

∑
λiwi is the

kth entry of the column vector Cλ.

If m < n, we learned in Vectors & Matrices that there is a non-trivial solution λ ̸= 0.
(We have m linear equations in n variables, so a non-zero solution exists; the proof is
by row reduction.) This contradicts the wi’s as linearly independent. So m ≥ n.
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Now, if B1 and B2 are bases, then apply this to S = B1, L = B2 to get |B1| ≥ |B2|.
Similarly apply this S = B2, L = B1 to get |B2| ≥ |B1|, and so |B1| = |B2|.

Definition. Let V be a vector space over a field F. Then the dimension of V ,
denoted by dimV , is the number of elements in a basis of V .

Example 1.15. dimFn = n, as e1, . . . , en is a basis, called the standard basis,

where e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1


Corollary 1.16.

(i) If S spans V , then |S| ≥ dimV , with equality if and only if S is a basis.
(ii) If L = {v1, . . . , vk} is linearly independent, then |L| ≤ dimV , with equality if and

only if L is a basis.

Proof. Immediate. Theorem 1.11 implies (i) and theorem 1.12 implies (ii).

Lemma 1.17. Let W ≤ V , and V be finite dimensional. Then W is finite dimensional,
and dimW ≤ dimV . Moreover, dimW = dimV if and only if W = V .

Proof. The subtle point is to show that W is finite dimensional.

Let w1, . . . , wr be linearly independent vectors in W . Then they are linearly independent
when considered as vectors in V , so r ≤ dimV by our theorem. If ⟨w1, . . . , wr⟩ ̸= W ,
then there is some w ∈ W with w ̸∈ ⟨w1, . . . , wr⟩, and so by lemma 1.13, w1, . . . , wr, w
is linearly independent, and r + 1 ≤ dimV .

Continue in this way finding linearly independent vectors in W , and we must stop after
at most (dimV ) steps. When we stop, we have a finite basis of W , so W is finite
dimensional, and the rest of the theorem is immediate.

Lemma 1.18. Let V be finite dimensional and S any spanning set. Then there is a
finite subset S ′ of S which still spans V , and hence a finite subset of that which is a
basis.

Proof. As V is finite dimensional, there is a finite spanning set {v1, . . . , vn}. Now, as S
spans V , we can write each vi as a finite linear combination of elements of S.

But when you do this, you use only finitely many elements of S for each i. Hence as there
are only finitely many vi (there are n of them!), this only uses finitely many elements of
S. We call this finite subset S ′. By construction, V = ⟨v1, . . . , vn⟩ ⊆

⟨
S ′⟩.

1.4 Linear maps and matrices

Definition. Let V and W be vector spaces over F, and φ : V → W a map. We
say that φ is linear if

(i) φ is a homomorphism of abelian groups; that is, φ(0) = 0 and for all v1, v2 ∈

http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/Linear_map
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V , we have φ(v1 + v2) = φ(v1) + φ(v2).
(ii) φ respects scalar multiplication; that is, φ(λv) = λφ(v) for all λ ∈ F, v ∈ V .

Combining these two conditions, we see that a map φ is linear if and only if

φ(λ1 v1 + λ2 v2) = λ1 φ(v1) + λ2 φ(v2)

for all λ1, λ2 ∈ F, v1, v2 ∈ V .

Definition. We write L(V,W ) to be the set of linear maps from V to W ; that is,
L(V,W ) =

{
φ : V →W | φ linear

}
.

A linear map φ : V → W is an isomorphism if there is a linear map ψ : W → V
such that φψ = 1W and ψφ = 1V .

Notice that if φ is an isomorphism, then in particular φ is a bijection on sets. The
converse also holds:

Lemma 1.19. A linear map φ is an isomorphism if φ is a bijection; that is, if φ−1

exists as a map of sets.

Proof. We must show that φ−1 :W → V is linear; that is,

φ−1(a1w1 + a2w2) = a1 φ
−1(w1) + a2 φ

−1(w2). (∗)

But we have

φ
(
a1 φ

−1(w1) + a2 φ
−1(w2)

)
= a1 φ(φ

−1(w1)) + a2 φ(φ
−1(w2)) = a1w1 + a2w2,

as φ is linear. Now apply φ−1 to get (∗).

Lemma 1.20. If φ : V →W is a vector space isomorphism, then dimV = dimW .

Proof. 12 OctLet b1, . . . , bn be a basis of V . We claim that φ(b1), . . . , φ(bn) is a basis of W .
First we check linear independence: Suppose

0 =
n∑
i=1

λi φ(bi) = φ

 n∑
i=1

λi bi

 .

As φ is injective, so
∑
λi bi = 0, and hence as the bi are linearly independent, λi = 0

for i = 1, . . . , n. So φ(bi) are linearly independent.

Then we check they span: since φ is surjective, for all w ∈ W , we have w = φ(v)
for some v ∈ V . But v =

∑
λi bi for some λi ∈ F, as the bi span V . But then

w = φ(v) =
∑
λi φ(bi), and the φ(bi) span W .

Since they both have a basis of the same size, it follows that dimV = dimW .

Definition. If b1, . . . , bn are a basis of V , and v =
∑

i λi vi, we say λ1, . . . , λn are
the coordinates of v with respect to the basis b1, . . . , bn.

Here is another view of what the coordinates of a vector mean:

Proposition 1.21. Let V be a finite-dimensional vector space over F, with dimV = n.
Then there is a bijection

{ordered bases b1, . . . , bn of V } ∼−→
{
φ : Fn ∼−→ V

}
.

http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Coordinates
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The idea of the proposition is that coordinates of a vector with respect to a basis define
a point in Fn, and hence a choice of a basis is a choice of an isomorphism of our vector
space V with Fn.

Proof. Given an ordered basis b1, . . . , bn of V , call it B, we can write every vector v ∈ V
as v =

∑
λi bi for unique λi, . . . , λn ∈ F. Define αB : V → Fn by

αB(v) =

λ1...
λn

 =

n∑
i=1

λi ei,

where {ei} is the standard basis of Fn.

It is clear that αB is well-defined, linear and an isomorphism, and the inverse sends
(λ1, . . . , λn) 7→

∑
λi bi.

This defines a map {ordered bases B} →
{
α : V

∼−→ Fn
}

taking B 7→ αB.

To see that this map is a bijection, suppose we are given α : V → Fn an isomorphism.
Then α−1 : Fn → V is also an isomorphism, and we define bi = α−1(ei). The proof
of the previous lemma showed that b1, . . . , bn is a basis of V . It is clear that for this
ordered basis B, αB = α.

Let V and W be finite dimensional vector spaces over F, and choose bases v1, . . . , vn
and w1, . . . , wm of V and W , respectively. Then we have the diagram:

Fn

∼=
��

Fm

∼=
��

V α
//W

Now, suppose α : V → W is a linear map. As α is linear, and every v ∈ V can be
written as v =

∑
λi vi for some λ1, . . . , λn, we have

α(v) = α

 n∑
i=1

λi vi

 =
n∑
i=1

λi α(vi),

so α is determined by its values α(v1), . . . , α(vn). But then write each α(vi) as a sum
of basis elements w1, . . . , wm

α(vj) =

m∑
i=1

aij wi j = 1, . . . ,m

for some aij ∈ F.

Hence, if (λ1, . . . , λn) are the coordinates of v ∈ V , with respect to a basis v1, . . . , vn;
that is, if v =

∑
λi vi, then

α(v) = α

 n∑
j=1

λj vj

 =
∑
i,j

aij λj wi;

that is, 
∑
a1j λj∑
a2j λj
...∑
amj λj

 = A


λ1
λ2
...
λn


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are the coordinates of α(v) with respect to w1, . . . , wm.

That is, by choosing bases v1, . . . , vn and w1, . . . , wm of V and W , respectively, every
linear map α : V →W determines a matrix A ∈ Matm,n(F).

Conversely, given A ∈ Matm,n(F), we can define

α

 n∑
i=1

λi vi

 =

n∑
i=1

m∑
j=1

aij λj wi,

which is a well-defined linear map α : V →W , and these constructions are inverse, and
so we’ve proved the following theorem:

..Theorem 1.22

A choice of bases v1, . . . , vn and w1, . . . , wm of vector spaces V and W defines an
isomorphism L(V,W )

∼−→ Matm,n(F).

Remark. Actually, L(V,W ) is a vector space. The vector space structure is given by
defining, for a, b ∈ F, α, β ∈ L(V,W ),

(aα+ bβ) (v) = aα(v) + b β(v).

Also, Matm,n(F) is a vector space over F, and these maps L(V,W ) ⇄ Matm,n(F) are
vector space isomorphisms.

The choice of bases for V and W define isomorphisms with Fn and Fm respectively so
that the following diagram commutes:

Fn A //

∼=
��

Fm

∼=
��

V α
//W

We say a diagram commutes if every directed path through the diagram with the same
start and end vertices leads to the same result by composition. This is convenient short
hand language for a bunch of linear equations – that the coordinates of the different
maps that you get by composing maps in the different manners agree.

Corollary 1.23. dimL(V,W ) = dimMatm,n(F) = nm = dimV dimW .

Lemma 1.24. Let α : V →W , β :W → U be linear maps of vector spaces U, V,W .

(i) βα : V → U is linear.
(ii) If v1, . . . , vn is a basis of V ,

w1, . . . , wm is a basis of W ,
u1, . . . , ur is a basis of U ,

and A ∈ Matm,n(F) is the matrix of α with respect to the vi, wj bases, and
B ∈ Matr,m(F) is the matrix of β with respect to the wj , uk bases,

then the matrix of βα : V → U with respect to the vi, uk bases is BA.

Proof.

(i) Exercise.
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(ii) We have from our earlier work

α(vj) =
m∑
i=1

aij wi and β(wi) =
r∑

k=1

bki uk.

Now we have

(βα)(vj) = β

 m∑
i=1

aij wi

 =

r∑
k=1

m∑
i=1

aij bki uk,

and so the coefficient of uk is
∑

i,k bki aij = (BA)kj .

Definition. A linear map φ : V → V is an automorphism if it is an isomorphism.
The set of automorphisms forms a group, and is denoted

GL(V ) =
{
φ : V → V | φ a linear isomorphism

}
=
{
φ ∈ L(V, V ) | φ an isomorphism

}
Example 1.25. We write GLn(F) = {φ : Fn → Fn, φ isomorphism} = GL(Fn).

Exercise: Show that if φ : V
∼−→W is an isomorphism, then it induces an isomorphism

of groups GL(V ) ∼= GL(W ), so GL(V ) ∼= GLdimV (F).15 Oct

Lemma 1.26. Let v1, . . . , vn be a basis of V and φ : V → V be an isomorphism; that
is, let φ ∈ GL(V ). Then we showed that φ(v1), . . . , φ(vn) is also a basis of V and hence

(i) If v1 = φ(v1), . . . , vn = φ(vn), then φ = idV . In other words, we get the same
ordered basis if and only if φ is the identity map.

(ii) If v ′
1, . . . , v

′
n is another basis of V , then the linear map φ : V → V defined by

φ
(∑

λi vi
)
=
∑
λi v

′
i

(that is, the map sending vi 7→ v ′
i ) is an isomorphism.

Proof. Define its inverse ψ : V → V by v ′
i 7→ vi; that is,

ψ
(∑

λi v
′
i

)
=
∑
λi vi.

Then it is clear φψ = ψφ = idV : V → V .

So (i) and (ii) say that:

Proposition 1.27. GL(V ) acts simply and transitively on the set of bases; that is, given
v ′
1, . . . , v

′
n a basis, there is a unique φ ∈ GL(V ) such that φ(v1) = v ′

1, . . . , φ(vn) = v ′
n.

Corollary 1.28.
∣∣GLn(Fp)

∣∣ = (pn − 1) (pn − p) · · ·
(
pn − pn−1

)
.

Proof. It is enough to count ordered bases of Fnp , which is done by proceeding as follows:

Choose v1, which can be any non-zero element, so we have pn − 1 choices.
Choose v2, any non-zero element not a multiple of v1, so pn − p choices.
Choose v3, any non-zero element not in ⟨v1, v2⟩, so pn − p2 choices.

...
Choose vn, any non-zero element not in ⟨v1, . . . , vn−1⟩, so pn − pn−1 choices.

http://en.wikipedia.org/wiki/Automorphism
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Example 1.29.
∣∣GL2(Fp)

∣∣ = p (p− 1)2 (p+ 1).

Remark. We could express the same proof by saying that a matrix A ∈ Matn(Fp) is
invertible if and only if all of its columns are linearly independent, and the proof works
by picking each column in turn.

Let v1, . . . , vn be a basis of V , and φ ∈ GL(V ). Then v ′
i = φ(vi) is a new basis of V .

Let A be the matrix of φ with respect to the original basis v1, . . . , vn for both source
and target φ : V → V . Then

φ(vi) = v ′
i =

∑
j

aji vj ,

so the columns of A are the coordinates of the new basis in terms of the old.

We can also express this by saying the following diagram commutes:

Fn
∼= //

A
��

V

φ

��

ei 7→ vi

Fn ∼=
// V ei 7→ vi

Conversely, if v1, . . . , vn is a basis of V , and v ′
1, . . . , v

′
n is another basis, then we can

define φ : V → V by φ(vi) = v′i, and we can express this by saying the following
diagram commutes.

Fn
∼= //

∼=
��
??

??
??

??
V

φ

��

ei
� //

��
>>

>>
>>

> vi_

φ

��

V v ′
i

This is just language meant to clarify the relation between changing bases, and bases as
giving isomorphisms with a fixed Fn. If it instead confuses you, feel free to ignore it. In
contrast, here is a practical and important question about bases and linear maps, which
you can’t ignore:

Consider a linear map α : V → W . Let v1, . . . , vn be a basis of V , w1, . . . , wn of W ,
and A be the matrix of α. If we have new bases v ′

1, . . . , v
′
n and w ′

1, . . . , w
′
n, then we get

a new matrix of α with respect to this basis. What is the matrix with respect to these
new bases? We write

v ′
i =

∑
j

pji vj w ′
i =

∑
j

qjiwj .

Exercise 1.30. Show that w ′
i =

∑
j qjiwj if and only if wi =

∑
j (Q

−1)jiw
′
j , where

Q = (qab).

Then we have

α(v ′
i ) =

∑
j

pji α(vj) =
∑
j,k

pji akj wk =
∑
j,k,l

pji akj (Q
−1)lk w

′
l =

∑
l

(Q−1AP )liw
′
l ,

and we see that the matrix is Q−1AP .

Finally, a definition.
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Definition. (i) Two matrices A,B ∈ Matm,n(F) are said to be equivalent if they
represent the same linear map Fn → Fm with respect to different bases, that is
there exist P ∈ GLn(F), Q ∈ GLm(F) such that

B = Q−1AP.

(ii) The linear maps α : V →W and β : V →W are equivalent if their matrices look
the same after an appropriate choice of bases; that is, if there exists an isomorphism
p ∈ GL(V ), q ∈ GL(W ) such that the following diagram commutes:

V
α //W

V

p

OO

β
//W

q

OO

That is to say, if q−1αp = β.

1.5 Conservation of dimension: the Rank-nullity theorem

Definition. For a linear map α : V →W , we define the kernel to be the set of all
elements that are mapped to zero

kerα =
{
x ∈ V : α(x) = 0

}
= K ≤ V

and the image to be the points in W which we can reach from V

Imα = α(V ) =
{
α(v) : v ∈ V

}
≤W.

Proving that these are subspaces is left as an exercise.

We then say that r(α) = dim Imα is the rank and n(α) = dimkerα is the nullity.

..Theorem 1.31: Rank-nullity theorem

For a linear map α : V →W , where V is finite dimensional, we have

r(α) + n(α) = dim Imα+ dimkerα = dimV.

Proof. Let v1, . . . , vd be a basis of kerα, and extend it to a basis of V , say, v1, . . . , vd, vd+1, . . . , vn.
We show the following claim, which implies the theorem immediately:

Claim. α(vd+1), . . . , α(vn) is a basis of Imα.

Proof of claim. Span: if w ∈ Imα, then w = α(v) for some v ∈ V . But v1, . . . , vn is a
basis, so there are some λ1, . . . , λn ∈ F with v =

∑
λi vi. Then

α(v) = α
(∑

λi vi

)
=

n∑
i=d+1

λi α(vi)

as α(v1) = · · · = α(vd) = 0; that is, α(vd+1), . . . , α(vn) span Imα.

http://en.wikipedia.org/wiki/Kernel_(mathematics)
http://en.wikipedia.org/wiki/Image_(mathematics)
http://en.wikipedia.org/wiki/Rank_(linear_algebra)
http://en.wikipedia.org/wiki/Nullity
http://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem
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Linear independence: we have

n∑
i=d+1

λi α(vi) = 0 =⇒ α

 n∑
i=d+1

λi vi

 = 0.

And hence
∑n

i=d+1 λi vi ∈ kerα. But kerα has basis v1, . . . , vd, and so there are
µ1, . . . , µd ∈ F such that

n∑
i=d+1

λi vi =

d∑
i=1

µi vi.

But this is a relation of linear dependence on v1, . . . , vn, which is a basis of V , so we
must have

−µ1 = −µ2 = · · · = −µd = λd+1 = · · · = λn︸ ︷︷ ︸
hence linearly independent

= 0.

Corollary 1.32. Let α : V → W be a linear map between finite dimensional spaces V
and W . If dimV = dimW , then α : V → W is an isomorphism if and only if α is
injective, and if and only if α is surjective.

Proof. The map α is injective if and only if dimkerα = 0, and so dim Imα = dimV
(which is dimW here), which is true if and only if α is surjective.
Remark. 17 OctIf v1, . . . , vn is a basis for V , w1, . . . , wm is a basis for W and A is the matrix of
the linear map α : V → W , then Imα

∼−→ ⟨column space of A⟩, kerα ∼−→ kerA, and the
isomorphism is induced by the choice of bases for V and W , that is by the isomorphisms
W

∼−→ Fm, V ∼←− Fn.
Remark. You’ll notice that the rank-nullity theorem follows easily from our basic results
about how linearly independent sets extend to bases. You’ll recall that these results in
turn depended on row and column reduction of matrices. We’ll now show that in turn
they imply the basic results about row and column reduction – the first third of this
course is really just learning fancy language in which to rephrase Gaussian elimination.

The language will be useful in future years, especially when you learn geometry. However
it doesn’t really help when you are trying to solve linear equations – that is, finding the
kernel of a linear transformation. For that, there’s not much you can say other than:
write the linear map in terms of a basis, as a matrix, and row and column reduce!

..Theorem 1.33

(i) Let A ∈ Matm,n(F). Then A is equivalent to

B =



1 0 · · · · · · · · · 0

0
. . . 0

. . . . . . ...
... 0 1 0

. . . ...
... . . . 0 0

...
...

... . . . . . . . . . . . . ...
0 · · · · · · · · · · · · 0


that is, there exist invertible P ∈ GLm(F), Q ∈ GLn(F) such that B =
Q−1AP .

(ii) The matrix B is well defined. That is, if A is equivalent to another matrix
B ′ of the same form, then B ′ = B.
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Part (ii) of the theorem is clunkily phrased. We’ll phrase it better in a moment by
saying that the number of ones is the rank of A, and equivalent matrices have the same
rank.

Proof 1 of theorem 1.33.

(i) Let V = Fn, W = Fm and α : V → W be the linear map taking x 7→ Ax.
Define d = dimkerα. Choose a basis y1, . . . , yd of kerα, and extend this to a basis
v1, . . . , vn−d, y1, . . . , yd of V .

Then by the proof of the rank-nullity theorem, α(vi) = wi, for 1 ≤ i ≤ n− d, are
linearly independent in W , and we can extend this to a basis w1, . . . , wm of W .
But then with respect to these new bases of V and W , the matrix of α is just B,
as desired.

(ii) The number of one’s (n−d here) in this matrix equals the rank of B. By definition,

r(A) = column rank of A
= dim Imα

= dim(subspace spanned by columns)

So to finish the proof, we need a lemma.

Lemma 1.34. If α, β : V →W are equivalent linear maps, then

dimkerα = dimkerβ dim Imα = dim Imβ

Proof of lemma. Recall α, β : V → W are equivalent if there are some p, q ∈ GL(V ) ×
GL(W ) such that β = q−1αp.

V
α //W

V

p

OO

β
//W

q

OO

Claim. x ∈ kerβ ⇐⇒ px ∈ kerα.

Proof. β(x) = q−1αp(x). As q is an isomorphism, q−1(α(p(x))) = 0 ⇐⇒ α(p(x)) = 0;
that is, the restriction of p to kerβ maps kerβ to kerα; that is, p : kerβ

∼−→ kerα, and
this is an isomorphism, as p−1 exists on V . (So p−1y ∈ kerβ ⇐⇒ y ∈ kerα.)

Similarly, you can show that q induces an isomorphism q : Imβ
∼−→ Imα.

Note that the rank-nullity theorem implies that in the lemma, if we know dimkerα =
dimkerβ, then you know dim Imα = dim Imβ, but we didn’t need to use this.

..Theorem 1.35: Previous theorem restated

The GL(V )×GL(W ) orbits on L(V,W ) are in bijection with{
r : 0 ≤ r ≤ min(dimV, dimW )

}
under the map taking α : V →W to rank(α) = dim Imα.

Here GL(V )×GL(W ) acts on L(V,W ) by (q, p) · β = qβp−1.
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Hard exercise.

(i) What are the orbits of GL(V )×GL(W )×GL(U) on the set L(V,W )×L(W,U) =
{α : V →W,β :W → V linear}?

(ii) What are the orbits of GL(V )×GL(W ) on L(V,W )× L(W,V )?

You won’t be able to do part (ii) of the exercise before the next chapter, when you learn
Jordan normal form. It’s worthwhile trying to do them then.

Proof 2 of theorem 1.33.

(ii) As before, no theorems were used.
(i) We’ll write an algorithm to find P and Q explicitly:

Step 1: If top left a11 ̸= 0, then we can clear all of the first column by row
operations, and all of the first row by column operations.
Let’s remember what this means.
Let Eij be the matrix with a 1 in the (i, j)’th position, and zeros elsewhere. Recall
that for i ̸= j,

(
I + αEij

)
A is a new matrix, whose ith row is the ith row of A +

α · (ith row of A). This is an elementary row operation.
Similarly A

(
I + αEij

)
is an elementary column operation. As an exercise, state

this precisely, as we did for the rows.
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We have
E ′
mE

′
m−1 · · ·E ′

1AE1 · · ·En =

(
a11 0
0 A′

)
where

E ′
i = I − ai1

a11
Ei1, Ej = I − a1j

a11
E1j .

Step 2: if a11 = 0, either A = 0, in which case we are done, or there is some
aij ̸= 0.
Consider the matrix sij , which is the identity matrix with the ith row and the jth

row swapped, for example s12 =
(
0 1
1 0

)
.

Exercise. sij A is the matrix A with the ith row and the jth row swapped, Asij
is the matrix A with the ith and the jth column swapped.
Hence si1Asj1 has (1, 1) entry aij ̸= 0.
Now go back to step 1 with this matrix instead of A.
Step 3: multiply by the diagonal matrix with ones along the diagonal except for
the (1, ), position, where it is a−1

11 .
Note it doesn’t matter whether we multiply on the left or the right, we get a matrix
of the form (

1 0
0 A′′

)
Step 4: Repeat this algorithm for A′′.
When the algorithm finishes, we end up with a diagonal matrix B with some ones
on the diagonal, then zeros, and we have written it as a product(

row opps
for col n

)
∗ · · · ∗

(
row opps
for col 1

)
︸ ︷︷ ︸

Q

∗A ∗
[

row opps
for row 1

]
∗ · · · ∗

[
row opps
for row n

]
︸ ︷︷ ︸

P

where each ∗ is either sij or 1 times an invertible diagonal matrix (which is mostly
ones, but in the i’th place is a−1

ii ).
But this is precisely writing this as a product Q−1AP .

Corollary 1.36. Another direct proof of the rank-nullity theorem.

Proof. (ii) showed that dimkerA = dimkerB and dim ImA = dim ImB if A and B
are equivalent, by (i) of the theorem, it is enough to the show rank/nullity for B in the
special form above. But here is it obvious.
Remark. Notice that this proof really is just the Gaussian elimination argument you
learned last year. We used this to prove the theorem ? on bases. So now that we’ve
written the proof here, the course really is self contained. It’s better to think that
everything we’ve been doing as dressing up this algorithm in coordinate independent
language.

In particular, we have given coordinate independent meaning to the kernel and column
space of a matrix, and hence to its column rank. We should also give a coordinate
independent meaning for the row space and row rank, for the transposed matrix AT,
and show that column rank equals row rank. This will happen in chapter 4.
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1.6 Sums and intersections of subspaces

Lemma 1.37. Let V be a vector space over F, and Ui ≤ V subspaces. Then U =
∩
Ui

is a subspace.

Proof. 19 OctSince 0 ∈ Ui for all i, certainly 0 ∈
∩
Ui. And if u, v ∈ U , then u, v ∈ Ui for all

i, so λu+ µv ∈ Ui for all i, and hence λu+ µv ∈ U .

By contrast, the union U1 ∪ U2 is not a subspace unless U1 ⊆ U2 or U2 ⊆ U1.

Definition. Let U1, . . . , Ur ≤ V be subspaces. The sum of the Ui is the subspace
denoted

r∑
i=1

Ui = U1 + · · ·+ Ur

=
{
u1 + u2 + · · ·+ ur | ui ∈ Ui

}
= ⟨U1, . . . , Ur⟩ ,

which is the span of
∪r
i=1 Ui.

Exercise: prove the two equalities in the definition.

Definition. The set of d-dimensional subspaces of V ,
{
U | U ≤ V,dimU = d

}
is

called the Grassmannian of d-planes in V , denoted Grd(V ).

Example 1.38. We have

Gr1(F2) =
{

lines L in F2
}
= F ∪ {∞},

as L = ⟨λe1 + µe2⟩. If λ ̸= 0, we get L = ⟨e1 + γe2⟩, where γ = µ/λ ∈ F. If λ = 0,
then L = ⟨e2⟩, which we think of as ∞.

If F = R, then this is R ∪ {∞}, the circle. If F = C then this is C ∪ {∞}, the
Riemann sphere.

..Theorem 1.39

Suppose U1, U2 ≤ V and Ui finite dimensional. Then

dim(U1 ∩ U2) + dim(U1 + U2) = dimU1 + dimU2.

Proof 1. Pick a basis v1, . . . , vd of U1 ∩U2. Extend it to a basis v1, . . . , vd, w1, . . . , wr of
U1 and a basis v1, . . . , vd, y1, . . . , ys of U2.

Claim. {v1, . . . , vd, w1, . . . , wr, y1, . . . , ys} is a basis of U1 + U2. The claim implies the
theorem immediately.

Proof of claim. Span: an element of U1 + U2 can be written x + y for x ∈ U1, y ∈ U2,
and so

x =
∑
λi vi +

∑
µj wj y =

∑
αi vi +

∑
βk yk

Combining these two, we have

x+ y =
∑

(λi + αi) vi +
∑
µj wj +

∑
βk yk

http://en.wikipedia.org/wiki/Grassmannian
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Linear independence is obvious, but messy to write: if∑
αi vi +

∑
βj wj +

∑
γkyk = 0,

then ∑
αi vi +

∑
βj wj︸ ︷︷ ︸

∈U1

= −
∑
γkyk︸ ︷︷ ︸

∈U2

,

hence
∑
γk yk ∈ U1 ∩ U2, and hence

∑
γk yk =

∑
θivi for some θi, as v1, . . . , vd is a

basis of U1 ∩ U2. But vi, yk are linearly independent, so γk = θi = 0 for all i, k. Thus∑
αi vi +

∑
βj wj = 0, but as vi, wj are linearly independent, we have αi = βj = 0 for

all i, j.

We can rephrase this by introducing more notation. Suppose Ui ≤ V , and we say that
U =

∑
Ui is a direct sum if every u ∈ U can be written uniquely as u = u1 + · · · + uk,

for some ui ∈ U .

Lemma 1.40. U1 + U2 is a direct sum if and only if U1 ∩ U2 = {0}.

Proof. (⇒) Suppose v ∈ U1 ∩ U2. Then

v = v
∈U1

+ 0 = 0 + v
∈U2

,

which is two ways of writing v, so uniqueness gives that v = 0.

(⇐) If u1 + u2 = u ′
1 + u ′

2, for ui, u ′
i ∈ Ui, then u1 − u ′

1
∈U1

= u2 − u ′
2

∈U2

.

This is in U1 ∩ U2 = {0}, and so u1 = u ′
1 and u2 = u ′

2, and sums are unique.

Definition. Let U ≤ V . A complement to U is a subspace W ≤ V such that
W + U = V and W ∩ U = {0}.

Example 1.41. Let V = R2, and U be the line spanned by e1. Any line different
from U is a complement to U ; that is, W = ⟨e2 + λe1⟩ is a complement to U , for
any λ ∈ F.

In particular, complements are not unique. But they always exist:

Lemma 1.42. Let U ≤ V and U finite dimensional. Then a complement to U exists.

Proof. We’ve seen that U is finite dimensional. Choose v1, . . . , vd as a basis of V , and
extend it by w1, . . . , wr to a basis v1, . . . , vd, w1, . . . , wr of V .

Then W = ⟨w1, . . . , wr⟩ is a complement.

Exercise 1.43. Show that if W ′ is another complement to U , then there exists a
unique φ : W → U linear, such that W ′ =

{
w + φ(w) | w ∈W

}
, and conversely.

In other words, show that there is a bijection from the set of complements of U to
L(W,U).

Lemma 1.44. If U1, . . . Ur ≤ U are such that U1 + . . . Ur is a direct sum, show that
dim(U1 + · · ·+ Ur) = dimU1 + · · ·+ dimUr.

Proof. Exercise. Show that a union of bases for Ui is a basis for
∑
Ui.

http://en.wikipedia.org/wiki/Direct_sum
http://en.wikipedia.org/wiki/Direct_sum_of_modules#Internal_direct_sum
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Now let U1, U2 ≤ V be finite dimensional subspaces of V . ChooseW1 ≤ U1 a complement
to U1 ∩ U2 in U1, and W2 ≤ U2 a complement to U1 ∩ U2 in U2. Then

Corollary 1.45.
U1 + U2 = (U1 ∩ U2) +W1 +W2

is a direct sum, and the previous lemma gives another proof that

dim(U1 + U2) + dim(U1 ∩ U2) = dimU1 + dimU2.

Once more, let’s look at this:

Definition. Let V1, V2 be two vector spaces over F. Then define V1⊕V2, the direct
sum of V1 and V2 to be the product set V1 × V2, with vector space structure

(v1, v2) + (w1, w2) = (v1 + w1, v2 + w2) λ (v1, v2) = (λv1, λv2) .

Exercises 1.46.

(i) Show that V1 ⊕ V2 is a vector space. Consider the linear maps

i1 : V1 ↪→ V1 ⊕ V2 taking v1 7→ (v1, 0)

i2 : V2 ↪→ V1 ⊕ V2 taking v2 7→ (0, v2)

These makes V1 ∼= i(V1) and V2 ∼= i(V2) subspaces of V1 ⊕ V2 such that
iV1 ∩ iV2 = {0}, and so V1 ⊕ V2 = iV1 + iV2, so it is a direct sum.

(ii) Show that F⊕ · · · ⊕ F︸ ︷︷ ︸
n times

= Fn.

Once more let U1, U2 ≤ V be subspaces of V . Consider U1, U2 as vector spaces in their
own right, and form U1 ⊕ U2, a new vector space. (This is no longer a subspace of V .)

Lemma 1.47. Consider the linear map U1 ⊕ U2
π−→ V taking (u1, u2) 7→ u1 + u2.

(i) This is linear.
(ii) kerπ =

{
(−w,w) | w ∈ U1 ∩ U2

}
.

(iii) Imπ = U1 + U2 ≤ V .

Proof. Exercise.

Corollary 1.48. Show that the rank-nullity theorem implies

dimkerπ
=dimU1∩U2

+ dim Imπ
=dim(U1+U2)

= dim(U1 ⊕ U2) = dimU1 + dimU2.

This is our slickest proof yet. All three proofs are really the same – they ended up
reducing to Gaussian elimination – but the advantage of this formulation is we never
have to mention bases. Not only is it the cleanest proof, it actually makes it easier to
calculate. It is certainly helpful for part (ii) of the following exercise.

Exercise 1.49. Let V = Rn and U1, U2 ≤ Rn. Let U1 have a basis v1, . . . , vr and
U2 have a basis w1, . . . , ws.

(i) Find a basis for U1 + U2.
(ii) Find a basis for U1 ∩ U2.

http://en.wikipedia.org/wiki/Direct_sum_of_modules
http://en.wikipedia.org/wiki/Direct_sum_of_modules
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2 Endomorphisms
In this chapter, unless stated otherwise, we take V to be a vector space over a field F,
and α : V → V to be a linear map.

Definition. An endomorphism of V is a linear map from V to V . We write
End(V ) = L(V, V ) to denote the set of endomorphisms of V :

End(V ) = {α : V → V, α linear} .

The set End(V ) is an algebra: as well as being a vector space over F, we can also multiply
elements of it – if α, β ∈ End(V ), then αβ ∈ End(V ), i.e. product is composition of
linear maps.

Recall we have also defined

GL(V ) =
{
α ∈ End(V ) : α invertible

}
.

Fix a basis b1, . . . , bn of V and use it as the basis for both the source and target of
α : V → V . Then α defines a matrix A ∈ Matn(F), by α(bj) =

∑
i aij bi. If b ′1, . . . , b ′n is

another basis, with change of basis matrix P , then the matrix of α with respect to the
new basis is PAP−1.

V
α //

∼=
��

V

∼=
��

Fn
A

// Fn

Hence the properties of α : V → V which don’t depend on choice of basis are the
properties of the matrix A which are also the properties of all conjugate matrices PAP−1.

These are the properties of the set of GL(V ) orbits on End(V ) = L(V, V ), where GL(V )
acts on End(V ), by (g, α) 7→ gαg−1.

In the next two chapters we will determine the set of orbits. This is called the theory
of Jordan normal forms, and is quite involved.

Contrast this with the properties of a linear map α : V → W which don’t depend on
the choice of basis of both V and W ; that is, the determination of the GL(V )×GL(W )
orbits on L(V,W ). In chapter 1, we’ve seen that the only property of a linear map which
doesn’t depend on the choices of a basis is its rank – equivalently that the set of orbits
is isomorphic to {i | 0 ≤ i ≤ min(dimV, dimW )}.

We begin by defining the determinant, which is a property of an endomorphism which
doesn’t depend on the choice of a basis.

2.1 Determinants

Definition. We define the map det : Matn(F)→ F by

detA =
∑
σ∈Sn

ϵ(σ) a1,σ(1) . . . an,σ(n).

Recall that Sn is the group of permutations of {1, . . . , n}. Any σ ∈ Sn can be written
as a product of transpositions (ij).
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Then ϵ : Sn → {±1} is a group homomorphism taking

ϵ(σ) =

{
+1 if number of permutations is even,
−1 if number of permutations is odd.

In class, we had a nice interlude here on drawing pictures for symmetric group elements
as braids, composition as concatenating pictures of braids, and how ϵ(w) is the parity
of the number of crossings in any picture of w. This was just too unpleasant to type up;
sorry!

Example 2.1. We can calculate det by hand for small values of n:

det
(
a11
)
= a11

det

(
a11 a12
a21 a22

)
= a11a22 − a12a21

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32

The complexity of these expressions grows nastily; when calculating determinants it’s
usually better to use a different technique rather than directly using the definition.

Lemma 2.2. If A is upper triangular, that is, if aij = 0 for all i > j, then detA =
a11 . . . ann.

Proof. From the definition of determinant:

detA =
∑
σ∈Sn

ϵ(σ) a1,σ(1) . . . an,σ(n).

If a product contributes, then we must have σ(i) ≤ i for all i = 1, . . . , n. Hence σ(1) = 1,
σ(2) = 2, and so on until σ(n) = n. Thus the only term that contributes is the identity,
σ = id, and detA = a11 . . . ann.

Lemma 2.3. detAT = detA, where (AT)ij = Aji is the transpose.

Proof. From the definition of determinant, we have

detAT =
∑
σ∈Sn

ϵ(σ) aσ(1),1 . . . aσ(n),n

=
∑
σ∈Sn

ϵ(σ)

n∏
i=1

aσ(i),i

Now
∏n
i=1 aσ(i),i =

∏n
i=1 ai,σ−1(i), since they contain the same factors but in a different

order. We relabel the indices accordingly:

=
∑
σ∈Sn

ϵ(σ)
n∏
k=1

ak,σ−1(k)

Now since ϵ is a group homomorphism, we have ϵ(σ · σ−1) = ϵ(ι) = 1, and thus ϵ(σ) =
ϵ(σ−1). We also note that just as σ runs through {1, . . . , n}, so does σ−1. We thus have

=
∑
σ∈Sn

ϵ(σ)

n∏
k=1

ak,σ(k) = detA.
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Writing vi for the ith column of A, we can consider A as an n-tuple of column vectors,
A = (v1, . . . , vn). Then Matn(F) ∼= Fn×· · ·×Fn, and det is a function Fn×· · ·×Fn → F.
Proposition 2.4. The function det : Matn(F) → F is multilinear; that is, it is linear
in each column of the matrix separately, so:

det(v1, . . . , λi vi, . . . , vn) = λi det(v1, . . . , vi, . . . , vn)

det(v1, . . . , v
′
i + v′′i , . . . , vn) = det(v1, . . . , v

′
i, . . . , vn) + det(v1, . . . , v

′′
i , . . . , vn).

We can combine this into the single condition

det(v1, . . . , λ
′
i v

′
i + λ ′′

i v
′′
i , . . . , vn) = λ ′

i det(v1, . . . , v
′
i , . . . , vn)

+ λ ′′
i det(v1, . . . , v

′′
i , . . . , vn).

Proof. Immediate from the definition: detA is a sum of terms a1,σ(1), . . . , an,σ(n), each of
which contains only one factor from the ith column: aσ−1(i),i. If this term is λ′i aσ−1(i),i+
λ′′i a

′′
σ−1(i),i, then the determinant expands as claims.

Example 2.5. If we split a matrix along a single column, such as below, then
det(A) = detA′ + detA′′.

det

1 7 1
3 4 1
2 3 0

 = det

1 3 1
3 2 1
2 1 0

+ det

1 4 1
3 2 1
2 2 0


Observe how the first and third columns remain the same, and only the second
column changes. (Don’t get confused: note that det(A + B) ̸= detA + detB for
general A and B.)

Corollary 2.6. det(λA) = λnA.

Proof. This follows immediately from the definition, or from applying the result of
proposition 2.4 multiple times.
Proposition 2.7. If two columns of A are the same, then detA = 0.

Proof. Suppose vi and vj are the same. Let τ = (i j) be the transposition in Sn which
swaps i and j. Then Sn = An

⨿
Anτ , where An = ker ϵ : Sn → {±1}. We will prove the

result by splitting the sum

detA =
∑
σ∈Sn

ϵ(σ)

n∏
i=1

aσ(i),i

into a sum over these two cosets for An, observing that for all σ ∈ An, ϵ(σ) = 1 and
ϵ(στ) = −1.

Now, for all σ ∈ An we have

a1,σ(1) . . . an,σ(n) = a1,τσ(1) . . . an,τσ(n),

as if σ(k) ̸∈ {i, j}, then τσ(k) = σ(k), and if σ(k) = i, then

ak,τσ(k) = ak,τ(i) = ak,j = ak,i = ak,σ(k),

and similarly if σ(k) = j. Hence

detA =
∑
σ∈An

 n∏
i=1

aσ(i),i −
n∏
i=1

aστ(i),i

 = 0.
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Proposition 2.8. If I is the identity matrix, then det I = 1

Proof. Immediate.

..Theorem 2.9

These three properties characterise the function det.

Before proving this, we need some language.

Definition. A function f : Fn × · · · × Fn → F is a volume form on Fn if

(i) It is multilinear, that is, if

f(v1, . . . , λi vi, . . . , vn) = λi f(v1, . . . , vi, . . . , vn)

f(v1, . . . , vi + v ′
i , . . . , vn) = f(v1, . . . , vi, . . . , vn) + f(v1, . . . , v

′
i , . . . , vn).

We saw earlier that we can write this in a single condition:

f(v1, . . . , λi vi + λ ′
i v

′
i , . . . , vn) = λi f(v1, . . . , vi, . . . , vn)

+ λ ′
i f(v1, . . . , v

′
i , . . . , vn).

(ii) It is alternating; that is, whenever i ̸= j and vi = vj , then f(v1, . . . , vn) = 0.

Example 2.10. We have seen that det : Fn × · · · × Fn → F is a volume form. It is
a volume form f with f(e1, . . . , en) = 1 (that is, det I = 1).

Remark. Let’s explain the name ‘volume form’. Let F = R, and consider the volume of a
rectangular box with a corner at 0 and sides defined by v1, . . . , vn in Rn. The volume of
this box is a function of v1, . . . , vn that almost satisfies the properties above. It doesnt
quite satisfy linearity, as the volume of a box with sides defined by −v1, v2, . . . , vn is the
same as that of the box with sides defined by v1, . . . , vn, but this is the only problem.
(Exercise: check that the other properties of a volume form are immediate for voluems of
rectangular boxes.) You should think of this as saying that a volume form gives a signed
version of the volume of a rectangular box (and the actual volume is the absoulute
value). In any case, this explains the name. You’ve also seen this in multi-variable
calculus, in the way that the determinant enters into the formula for what happens to
integrals when you change coordinates.

..Theorem 2.11: Precise form

The set of volume forms forms a vector space of dimension 1. This line is called
the determinant line.

Proof.24 Oct It is immediate from the definition that volume forms are a vector space. Let
e1, . . . , en be a basis of V with n = dimV . Every element of V n is of the form(∑

ai1 ei,
∑

ai2 ei, . . . ,
∑

ain ei

)
,
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with aij ∈ F (that is, we have an isomorphism of sets V n ∼−→ Matn(F)). So if f is a
volume form, then

f

 n∑
i1=1

ai11 ei1 , . . . ,
n∑

in=1

ainn ein

 =
n∑

i1=1

ai11 f

ei1 , n∑
i2=1

ai21 ei2 , . . . ,
n∑

in=1

ainn ein


= · · · =

∑
1≤i1,...,in≤n

ai11 . . . ainn f(ei1 , . . . , ein),

by linearity in each variable. But as f is alternating, f(ei1 , . . . , ein) = 0 unless i1, . . . , in
is 1, . . . , n in some order; that is,

(i1, . . . , in) =
(
σ(1), . . . , σ(n)

)
for some σ ∈ Sn.

Claim. f(eσ(1), . . . , eσ(n)) = ϵ(σ) f(e1, . . . , en).

Given the claim, we get that the sum above simplifies to∑
σ∈Sn

aσ(1),1 . . . aσ(n),n ϵ(w) f(e1, . . . , en),

and so the volume form is determined by f(e1, . . . , en); that is, dim({vol forms}) ≤
1. But det : Matn(F) → F is a well-defined non-zero volume form, so we must have
dim({vol forms}) = 1.

Note that we have just shown that for any volume form

f(v1, . . . , vn) = det(v1, . . . , vn) f(e1, . . . , en).

So to finish our proof, we just have to prove our claim.

Proof of claim. First, for any v1, . . . , vn ∈ V , we show that

f(. . . , vi, . . . , vj , . . .) = −f(. . . , vj , . . . , vi, . . .),

that is, swapping the ith and jth entries changes the sign. Applying multilinearity is
enough to see this:

f(. . . , vi + vj , . . . , vi + vj , . . .)
=0 as alternating

= f(. . . , vi, . . . , vi, . . .)
=0 as alternating

+ f(. . . , vj , . . . , vj , . . .)
=0 as alternating

+ f(. . . , vi, . . . , vj , . . .) + f(. . . , vj , . . . , vi, . . .).

Now the claim follows, as an arbitrary permutation can be written as a product of
transpositions, and ϵ(w) = (−1)# of transpositions.
Remark. Notice that if Z/2 ̸⊂ F is not a subfield (that is, if 1 + 1 ̸= 0), then for a
multilinear form f(x, y) to be alternating, it suffices that f(x, y) = −f(y, x). This is
because we have f(x, x) = −f(x, x), so 2f(x, x) = 0, but 2 ̸= 0 and so 2−1 exists, giving
f(x, x) = 0. If 2 = 0, then f(x, y) = −f(y, x) for any f and the correct definition of
alternating is f(x, x) = 0.

If that didn’t make too much sense, don’t worry: this is included for mathematical
interest, and isn’t essential to understand anything else in the course.
Remark. If σ ∈ Sn, then we can attach to it a matrix P (σ) ∈ GLn by

P (σ)ij =

{
1 if σ−1i = j,

0 otherwise.
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Exercises 2.12. Show that:

(i) P (w) has exactly one non-zero entry in each row and column, and that entry
is a 1. Such a matrix is called a permutation matrix.

(ii) P (w) ei = ej , hence
(iii) P : Sn → GLn is a group homomorphism;
(iv) ϵ(w) = detP (w).

..Theorem 2.13

Let A,B ∈ Matn(F). Then detAB = detAdetB.

Slick proof. Fix A ∈ Matn(F), and consider f : Matn(F) → F taking f(B) = detAB.
We observe that f is a volume form. (Exercise: check this!!) But then

f(B) = detB · f(e1, . . . , en).

But by the definition,
f(e1, . . . , en) = f(I) = detA.

Corollary 2.14. If A ∈ Matn(F) is invertible, then detA−1 = 1/ detA.

Proof. Since AA−1 = I, we have

detAdetA−1 = detAA−1 = det I = 1,

by the theorem, and rearranging gives the result.

Corollary 2.15. If P ∈ GLn, then

det(PAP−1) = detP detAdetP−1 = detA.

Definition. Let α : V → V be a linear map. Define detα ∈ F as follows: choose
any basis b1, . . . , bn of V , and let A be the matrix of α with respect to the basis.
Set detα = detA, which is well-defined by the corollary.

Remark. Here is a coordinate free definition of detα.

Pick f any volume form for V , f ̸= 0. Then

(x1, . . . , xn) 7→ f(αx1, . . . , αxn) = (fα)(x1, . . . , xn)

is also a volume form. But the space of volume forms is one-dimensional, so there is
some λ ∈ F with fα = λf , and we define

λ = detα

(Though this definition is independent of a basis, we haven’t gained much, as we needed
to choose a basis to say anything about it.)

Proof 2 of detAB = detAdetB. We first observe that it’s true if B is an elementary
column operation; that is, B = I + αEij . Then detB = 1. But

detAB = detA+ detA′,
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where A′ is A except that the ith and jth column of A′ are the same as the jth column
of A. But then detA′ = 0 as two columns are the same.

Next, if B is the permutation matrix P ((i j)) = sij , that is, the matrix obtained from
the identity matrix by swapping the ith and jth columns, then detB = −1, but Asij is
A with its ith and jth columns swapped, so detAB = detAdetB.

Finally, if B is a matrix of zeroes with r ones along the leading diagonal, then if r = n,
then B = I and detB = 1. If r < n, then detB = 0. But then if r < n, AB has some
columns which are zero, so detAB = 0, and so the theorem is true for these B also.

Now any B ∈ Matn(F) can be written as a product of these three types of matrices. So
if B = X1 · · ·Xr is a product of these three types of matrices, then

detAB = det
(
(AX1 · · ·Xm−1

)
Xm)

= det(AX1 · · ·Xm−1) detXm

= · · · = detAdetX1 · · ·detXm

= · · · = detAdet (X1 · · ·Xm)

= detAdetB.

Remark. That determinants behave well with respect to row and column operations is
also a useful way for humans (as opposed to machines!) to compute determinants.

Proposition 2.16. Let A ∈ Matn(F). Then the following are equivalent:

(i) A is invertible;
(ii) detA ̸= 0;

(iii) r(A) = n.

Proof. (i) =⇒ (ii). Follows since detA−1 = 1/detA.

(iii) =⇒ (i). From the rank-nullity theorem, we have

r(A) = n ⇐⇒ kerα = {0} ⇐⇒ A invertible.

Finally we must show (ii) =⇒ (iii). If r(A) < n, then kerα ̸= {0}, so there is some
Λ = (λ1, . . . , λn)

T ∈ Fn such that AΛ = 0, and λk ̸= 0 for some k. Now put

B =



1 λ1
1 λ2

. . . ...
λk
... . . .
λn 1


Then detB = λk ̸= 0, but AB is a matrix whose kth column is 0, so detAB = 0; that
is, detA = 0, since λk ̸= 0.

This is a horrible and unenlightening proof that detA ̸= 0 implies the existence of A−1.
A good proof would write the matrix coefficients of A−1 in terms of (detA)−1 and the
matrix coefficients of A. We will now do this, after some showing some further properties
of the determinant.

We can compute detA by expanding along any column or row.
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Definition. Let Aij be the matrix obtained from A by deleting the ith row and
the jth column.

..Theorem 2.17

(i) Expand along the jth column:

detA = (−1)j+1 a1j detA
1j + (−1)j+2 a2j detA

2j + · · ·+ (−1)j+n anj detAnj

= (−1)j+1
[
a1j detA

1j − a2j detA2j + a3j detA
3j − · · ·+ (−1)n+1 anj detA

nj
]

(the thing to observe here is that the signs alternate!)

(ii) Expanding along the ith row:

detA =

n∑
j=1

(−1)i+j aij detAij .

The proof is boring book keeping.

Proof. Put in the definition of Aij as a sum over w ∈ Sn−1, and expand. We can tidy
this up slightly, by writing it as follows: write A = (v1 · · · vn), so vj =

∑
i aij ei. Then

detA = det(v1, . . . , vn) =

n∑
i=1

aij det(v1, . . . , vj−1, ei, vj+1, . . . , vn)

=
n∑
i=1

(−1)j−1 det
(
ei, v1, . . . , vj−1, vj+1, . . . , vn

)
.

as ϵ(1 2 . . . j) = (−1)j−1 (in class we drew a picture of this symmetric group element,
and observed it had j − 1 crossings.) Now ei = (0, . . . , 0, 1, 0, . . . , 0)T, so we pick up
(−1)i−1 as the sign of the permutation (1 2 . . . i) that rotates the 1st through ith rows,
and so get ∑

i

(−1)i+j−2 det

(
1 ∗
0 Aij

)
=
∑
i

(−1)i+j detAij .

Definition. For A ∈ Matn(F), the adjugate matrix, denoted by adjA, is the
matrix with

(adjA)ij = (−1)i+j detAji.

Example 2.18.

adj

(
a b
c d

)
=

(
d −b
−c a

)
, adj

1 1 2
0 2 1
1 0 2

 =

 4 −2 −3
1 0 −1
−2 1 2

 .

..Theorem 2.19: Cramer’s rule

(adjA) ·A = A · (adjA) = (detA) · I.

http://en.wikipedia.org/wiki/Adjugate_matrix
http://en.wikipedia.org/wiki/Cramer's_rule
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Proof. We have

(
(adjA)A

)
jk

=

n∑
i=1

(adjA)ji aik =

n∑
i=1

(−1)i+j detAijaik

Now, if we have a diagonal entry j = k then this is exactly the formula for detA in (i)
above. If j ̸= k, then by the same formula, this is detA ′, where A ′ is obtained from
A by replacing its jth column with the kth column of A; that is A ′ has the j and kth
columns the same, so detA ′ = 0, and so this term is zero.

Corollary 2.20. A−1 =
1

detA
adjA if detA ̸= 0.

The proof of Cramer’s rule only involved multiplying and adding, and the fact that they
satisfy the usual distributive rules and that multiplication and addition are commutative.
A set in which you can do this is called a commutative ring. Examples include the
integers Z, or polynomials F[x].

So we’ve shown that if A ∈ Matn(R), where R is any commutative ring, then there
exists an inverse A−1 ∈ Matn(R) if and only if detA has an inverse in R: (detA)−1 ∈ R.
For example, an integer matrix A ∈ Matn(Z) has an inverse with integer coefficients if
and only if detA = ±1.

Moreover, the matrix coefficients of adjA are polynomials in the matrix coefficients of
A, so the matrix coefficients of A−1 are polynomials in the matrix coefficients of A and
the inverse of the function detA (which is itself a polynomial function of the matrix
coefficients of A).

That’s very nice to know.
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3 Jordan normal form
In this chapter, unless stated otherwise, we take V to be a finite dimensional vector
space over a field F, and α : V → V to be a linear map. We’re going to look at what
matrices look like up to conjugacy; that is, what the map α looks like, given the freedom
to choose a basis for V .

3.1 Eigenvectors and eigenvalues

Definition. A non-zero vector v ∈ V is an eigenvector for α : V → V if α(v) = λv,
for some λ ∈ F. Then λ is called the eigenvalue associated with v, and the set

Vλ =
{
v ∈ V : α(v) = λv

}
is called the eigenspace of λ for α, which is a subspace of V .

We observe that if I : V → V is the identity map, then

Vλ = ker(λI − α : V → V ).

So if v ∈ Vλ, then v is a non-zero vector if and only if ker(λI − α) ̸= {0}, which is
equivalent saying that λI − α is not invertible. Thus

det(λI − α) = 0,

by the results of the previous chapter.

Definition. If b1, . . . , bn is a basis of V , and A ∈ Matn(F) is a matrix of α, then

chα(x) = det(xI − α) = det(xI −A)

is the characteristic polynomial of α.

The following properties follow from the definition:

(i) The general form is

chα(x) = chA(x) = det


x− a11 −a12 · · · −a1n
−a21 x− a22

. . . ...
... . . . . . . ...
−an1 · · · · · · x− ann

 ∈ F [x].
Observe that chA(x) ∈ F [x] is a polynomial in x, equal to xn plus terms of smaller
degree, and the coefficients are polynomials in the matrix coefficients aij .

For example, if A =

(
a11 a12
a21 a22

)
then

chA(x) = x2 − x (a11 + a22) + (a11a22 − a12a21)
= x2 − x. trA+ detA.
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(ii) Conjugate matrices have the same characteristic polynomials. Explicitly:

chPAP−1(x) = det
(
xI − PAP−1

)
= det

(
P (xI −A)P−1

)
= det(xI −A)
= chA(x).

(iii) For λ ∈ F, chα(λ) = 0 if and only if Vλ =
{
v ∈ V : α(v) = λv

}
̸= {0}; that is, if λ

is an eigenvalue of α. This gives us a way to find the eigenvalues of a linear map.

Example 3.1. If A is upper-triangular with aii in the ith diagonal entry, then

chA(x) = (x− a11) · · · (x− ann) .

It follows that the diagonal terms of an upper triangular matrix are its eigenvalues.

Definition. We say that chA(x) factors if it factors into linear factors; that is, if

chA(x) =
∏r
i=1 (x− λi)

ni ,

for some ni ∈ N, λi ∈ F and λi ̸= λj for i ̸= j.

Examples 3.2. If we take F = C, then the fundamental theorem of algebra says
that every polynomial f ∈ C[x] factors into linear terms.

In R, consider the rotation matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
,

then we have characteristic polynomial

chA(x) = x2 − 2x cos θ + 1,

which factors if and only if A = ±I and θ = 0 or π.

Definition. If F is any field, then there is some bigger field F, the algebraic closure
of F, such that F ⊆ F and every polynomial in F [x] factors into linear factors. This
is proved next year in the Galois theory course.

..Theorem 3.3

If A is an n× n matrix over F, then chA(x) factors if and only if A is conjugate to
an upper triangular matrix.

In particular, this means that if F = F, such as F = C, then every matrix is
conjugate to an upper triangular matrix.

We can give a coordinate free formulation of the theorem: if α : V → V is a linear map,
then chα(x) factors if and only if there is some basis b1, . . . , bn of V such that the matrix
of α with respect to the basis is upper triangular.
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Proof. (⇐) If A is upper triangular, then chA(x) =
∏
(x− aii), so done.

(⇒) Otherwise, set V = Fn, and α(x) = Ax. We induct on dimV . If dimV = n = 1,
then we have nothing to prove.

As chα(x) factors, there is some λ ∈ F such that chα(λ) = 0, so there is some λ ∈ F
with a non-zero eigenvector b1. Extend this to a basis b1, . . . , bn of V .

Now conjugate A by the change of basis matrix. (In other words, write the linear map
α, x 7→ Ax with respect to this basis bi rather than the standard basis ei).

We get a new matrix
Ã =

(
λ ∗
0 A′

)
,

and it has characteristic polynomial

ch
Ã
(x) = (x− λ) chA′(x).

So chα(x) factors implies that chA′(x) factors.

Now, by induction, there is some matrix P ∈ GLn−1(F) such that PA′P−1 is upper
triangular. But now (

1
P

)
Ã

(
1

P−1

)
=

(
λ

PA′P−1

)
,

proving the theorem.

Aside: what is the meaning of the matrix A′? We can ask this question more generally.
Let α : V → V be linear, and W ≤ V a subspace. Choose a basis b1, . . . , br of W , extend
it to be a basis of V (add br+1, . . . , bn).

Then α(W ) ⊆W if and only if the matrix of α with respect to this basis looks like(
X Z
0 Y

)
,

where X is r × r and Y is (n− r) × (n− r), and it is clear that α
∣∣
W

: W → W has
matrix X, with respect to a basis b1, . . . , br of W .

Then our question is: What is the meaning of the matrix Y ?

The answer requires a new concept, the quotient vector space.

Exercise 3.4. Consider V as an abelian group, and consider the coset group
V/W = {v +W : v ∈ V }. Show that this is a vector space, that br+1+W, . . . , bn+W
is a basis for it, and α : V → V induces a linear map α̃ : V/W → V/W by
α̃(v +W ) = α(v) +W (you need to check this is well-defined and linear), and that
with respect to this basis, Y is the matrix of α̃.

Remark. Let V =W ′⊕W ′′; that is, W ′∩W ′′ = {0}, W ′+W ′′ = V , and suppose that
α(W ′) ⊆ W ′ and α(W ′′) ⊆ W ′′. We write this as α = α′ ⊕ α ′′, where α′ : W ′ → W ′,
α ′′ :W ′′ →W ′′ are the restrictions of α.

In this special case the matrix of α looks even more special then the above for any basis
b1, . . . , br of W ′ and br+1, . . . , bn of W ′′ – we have Z = 0 also.
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Definition. The trace of a matrix A = (aij), denoted tr(A), is given by

tr(A) =
∑
i

aii,

Lemma 3.5. tr(AB) = tr(BA).

Proof. tr(AB) =
∑

i(AB)ii =
∑

i,j aijbji =
∑

j(BA)jj = tr(BA).

Corollary 3.6. tr(PAP−1) = tr(P−1PA) = tr(A).

So we define, if α : V → V is linear, tr(α) = tr(A), where A is a matrix of α with respect
to some basis b1, . . . , bn, and this doesn’t depend on the choice of a basis.

Proposition 3.7. If chα(x) factors as (x− λ1) · · · (x− λn) (repetition allowed), then

(i) trα =
∑

i λi;
(ii) detα =

∏
i λi.

Proof. As chα factors, there is some basis b1, . . . , bn of V such that the matrix of A is
upper triangular, the diagonal entries are λ1, . . . , λn, and we’re done.
Remark. This is true whatever F is. Embed F ⊆ F (for example, R ⊆ C), and chA
factors as (x− λ1) · · · (x− λn). Now λ1, . . . , λn ∈ F, not necessarily in F.

Regard A ∈ Matn(F), which doesn’t change trA or detA, and we get the same result.
Note that

∑
i λi and

∏
i λi are in F even though λi ̸∈ F.

Example 3.8. Take A =

(
cos θ sin θ
− sin θ cos θ

)
. Eigenvalues are eiθ, e−iθ, so

trA = eiθ + e−iθ = 2 cos θ detA = eiθ · e−iθ = 1.

Note that

chA(x) = (x− λ1) · · · (x− λn)

= xn −

∑
i

λi

xn−1 +

∑
i<j

λi λj

xn−2 − · · ·+ (−1)n (λ1 . . . λn)

= xn − tr(A)xn−1 + e2x
n−2 − · · ·+ (−1)n−1 en−1 + (−1)n detA,

where the coefficients e1 = trA, e2, . . . , en−1, en = detA are functions of λ1, . . . , λn
called elementary symmetric functions (which we see more of in Galois theory).

Each of these ei depend only on the conjugacy class of A, as

chPAP−1(x) = chA(x).

Note that A and B conjugate implies chA(x) = chB(x), but the converse is false. Con-
sider, for example, the matrices

A =

(
0 0
0 0

)
B =

(
0 1
0 0

)
,

and chA(x) = chB(x) = x2, but A and B are not conjugate.
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For an upper triangular matrix, the diagonal entries are the eigenvalues. What is the
meaning of the upper triangular coefficients?

This example shows there is some information in the upper triangular entries of an upper-
triangular matrix, but the question is how much? We would like to always diagonalise
A, but this example shows that it isn’t always possible. Let’s understand when it is
possible. 31 Oct

Proposition 3.9. If v1, . . . , vk are eigenvectors with eigenvalues λ1, . . . , λk, and λi ̸= λj
if i ̸= j, then v1, . . . , vk are linearly independent.

Proof 1. Induct on k. This is clearly true when k = 1. Now if the result is false, then
there are ai ∈ F s.t.

∑k
i=1 ai vi = 0, with some ai ̸= 0, and without loss of generality,

a1 ̸= 0. (In fact, all ai ̸= 0, as if not, we have a relation of linearly dependence among
(k − 1) eigenvectors, contradicting our inductive assumption.)

Apply α to
∑k

i=1 ai vi = 0, to get

k∑
i=1

λi ai vi = 0.

Now multiply
∑k

i=1 ai vi by λ1, and we get

k∑
i=1

λ1 ai vi = 0.

Subtract these two, and we get

k∑
i=2

(λi − λ1)︸ ︷︷ ︸
̸=0

ai vi = 0,

a relation of linear dependence among v2, . . . , vk, so ai = 0 for all i, by induction.

Proof 2. Suppose
∑
ai vi = 0. Apply α, we get

∑
λi ai vi = 0; apply α2, we get∑

λ2i ai vi = 0, and so on, so
∑k

i=1 λ
r
i ai vi = 0 for all r ≥ 0. In particular,

1 · · · 1
λ1 · · · λk
...

...
λk−1
1 · · · λk−1

k



a1 v1

...

...
ak vk

 = 0.

Lemma 3.10 (The Vandermonde determinant). The determinant of the above matrix
is
∏
i<j

(
λj − λi

)
.

Proof. Exercise!
By the lemma, if λi ̸= λj , this matrix is invertible, and so (a1 v1, . . . , ak vk)

T = 0; that
is, ai = 0 for all i.

Note these two proofs are the same: the first version of the proof was surreptitiously
showing that the Vandermonde determinant was non-zero. It looks like the first proof
is easier to understand, but the second proof makes clear what’s actually going on.
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Definition. A map α is diagonalisable if there is some basis for V such that the
matrix of α : V → V is diagonal.

Corollary 3.11. The map α is diagonalisable if and only if chα(x) factors into
∏r
i=1 (x− λi)

ni,
and dimVλi = ni for all i.

Proof. (⇒) α is diagonalisable means that in some basis it is diagonal, with ni copies
of λi in the diagonal entries, hence the characteristic polynomial is as claimed.

(⇐)
∑

i Vλi is a direct sum, by the proposition, so

dim
(∑

i Vλi
)
=
∑

dimVλi =
∑
ni,

and by our assumption, n = dimV . Now in any basis which is the union of basis for the
Vλi , the matrix of α is diagonal.

Corollary 3.12. If A is conjugate to an upper triangular matrix with λi as the diagonal
entries, and the λi are distinct, then A is conjugate to the diagonal matrix with λi in
the entries.

Example 3.13.
(
1 7
0 2

)
is conjugate to

(
1 0
0 2

)
.

The upper triangular entries “contain no information”. That is, they are an artefact
of the choice of basis.

Remark. If F = C, then the diagonalisable A are dense in Matn(C) = Cn2 (exercise).
In general, if F = F, then diagonalisable A are dense in Matn(F) = Fn2 , in the sense of
algebraic geometry.

Exercise 3.14. If A =

λ1 · · · an
. . . ...

0 λn

, then Aei = λei +
∑

j<i aji ej .

Show that if λ1, . . . , λn are distinct, then you can “correct” each ei to an eigenvalue
vi just by adding smaller terms; that is, there are pji ∈ F such that

vi = ei +
∑
j<i

pjiej has Avi = λivi,

which gives yet another proof of our proposition.
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3.2 Cayley-Hamilton theorem

Let α : V → V be a linear map, and V a finite dimensional vector space over F.

..Theorem 3.15: Cayley-Hamilton theorem

Every square matrix over a commutative ring (such as R or C) satisfies chA(A) = 0.

Example 3.16. A =

(
2 3
1 2

)
and chA(x) = x2− 4x+1, so chA(A) = A2− 4A+ I.

Then
A2 =

(
7 12
4 7

)
,

which does equal 4A− I.

Remark. We have

chA(x) = det(xI −A) = det

x− a11 · · · −a1n
... . . . ...
−an1 · · · x− ann

 = xn − e1xn−1 + · · · ± en,

so we don’t get a proof by saying chα(α) = det(α − α) = 0. This just doesn’t make
sense. However, you can make it make sense, and our second proof will do this.

Proof 1. If A =

λ1 ∗
. . .

0 λn

, then chA(x) = (x− λ1) · · · (x− λn).

Now if A were in fact diagonal, then

chA(A) = (A− λ1I) · · · (A− λnI) =


0 0
∗
∗

0 ∗



∗ 0

0
∗

0 ∗

 · · ·

∗ 0
∗
∗

0 0

 = 0

But even when A is upper triangular, this is zero.

Example 3.17. For example,

0 ∗ ∗
∗ ∗
∗

∗ ∗ ∗0 ∗
∗

∗ ∗ ∗∗ ∗
0

 is still zero.

Here is a nice way of writing this:

Let W0 = {0}, Wi = ⟨e1, . . . , ei⟩ ≤ V . Then if A is upper trianglar, then AWi ⊆ Wi,
and even (A− λiI)Wi ⊆Wi−1. So (A− λnI)Wn ⊆Wn−1, and so

(A− λn−1I) (A− λnI)Wn ⊆ (A− λn−1I)Wn−1 ⊆Wn−2,

and so on, until
n∏
i=1

(A− λiI)Wn ⊆W0 = {0};

that is, chA(A) = 0.
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Now if F = F, then we can choose a basis for V such that α : V → V has an upper-
triangular matrix with respect to this basis, and hence the above shows chA(x) = 0;
that is, chA(A) = 0 for all A ∈ Matn(F ).

Now, if F ⊆ F , then as Cayley-Hamilton is true for all A ∈ Matn(F), then it is certainly
still true for A ∈ Matn(F) ⊆ Matn(F).

Definition. The generalised eigenspace with eigenvalue λ is given by

V λ =
{
v ∈ V : (α− λI)dimV (v) = 0

}
= ker (λI − α)dimV : V → V.

Note that Vλ ⊆ V λ.

Example 3.18. Let A =

λ ∗
. . .

0 λ

.

Then (λI −A) ei has stuff involving e1, . . . , ei−1, so (λI −A)dimV ei = 0 for all i,
as in our proof of Cayley-Hamilton (or indeed, by Cayley-Hamilton).

Further, if µ ̸= λ, then

µI −A =

µ− λ ∗
. . .

0 µ− λ

 ,

and so

(µI −A)n =

(µ− λ)n ∗
. . .

0 (µ− λ)n


has non-zero diagonal terms, so zero kernel. Thus in this case, V λ = V , V µ = 0 if
µ ̸= λ, and in general V µ = 0 if chα(µ) ̸= 0, that is, ker (A− µI)N = {0} for all
N ≥ 0.

2 Nov ..Theorem 3.19

If chA(x) =
∏r
i=1 (x− λi)

ni , with the λi distinct, then

V ∼=
r⊕
i=1

V λi ,

and dimV λi = ni. In other word, choose any basis of V which is the union of the
bases of the V λi . Then the matrix of α is block diagonal. Moreover, we can choose
the basis of each V λ so that each diagonal block is upper triangular, with only one
eigenvalue— λ–on its diagonals.

We say “different eigenvalues don’t interact”.

Remark. If n1 = n2 = · · · = nr = 1 (and so r = n), then this is our previous theorem
that matrices with distinct eigenvalues are diagonalisable.
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Proof. Consider
hλi(x) =

∏
j ̸=i

(
x− λj

)nj =
chα(x)

(x− λi)ni
.

Then define
W λi = Im

(
hλi(A) : V → V

)
≤ V.

Now Cayley-Hamilton implies that

(A− λiI)ni hλi(A)︸ ︷︷ ︸
= chA(A)

= 0,

that is,
W λi ⊆ ker (A− λiI)ni ⊆ ker (A− λiI)n = V λi .

We want to show that

(i)
∑

iW
λi = V ;

(ii) This sum is direct.

Now, the hλi are coprime polynomials, so Euclid’s algorithm implies that there are
polynomials fi ∈ F [x] such that

r∑
i=1

fi hλi = 1,

and so
r∑
i=1

hλi(A) fi(A) = I ⊂ End(V ).

Now, if v ∈ V , then this gives

v =

r∑
i=1

hλi(A) fi(A) v︸ ︷︷ ︸
∈Wλi

,

that is,
∑r

i=1W
λi = V . This is (i).

To see the sum is direct: if 0 =
∑r

i=1wi, wi ∈ W λi , then we want to show that each
wi = 0. But hλj (wi) = 0, i ̸= j as wi ∈ ker (A− λiI)ni , so (i) gives

wi =

r∑
i=1

hλi(A) fj(A)wi = fi(A)hλi(A) (wi),

so apply fi(A)hλi(A) to
∑r

i=1wi = 0 and get wi = 0.

Define
πi = fi(A)hλi(A) = hλi(A) fi(A).

We showed that πi : V → V has

Imπi =W λi ⊆ V λi and πi|W λi = identity, and so π2i = πi,

that is, πi is the projection to W λi . Compare with hλi(A) = hi, which has hi(V ) =
W λi ⊆ V λi , hi | V λi an isomorphism, but not the identity; that is, fi | V λi = h−1

i | V λi .

This tells us to understand what matrices look like up to conjugacy, it is enough to
understand matrices with a single eigenvalue λ, and by subtracting λI from our matrix
we may as well assume that eigenvalue is zero.

Before we continue investigating this, we digress and give another proof of Cayley-
Hamilton.



44 | Linear Algebra

Proof 2 of Cayley-Hamilton. Let φ : V → V be linear, V finite dimensional over F. Pick
a basis e1, . . . , en of V , so φ(ei) =

∑
j aji ej , and we have the matrix A = (aij). Consider

φI −AT =

φ− a11 · · · −an1
... . . . ...
−a1n · · · φ− ann

 ∈ Matn(End(V )),

where aij ∈ F ↪→ End(V ) by regarding an element λ as the operation of scalar mul-
tiplication V → V , v 7→ λv. The elements of Matn(End(V )) act on V n by the usual
formulas. So (

φI −AT
)e1...

en

 =

0
...
0


by the definition of A.

The problem is, it isn’t clear how to define det : Matn(End(V )) → End(V ), as the
matrix coefficients (that is, elements of End(V )) do not commute in general. But the
matrix elements of the above matrix do commute, so this shouldn’t be a problem.

To make it not a problem, consider φI−AT ∈ Matn(F [φ]); that is, F [φ] are polynomials
in the symbol φ. This is a commutative ring and now det behaves as always:

(i) det(φI −AT) = chA(φ) ∈ F [φ] (by definition);
(ii) adj(φI −AT) · (φI −AT) = det(φI −AT) · I ∈ Matn(F [φ]), as we’ve shown.

This is true for any B ∈ Matn(R), where R is a commutative ring. Here R = F [φ],
B = φI −AT.

Make F [φ] act on V , by
∑

i ai φ
i : v 7→

∑
i ai φ

i(v), so

(φI −AT)

e1...
en

 =

0
...
0

 .

Thus

0 = adj(φI −AT) (φI −AT)

e1...
en


︸ ︷︷ ︸

=0

= det(φI −AT)

e1...
en

 =

chA(φ) e1
...

chA(φ) en

 .

So this says that chA(A) ei = chA(φ) ei = 0 for all i, so chA(A) : V → V is the zero
map, as e1, . . . , en is a basis of V ; that is, chA(A) = 0.

This correct proof is as close to the nonsense tautological “proof” (just set x equal to
A) as you can hope for. You will meet it again several times in later life, where it is
called Nakayama’s lemma.
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3.3 Combinatorics of nilpotent matrices
5 Nov

Definition. If φ : V → V can be written in block diagonal form; that is, if there
are some W ′,W ′′ ≤ V such that

φ(W ′) ⊆W ′ φ(W ′′) ⊂W ′′ V =W ′ ⊕W ′′

then we say that φ is decomposable and write

φ = φ ′ ⊕ φ ′′ φ ′ = φ
∣∣
W ′ :W

′ →W ′ φ ′′ = φ
∣∣
W ′′ :W

′′ →W ′′

We say that φ is the direct sum of φ ′ and φ ′′.

Otherwise, we say that φ is decomposable.

Examples 3.20.

(i) φ =

(
0 0
0 0

)
= (0 : F→ F)⊕ (0 : F→ F)

(ii) φ =

(
0 1
0 0

)
: F2 → F2 is indecomposable, because there is a unique φ-stable

line ⟨e1⟩.

(iii) If φ : V → V , then chφ(x) =
∏r
i=1 (x− λi)

ni , for λi ̸= λj if i ̸= j.

Then V =
⊕r

i=1 V
λi decomposes φ into pieces φλi = φ

∣∣
V λi

: V λi → V λi such
that each φλ has only one eigenvalue, λ.

This decomposition is precisely the amount of information in chφ(x). So
to further understand what matrices are up to conjugacy, we will need new
information.

Observe that φλ is decomposable if and only if φλ − λI is, and φλ − λI has
zero as its only eigenvalue.

Definition. The map φ is nilpotent if φdimV = 0 if and only if kerφdimV = V if
and only if V 0 = V if and only if chφ(x) = xdimV . (The only eigenvalue is zero.)

..Theorem 3.21

Let φ be nilpotent. Then φ is indecomposable if and only if there is a basis
v1, . . . , vn such that

φ(vi) =

{
0 if i = 1,

vi−1 if i > 1,

that is, if the matrix of φ is

Jn =


0 1 0

. . . . . .
. . . 1

0 0


This is the Jordan block of size n with eigenvalue 0.
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Definition. The Jordan block of size n, eigenvalue λ, is given by

Jn(λ) = λI + Jn.

..Theorem 3.22: Jordan normal form

Every matrix is conjugate to a direct sum of Jordan blocks. Morever, these are
unique up to rearranging their order.

Proof. Observe that theorem 3.22 =⇒ theorem 3.21, if we show that Jn is indecom-
posable (and theorem 3.21 =⇒ theorem 3.22, existence).

[Proof of Theorem 3.21, ⇐] Put Wi = ⟨v1, . . . , vi⟩.

Then Wi is the only subspace W of dim i such that φ(W ) ⊆ W , and Wn−i is not a
complement to it, as Wi ∩Wn−i =Wmin(i,n−i).

Proof of Theorem 3.22, uniqueness. Suppose α : V → V , α nilpotent and α =
⊕r

i=1 Jki .
Rearrange their order so that ki ≥ kj for i ≥ j, and group them together, so

⊕r
i=1miJi.

There are mi blocks of size i, and

mi = #
{
ka | ka = i

}
. (∗)

Example 3.23. If (k1, k2, . . . ) = (3, 3, 2, 1, 1, 1), then n = 11, and m1 = 3,m2 =
1,m3 = 2, and ma = 0 for a > 3. (It is customary to omit the zero entries when
listing these numbers).

Definition. Let Pn = {(k1, k2, . . . , kn) ∈ Nn | k1 ≥ k2 ≥ · · · ≥ kn ≥ 0,
∑
ki = n}

be the set of partitions of n. This is isomorphic to the set {m : N→ N |
∑

i im(i) =
n} as above.

We represent k ∈ Pn by a picture, with a row of length kj for each j (equivalently, with
mi rows of length i). For example, the above partition (3, 3, 2, 1, 1, 1) has picture

k =

X X X
X X X
X X
X
X
X,

Now define kT, if k ∈ Pn, the dual partition, to be the partition attached to the trans-
posed diagram.

In the above example kT = (6, 3, 2).

It is clear that k determines kT. In formulas:

kT = (m1 +m2 +m3 + · · ·+mn,m2 +m3 + · · ·+mn, . . . ,mn)
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Now, let α : V → V , and α =
⊕r

i=1 Jki =
⊕r

i=1miJi as before. Observe that

dimkerα = # of Jordan blocks = r =

n∑
i=1

mi = (kT)1

dimkerα2 = # of Jordan blocks of sizes 1 and 2 =
n∑
i=1

mi +
n∑
i=2

mi = (kT)1 + (kT)2

...

dimkerαn = # of Jordan blocks of sizes 1, . . . , n =

n∑
k=1

n∑
i=k

mi =

n∑
i=1

(kT)i.

That is, dimkerα, . . . , dimkerαn determine the dual partition to the partition of n into
Jordan blocks, and hence determine it.

It follows that the decomposition α =
⊕n

i=1miJi is unique.

Remark. This is a practical way to compute JNF of a matrix A. First computer chA(x) =∏r
i=1 (x− λi)

ni , then compute eigenvalues with ker(A−λiI), ker (A− λiI)2 , . . . , ker (A− λiI)n.

Corollary 3.24. The number of nilpotent conjugacy classes is equal to the size of Pn.

Exercises 3.25.

(i) List all the partitions of {1, 2, 3, 4, 5}; show there are 7 of them.
(ii) Show that the size of Pn is the coefficient of xn in∏

i≥1

1

1− xi
= (1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · )(1 + x3 + x6 + x9 + · · · ) · · ·

=
∏
k≥1

∞∑
i=0

xki

7 Nov..Theorem 3.26: Jordan Normal Form

Every matrix is conjugate to a direct sum of Jordan blocks

Jn(λ) =


λ 1 0

. . . . . .
. . . 1

0 λ


Proof. It is enough to show this when φ : V → V has a single generalised eigenspace
with eigenvalue λ, and now replacing φ by φ− λI, we can assume that φ is nilpotent.

Induct on n = dimV . The case n = 1 is clear.

Consider V ′ = Imφ = φ(V ). Then V ′ ̸= V , as φ is nilpotent, and φ(V ′) ⊆ φ(V ) = V ′,
and φ | V ′ : V ′ → V ′ is obviously nilpotent, so induction gives the existence of a basis

e1, . . . , ek1︸ ︷︷ ︸
Jk1

⊕ ek1+1, . . . , ek1+k2︸ ︷︷ ︸
Jk2

⊕ . . .⊕ . . . , ek1+...+kr︸ ︷︷ ︸
Jkr

such that φ | V ′ is in JNF with respect to this basis.
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Because V ′ = Imφ, it must be that the tail end of these strings is in Imφ; that is, there
exist b1, . . . , br ∈ V \V ′ such that φ(bi) = ek1+···+ki , as ek1+···+ki ̸∈ φ(V ′). Notice these
are linearly independent, as if

∑
λi bi = 0, then∑

λi φ(bi) =
∑

λi ek1+···+ki = 0.

But ek1 , . . . , ek1+...+kr are linearly independent, hence λ1 = · · · = λr = 0. Even better:
{ej , bi | j ≤ k1 + . . .+ kr, 1 ≤ i ≤ r} are linearly independent. (Proof: exercise.)

Finally, extend e1, ek1+1, . . . , ek1+...+kr−1+1︸ ︷︷ ︸
basis of kerφ ∩ Imφ

to a basis of kerφ, by adding basis vectors.

Denote these by q1, . . . , qs. Exercise. Show {ej , bi, qk} are linearly independent.

Now, the rank-nullity theorem shows that dim Imφ+dimkerφ = dimV . But dim Imφ
is the number of the ei, that is k1 + · · · + kr, and dimkerφ is the number of Jordan
blocks, which is r+ s, (r is the number of blocks of size greater than one, s the number
of size one), which is the number of bi plus the number of qk.

So this shows that ej , bi, qk are a basis of V , and hence with respect to this basis,

φ = Jk1+1 ⊕ · · · ⊕ Jkr+1 ⊕ J1 ⊕ · · · ⊕ J1︸ ︷︷ ︸
s times

3.4 Applications of JNF

Definition. Suppose α : V → V . The minimum polynomial of α is a monic
polynomial p(x) of smallest degree such that p(α) = 0.

Lemma 3.27. If q(x) ∈ F [x] and q(α) = 0, then p ‌ q.

Proof. Write q = pa+ r, with a, r ∈ F [x] and deg r < deg p. Then

0 = q(α) = p(α) a(α) + r(α) = r(α) =⇒ r(α) = 0,

which contradicts deg p as minimal unless r = 0.

As chα(α) = 0, p(x) ‌ chα(x), and in particular, it exists. (And by our lemma, is
unique.) Here is a cheap proof that the minimum polynomial exists, which doesn’t use
Cayley Hamilton.

Proof. I, α, α2, . . . , αn
2 are n2+1 linear functions in EndV , a vector space of dimension

n2. Hence there must be a relation of linear dependence,
∑n2

0 ai α
i = 0, so q(x) =∑n2

0 ai x
i is a polynomial with q(α) = 0.

Now, lets use JNF to determine the minimial polynomial.

Exercise 3.28. Let A ∈ Matn(F), chA(x) = (x − λ1)n1 · · · (x − λr)nr . Suppose
that the maximal size of a Jordan block with eigenvalue λi is ki. (So ki ≤ ni for all
i). Show that the minimum polynomial of A is (x− λ1)k1 · · · (x− λr)kr .

So the minimum polynomial forgets most of the structure of the Jordan normal form.

Another application of JNF is we can use it to compute powers Bn of a matrix B for
any n ≥ 0. First observe that (PAP−1)n = PAnP−1 Now write B = PAP−1 with A



49

in Jordan normal form. So to finish we must compute what the powers of elements in
JNF look like. But

Jn =



0 1 0
0 1

. . .
. . .

0 1
0 0


, J2

n =



0 0 1 0
0 1

. . .
0 1

0
0 0


, . . . , Jn−1

n =


0 0 1

0

0 0


and

(λI + Jn)
a =

∑
k≥0

(
a

k

)
λa−kJkn .

Now assume F = C.

Definition. expA =
∑
n≥0

An

n!
, A ∈ Matn(C).

This is an infinite sum, and we must show it converges. This means that each matrix
coefficient converges. This is very easy, but we omit here for lack of time.

Example 3.29. For a diagonal matrix:

exp

λ1 0
. . .

0 λn

 =

e
λ1 0

. . .
0 eλn


and convergence is usual convergence of exp.

Exercises 3.30.

(i) If AB = BA, then exp(A+B) = expA expB.
(ii) Hence exp(Jn + λI) = eλ exp(Jn)

(iii) P · exp(A) · P−1 = exp(PAP−1)

So now you know how to compute exp(A), for A ∈ Matn(C).

We can use this to solve linear ODEs with constant coefficients:

Consider the linear ODE
dy
dt

= Ay,

for A ∈ Matn(C), y = (y1(t), y2(t), . . . , yn(t))
T , yi(t) ∈ C∞(C).

Example 3.31. Consider

dnz

dtn
+ cn−1

dn−1z

dtn−1
+ · · ·+ c0z = 0, (∗∗)
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This is a particular case of the above, where A is the matrix
0 1

0 1
. . .

0 1
−c0 −c1 . . . −cn−1

 .

To see this, consider what Ay = y ′ means. Set z = y1, then y2 = y ′
1 = z ′,

y3 = y ′
2 = z ′′, …, yn = y ′

n−1 =
dn−1z
dtn−1 and (∗∗) is the last equation.

There is a unique solution of dy
dt = Ay with fixed initial conditions y(0), by a theorem

of analysis. On the other hand:

Exercise 3.32. exp(At) y(0) is a solution, that is

d

dt

(
exp(At) y(0)

)
= A exp(At) y(0)

Hence it is the unique solution with value y(0).

Compute this when A = λI + Jn is a Jordan block of size n.
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4 Duals
This chapter really belongs after chapter 1 – it’s just definitions and intepretations of
row reduction.

9 Nov
Definition. Let V be a vector space over a field F. Then

V ∗ = L(V,F) = {linear functions V → F}

is the dual space of V .

Examples 4.1.

(i) Let V = R3. Then (x, y, z) 7→ x− y is in V ∗.
(ii) If V = C([0, 1]) =

⟨
continuous functions [0, 1]→ R

⟩
, then f 7→

∫ 1
0 f(t) dt is

in C([0, 1])∗.

Definition. Let V be a finite dimensional vector space over F, and v1, . . . , vn be
a basis of V . Then define v∗i ∈ V ∗ by

v∗i (vj) = δij =

{
0 if i ̸= j,

1 if i = j,

and extend linearly. That is, v∗i
(∑

j λj vj

)
= λi.

Lemma 4.2. The set v∗1, . . . , v∗n is a basis for V ∗, called the basis dual to or dual basis
for v1, . . . , vn. In particular, dimV ∗ = dimV .

Proof. Linear independence: if
∑
λi v

∗
i = 0, then 0 =

(∑
λi v

∗
i

)
(vj) = λj , so λj = 0 for

all j. Span: if φ ∈ V ∗, then we claim

φ =

n∑
j=1

φ(vj) · v∗j .

As φ is linear, it is enough to check that the right hand side applied to vk is φ(vk). But∑
j φ(vj) v

∗
j (vk) =

∑
j φ(vj) δjk = φ(vk).

Remarks.

(i) We know in general that dimL(V,W ) = dimV dimW .

(ii) If V is finite dimensional, then this shows that V ∼= V ∗, as any two vector spaces
of dimension n are isomorphic. But they are not canonically isomorphic (there is
no natural choice of isomorphism).

If the vector space V has more structure (for example, a group G acts upon it),
then V and V ∗ are not usually isomorphic in a way that respects this structure.

(iii) If V = F [x], then V ∗ ∼−→ FN by the isomorphism θ ∈ V ∗ 7→ (θ(1), θ(x), θ(x2), . . .),
and conversely, if λi ∈ F, i = 0, 1, 2, . . . is any sequence of elements of F, we get
an element of V ∗ by sending

∑
ai x

i 7→
∑
ai λi (notice this is a finite sum).

Thus V and V ∗ are not isomorphic, since dimV is countable, but dimFN is un-
countable.
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Definition. Let V and W be vector space over F, and α a linear map V → W ,
α ∈ L(V,W ). Then we define α∗ :W ∗ → V ∗ ∈ L(W ∗, V ∗), by setting α∗(θ) = θα :

V → F.

(Note: α linear, θ linear implies θα linear, and so α∗θ ∈ V ∗ as claimed, if θ ∈W ∗.)

Lemma 4.3. Let V,W be finite dimensional vector spaces, with

v1, . . . , vn a basis of V , and w1, . . . , wm a basis for W ;
v∗1, . . . , v

∗
n the dual basis of V ∗, and w∗

1, . . . , w
∗
m the dual basis for W ∗;

If α is a linear map V → W , and A is the matrix of α with respect to vi, wj, then AT

is the matrix of α∗ :W ∗ → V ∗ with respect to w∗
j , v

∗
i .

Proof. Write α∗(w∗
i ) =

∑n
j=1 cji v

∗
j , so cij is a matrix of α∗. Apply this to vk:

LHS =
(
α∗(w∗

i )
)
(vk) = w∗

i (α(vk)) = w∗
i

(∑
ℓ aℓk wℓ

)
= aik

RHS = cki,

that is, cji = aij for all i, j.

This was the promised interpretation of AT.

Corollary 4.4.

(i) (αβ)∗ = β∗α∗;
(ii) (α+ β)∗ = α∗ + β∗;

(iii) detα∗ = detα

Proof. (i) and (ii) are immediate from the definition, or use the result (AB)T = BTAT.
(iii) we proved in the section on determinants where we showed that detAT = detA.

Now observe that (AT)
T
= A. What does this mean?

Proposition 4.5.

(i) Consider the map V → V ∗∗ = (V ∗)∗ taking v 7→ ˆ̂v, where ˆ̂v(θ) = θ(v) if θ ∈ V ∗.
Then ˆ̂v ∈ V ∗∗, and the map V 7→ V ∗∗ is linear and injective.

(ii) Hence if V is a finite dimensional vector space over F, then this map is an iso-
morphism, so V ∼−→ V ∗∗ canonically.

Proof.

(i) We first show ˆ̂v ∈ V ∗∗, that is ˆ̂v : V ∗ → F, is linear:

ˆ̂v(a1θ1 + a2θ2) = (a1θ1 + a2θ2)(v) = a1 θ1(v) + a2 θ2(v)

= a1 ˆ̂v(θ1) + a2 ˆ̂v(θ2).

Next, the map V → V ∗∗ is linear. This is because

(λ1v1 + λ2v2)
ˆ̂
(θ) = θ (λ1v1 + λ2v2)

= λ1 θ(v1) + λ2 θ(v2)

=
(
λ1 ˆ̂v1 + λ2 ˆ̂v2

)
(θ).

Finally, if v ̸= 0, then there exists a linear function θ : V → F such that θ(v) ̸= 0.
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(Proof: extend v to a basis, and then define θ on this basis. We’ve only proved
that this is okay when V is finite dimensional, but it’s always okay.)

Thus ˆ̂v(θ) ̸= 0, so ˆ̂v ̸= 0, and V → V ∗∗ is injective.

(ii) Immediate.

Definition.

(i) If U ≤ V , then define

U◦ =
{
θ ∈ V ∗ | θ(U) = 0

}
=
{
θ ∈ V ∗ | θ(u) = 0 ∀u ∈ U

}
≤ V ∗.

This is the annihilator of U , a subspace of V ∗, often denoted U⊥.

(ii) If W ≤ V ∗, then define

◦W =
{
v ∈ V | φ(v) = 0 ∀φ ∈W

}
≤ V.

This is often denoted ⊥W .

Example 4.6. If V = R3, U =
⟨
(1, 2, 1)

⟩
, then

U◦ =


3∑
i=1

ai e
∗
i ∈ V ∗ | a1 + 2a2 + a3 = 0

 =

⟨−21
0

 ,

 0
1
−2

⟩ .
Remark. If V is finite dimensional, and W ≤ V ∗, then under the canonical isomorphism
V → V ∗∗, we have ◦W 7→W ◦, where ◦W ≤ V and (W ◦) ≤ (V ∗)∗. Proof is an exercise.

Lemma 4.7. Let V be a finite dimensional vector space with U ≤ V . Then

dimU + dimU◦ = dimV.

Proof. Consider the restriction map Res : V ∗ → U∗ taking φ 7→ φ|U . (Note that
Res = ι∗, where ι : U ↪→ V is the inclusion.)

Then kerRes = U◦, by definition, and Res is surjective (why?).

So the rank-nullity theorem implies the result, as dimV ∗ = dimV .

Proposition 4.8. Let V,W be a finite dimensional vector space over F, with α ∈
L(V,W ). Then

(i) ker(α∗ :W ∗ → V ∗) = (Imα)◦ (≤W ∗);
(ii) rank(α∗) = rank(α); that is, rankAT = rankA, as promised;

(iii) Imα∗ = (kerα)◦.

Proof.

(i) Let θ ∈ W ∗. Then θ ∈ kerα∗ ⇐⇒ θα = 0 ⇐⇒ θα(v) = 0 ∀v ∈ V ⇐⇒ θ ∈
(Imα)◦.

(ii) By rank-nullity, we have

rankα∗ = dimW − dimkerα∗

= dimW − dim(Imα)◦,by (i),
= dim Imα, by the previous lemma,
= rankα, by definition.
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(iii) Let φ ∈ Imα∗, and then φ = θ ◦ α for some θ ∈ W ∗. Now, let v ∈ kerα. Then
φ(v) = θα(v) = 0, so φ ∈ (kerα)◦; that is, Imα∗ ⊆ (kerα)◦.
But by (ii),

dim Imα∗ = rank(α∗) = rankα = dimV − dimkerα

= dim (kerα)◦

by the previous lemma; that is, they both have the same dimension, so they are
equal.

Lemma 4.9. Let U1, U2 ≤ V , and V finite dimensional. Then

(i) U◦◦
1

∼−→ ◦(U◦
1 )

∼−→ U1 under the isomorphism V
∼−→ V ∗∗.

(ii) (U1 + U2)
◦ = U◦

1 ∩ U◦
2 .

(iii) (U1 ∩ U2)
◦ = U◦

1 + U◦
2 .

Proof. Exercise!
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5 Bilinear forms
12 Nov

Definition. Let V be a vector space over F. A bilinear form on V is a multilinear
form V × V → F; that is, ψ : V × V → F such that

ψ(v, a1w1 + a2w2) = a1 ψ(v, w1) + a2 ψ(v, w2)

ψ(a1v1 + a2v2, w) = a1 ψ(v1, w) + a2 ψ(v2, w).

Examples 5.1.

(i) V = Fn, ψ
(
(x1, . . . , xn), (y1, . . . , yn)

)
=
∑n

i=1 xi yi, which is the dot product
of F = Rn.

(ii) V = Fn, A ∈ Matn(F). Define ψ(v, w) = vTAw. This is bilinear.

(i) is the special case when A = I. Another special case is A = 0, which is
also a bilinear form.

(iii) Take V = C([0, 1]), the set of continuous functions on [0, 1]. Then

(f, g) 7→
∫ 1

0
f(t) g(t) dt

is bilinear.

Definition. The set of bilinear forms of V is denoted

Bil(V ) = {ψ : V × V → F bilinear}

Exercise 5.2. If g ∈ GL(V ), ψ ∈ Bil(V ), then gψ : (v, w) 7→ ψ(g−1v, g−1w) is a
bilinear form. Show this defines a group action of GL(V ) on Bil(V ). In particular,
show that h(gψ) = (hg)ψ, and you’ll see why the inverse is in the definition of gψ.

Definition. We say that ψ,φ ∈ Bil(V ) are isomorphic if there is some g ∈ GL(V )
such that φ = gψ; that is, if they are in the same orbit.

Q: What are the orbits of GL(V ) on Bil(V ); that is, what is the isomorphism classes of
bilinear forms?

Compare with:

• L(V,W )/GL(V ) × GL(W ) ↔
{
i ∈ N | 0 ≤ i ≤ min(dimV, dimW )

}
with φ 7→

rankφ. Here (g, h) ◦ φ = hφg−1.

• L(V, V )/GL(V )↔ JNF. Here g◦φ = gφg−1 and we require F algebraically closed.

• Bil(V )/GL(V )↔??, with (g ◦ ψ)(v, w) = ψ(g−1v, g−1w).

First, let’s express this in matrix form. Let v1, . . . , vn be a basis for V , where V is a
finite dimensional vector space over F, and ψ ∈ Bil(V ). Then

ψ
(∑

i xi vi,
∑

j yj vj

)
=
∑

i,j xi yj ψ(vi, vj)

So if we define a matrix A by A = (aij), aij = ψ(vi, vj), then we say that A is the matrix
of the bilinear form with respect to the basis v1, . . . , vn.
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In other words, the isomorphism V
∼−→
θ

Fn induces an isomorphism Bil(V )
∼−→ Matn F,

ψ 7→ aij = ψ(vi, vj).

Now, let v ′
1, . . . , v

′
n be another basis, with v ′

j =
∑

i pij vi. Then

ψ(v ′
a, v

′
b) = ψ

(∑
i pia vi,

∑
j pjb vj

)
=
∑

i,j pia ψ(vi, vj) pjb =
(
PTAP

)
ab

So if P is the matrix of the linear map g−1 : V → V , then the matrix of gψ =
ψ(g−1(·), g−1(·)) is PTAP .

So the concrete version of our question “what are the orbits Bil(V )/GL(V )” is “what
are the orbits of GLn on Matn(F) for this action?”

Definition. Suppose Q acts on A by QAQT. We say that A and B are congruent
if B = QAQT for some Q ∈ GLn.

We want to understand when two matrices are congruent.

Recall that if P,Q ∈ GLn, then rank(PAQ) = rank(A). Hence taking Q = PT, we get
rank(PAPT) = rankA, and so the following definition makes sense:

Definition. If ψ ∈ Bil(V ), then the rank of ψ, denoted rankψ or rkψ is the rank
of the matrix of ψ with respect to some (and hence any) basis of V .

We will see later how to give a basis independent definition of the rank.

Definition. A form ψ ∈ Bil(V ) is

• symmetric if ψ(v, w) = ψ(w, v) for all v, w ∈ V . In terms of the matrix A of
ψ, this is requiring AT = A.

• anti-symmetric if ψ(v, v) = 0 for all v ∈ V , which implies ψ(v, w) = −ψ(w, v)
for all v, w ∈ V . In terms of the matrix, AT = −A.

From now on, we assume that charF ̸= 2, so 1 + 1 = 2 ̸= 0 and 1/2 exists.

Given ψ, put

ψ+(v, w) = 1
2

[
ψ(v, w) + ψ(w, v)

]
ψ−(v, w) = 1

2

[
ψ(v, w)− ψ(w, v)

]
,

which splits a form into symmetric and anti-symmetric components, and ψ = ψ+ +ψ−.

Observe that if ψ is symmetric or anti-symmetric, then so is gψ = ψ(g(·), g(·)), or in
matrix form, A is symmetric or anti-symmetric if and only if PAPT is, since (PAPT)T =
PATPT.

So to understand Bil(V )/GL(V ), we will first understand the simpler question of clas-
sifying symmetric and anti-symmetric forms. Set

Bilε(V ) =
{
ψ ∈ Bil(V ) | ψ(v, w) = εψ(v, w) ∀v, w ∈ V

}
ε = ± 1.

So Bil+(V ) is the symmetric forms, and Bil− is the antisymmetric forms.

So our simpler question is to ask, “What is Bilε(V )/GL(V )?”

Hard exercise: Once you’ve finished revising the course, go and classify Bil(V )/GL(V ).
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5.1 Symmetric forms

Let V be a finite dimensional vector space over F and charF ̸= 2. If ψ ∈ Bil+(V ) is a
symmetric form, then define Q : V → F as

Q(v) = Qψ(v) = ψ(v, v).

We have

Q(u+ v) = ψ(u+ v, u+ v)

= ψ(u, u) + ψ(v, v) + ψ(u, v) + ψ(v, u)

= Q(u) +Q(v) + ψ(u, v) + ψ(v, u)

Q(λu) = ψ(λu, λu)

= λ2 ψ(u, u)

= λ2Q(u).

Definition. A quadratic form on V is a function Q : V → F such that

(i) Q(λv) = λ2Q(v);
(ii) Set ψQ(u, v) = 1

2

[
Q(u+ v)−Q(u)−Q(v)

]
; then ψQ : V ×V → F is bilinear.

Lemma 5.3. The map Bil+(V ) → {quadratic forms on V }, ψ 7→ Qψ is a bijection;
Q 7→ ψQ is its inverse.

Proof. Clear. We just note that

ψQ(v, v) =
1
2

(
Q(2v)− 2Q(v)

)
= 1

2

(
4Q(v)− 2Q(v)

)
= Q(v),

as Q(λu) = λ2Q(u).
Remark. If v1, . . . , vn is a basis of V with ψ(vi, vj) = aij , then

Q
(∑

xivi
)
=
∑
aijxixj = xTAx,

that is, a quadratic form is a homogeneous polynomial of degree 2 in the variables
x1, . . . , xn.

..Theorem 5.4

Let V be a finite dimensional vector space over F and ψ ∈ Bil+(V ) a symmetric
bilinear form. Then there is some basis v1, . . . , vn of V such that ψ(vi, vj) = 0 if
i ̸= j. That is, we can choose a basis so that the matrix of ψ is diagonal.

Proof. Induct on dimV . Now dimV = 1 is clear. It is also clear if ψ(v, w) = 0 for all
v, w ∈ V .

So assume otherwise. Then there exists a w ∈ V such that ψ(w,w) ̸= 0. (As if
ψ(w,w) = 0 for all w ∈ V ; that is, Q(w) = 0 for all w ∈ V , then by the lemma,
ψ(v, w) = 0 for all v, w ∈ V .)

To continue, we need some notation. For an arbitrary ψ ∈ Bil(V ), U ≤ V , define

U⊥ =
{
v ∈ V : ψ(u, v) = 0 for all u ∈ U

}
.
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Claim. ⟨w⟩ ⊕ ⟨w⟩⊥ = V is a direct sum.

[Proof of claim] As ψ(w,w) ̸= 0, w ̸∈ ⟨w⟩⊥, so ⟨w⟩ ∩ ⟨w⟩⊥ = 0, and the sum is direct.

Now we must show ⟨w⟩+ ⟨w⟩⊥ = V .

Let v ∈ V . Consider v − λw. We want to find a λ such that v − λw ∈ ⟨w⟩⊥, as then
v = λw + (v − λw) shows v ∈ ⟨w⟩+ ⟨w⟩⊥.

But v − λw ∈ ⟨w⟩⊥ ⇐⇒ ψ(w, v − λw) = 0 ⇐⇒ ψ(w, v) = λψ(w,w); that is, set

λ =
ψ(v, w)

ψ(w,w)
.14 Nov

Now let W = ⟨w⟩⊥, and ψ ′ = ψ |W :W ×W → F the restriction of ψ. This is symmetric
bilinear, so by induction there is some basis v2, . . . , vn of W such that ψ(vi, vj) = λi δij
for λi ∈ F.

Hence, as ψ(w, vi) = ψ(vi, w) = 0 if i ≥ 2, put v1 = w and we get that with respect to
the basis v1, . . . , vn, the matrix of ψ is

ψ(w,w) 0
λ2

. . .
0 λn

 .

Warning. The diagonal entries are not determined by ψ, for example, considera1 . . .
an


λ1 . . .

λn


a1 . . .

an


T

=

a
2
1 λ1

. . .
a2n λn

 ,

that is, rescaling the basis element vi to avi changes Q(aivi) = a2Q(vi).

Also, we can reorder our basis – equivalently, take P = P (w), the permutation matrix
of w ∈ Sn, and note PT = P (w−1), so

P (w)AP (w)T = P (w)AP (w)−1.

Furthermore, it’s not obvious that more complicated things can’t happen, for example,

P

(
2

3

)
PT =

(
5

30

)
if P =

(
1 −3
1 2

)
.

Corollary 5.5. Let V be a finite dimensional vector space over F, and suppose F is
algebraically closed (such as F = C). Then

Bil+(V )
∼−→ {i : 0 ≤ i ≤ dimV } ,

under the isomorphism taking ψ 7→ rankψ.

Proof. By the above, we can reorder and rescale so the matrix looks like

1
. . .

1
0

. . .
0


as
√
λi is always in F.
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That is, there exists a basis of Q such that

Q

 n∑
i=1

xi vi

 =
r∑
i=1

x2i ,

where r = rankQ ≤ n.

Now let F = R, and ψ : V × V → R be bilinear symmetric.

By the theorem, there is some basis v1, . . . , vn such that ϕ(vi, vj) = λi δij . Replace vi
by vi/

√
|λi| if λi ̸= 0 and reorder the baasis, we get ψ is represented by the matrixIp −Iq

0

 ,

for p, q ≥ 0, that is, with respect to this basis

Q

 n∑
i=1

xi vi

 =

p∑
i=1

x2i −
p+q∑
i=p+1

x2i .

Note that rankψ = p+ q.

Definition. The signature of ψ is signψ = p− q.

We need to show this is well defined, and not an artefact of the basis chosen.

..Theorem 5.6: Sylvester’s law of inertia

The signature does not depend on the choice of basis; that is, if ψ is represented
by Ip Iq

0

 wrt v1, . . . , vn and by

I ′
p

I ′
q

0

 wrt w1, . . . , wn,

then p = p ′ and q = q ′.

Warning: tr(PTAP ) ̸= tr(A), so we can’t prove it that way.

Definition. Let Q : V → R be a quadratic form on V , where V is a vector space
over R, and U ≤ V .

We say Q is positive semi-definite on U if for all u ∈ U , Q(u) ≥ 0. Further, if
Q(u) = 0 ⇐⇒ u = 0, then we say that Q is positive definite on U .

If U = V , then we just say that Q is positive (semi) definite.

We define negative (semi) definite to mean −Q is positive (semi) definite.

Proof of theorem. Let P =
⟨
v1, . . . , vp

⟩
. So if v =

∑p
i=1 λivi ∈ P , Q(v) =

∑
i λ

2
i ≥ 0,

and Q(v) = 0 ⇐⇒ v = 0, so Q is positive definite on P .

Let U =
⟨
vp+1, . . . , vp+q, . . . , vn

⟩
, so Q is negative semi-definite on U . And now let P ′

be any positive definite subspace.



60 | Linear Algebra

Claim. P ′ ∩ U = {0}.

Proof of claim. If v ∈ P ′, then Q(v) ≥ 0; if v ∈ U , Q(u) ≤ 0. so if v ∈ P ′∩U , Q(v) = 0.
But if P ′ is positive definite, so v = 0. Hence

dimP ′ + dimU = dim(P ′ + U) ≤ dimV = n,

and so
dimP ′ ≤ dimV − dimU = dimP,

that is, p is the maximum dimension of any positive definite subspace, and hence p ′ = p.
Similarly, q is the maximum dimension of any negative definite subspace, so q ′ = q.

Note that (p, q) determine (rank, sign), and conversely, p = 1
2 (rank+ sign) and q =

1
2 (rank− sign). So we now have

Bil+(Rn)/GLn(R)→
{
(p, q) : p, q ≥ 0, p+ q ≤ n

} ∼−→ {(rank, sgn)}.

Example 5.7. Let V = R2, and Q

(
x1
x2

)
= x21 − x22.

Consider the line Lλ = ⟨e1 + λe2⟩, Q
(
1
λ

)
= 1 − λ2, so this is positive definite if

|λ| < 1, and negative definite if |λ| > 1.

In particular, p = q = 1, but there are many choices of positive and negative definite
subspaces of maximal dimension. (Recall that lines in R2 are parameterised by
points on the circle R ∪ {∞}).
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Example 5.8. Compute the rank and signature of

Q(x, y, z) = x2 + y2 + 2z2 + 2xy + 2xz − 2yz.

Note the matrix A of Q is1 1 1
1 1 −1
1 −1 2

 , that is Q

xy
z

 =
(
x y z

)
A

xy
z

 .

(Recall that we for an arbitrary quadratic form Q, its matrix A is given by

Q
(∑

i xivi
)
=
∑

i,j aij xi xj =
∑

i aii x
2
i +

∑
i<j 2aij xi xj .

which is why the off-diagonal terms halved!)

We could apply the method in the proof of the theorem: begin by finding w ∈ R3

such that Q(w) ̸= 0. Take w = e1 = (1, 0, 0). Now find ⟨w⟩⊥. To do this, we seek
λ such that e2 + λe1 ∈ ⟨e1⟩⊥. But Q(e1, e2 + λe1) = 0 implies λ = −1. Similarly
we find e3− e1 ∈ ⟨e1⟩⊥, so ⟨e1⟩⊥ = ⟨e2 − e1, e3 − e1⟩. Now continue with Q | ⟨e1⟩⊥,
and so on.

Here is a nicer way of writing this same compuation: row and column reduce A:

First, R2 7→ R2−R1 and C2 7→ C2− C1. In matrix form:

(I − E21)A (I − E12) =

1 0 1
0 0 −2
1 −2 2





62 | Linear Algebra

Next R3 7→ R3−R1 and C3 7→ C3− C1, giving1
0 −2
−2 1

 .

Then swap R2, R3, and C2, C3, giving1
1 −2
−2 0

 .

Then R3 7→ R3 + 2R2 and C3 7→ C3 + 2C2, giving1
1
−4

 .

Finally, rescale the last basis vector, giving1
1
−1

 .

That is, if we put

P = (I −E12) (I − E13)P ((2 3)) (I − 2E23)

1
1

1
2

 ,

then

PTAP =

1
1
−1

 .

Method 2: we could just try to complete the square

Q(x, y, z) = (x+ y + z)2 + z2 − 4yz = (x+ y + z)2 + (z − 2y)2 − 4y2

Remark. We will see in Chapter 6 that sign(A) is the number of positive eigenvalues
minus the number of negative eigenvalues, so we could also compute it by computing
the characteristic polynomial of A.

5.2 Anti-symmetric forms

We begin with a basis independant meaning of the rank of an arbitrary bilinear form.

Proposition 5.9. Let V be a finite dimensional vector space over F. Then

rankψ = dimV − dimV ⊥ = dimV − dim⊥V,

where V ⊥ =
{
v ∈ V : ψ(V, v) = 0

}
and ⊥V =

{
v ∈ V : ψ(v, V ) = 0

}
.

Proof.16 Nov Define a linear map Bil(V )→ L(V, V ∗), ψ 7→ ψL with ψL(v)(w) = ψ(v, w). First
we check that this is well-defined: ψ(v, ·) linear implies ψL(v) ∈ V ∗, and ψ(·, w) linear
implies ψL(λv + λ ′v ′) = λψL(v) + λ ′ ψL(v

′); that is, ψL is linear, and ψL ∈ L(V, V ∗).
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It is clear that the map is injective (as ψ ̸≡ 0 implies there are some v, w such that
ψ(v, w) ̸= 0, and so ψL(v)(w) ̸= 0) and hence an isomorphism, as Bil(V ) and L(V, V ∗)
are both vector spaces of dimension (dimV )2.

Let v1, . . . , vn be a basis of V , and v∗1, . . . , v∗n be the dual basis of V ∗; that is, v∗i (vj) = δij .
Let A = (aij) be the matrix of ψL with respect to these bases; that is,

ψL(vj) =
∑
i

aij v
∗
i . (∗)

Apply both sides of (∗), to vi, and we have

ψ(vj , vi) = ψL(vj , vi) = aij .

So the matrix of ψ with respect to the basis vi is just AT.

Exercise 5.10. Define ψR ∈ L(V, V ∗) by ψR(v)(w) = ψ(w, v). Show the matrix of
ψR is the matrix of ψ (which we’ve just seen is the transpose of the matrix of ψL).

Now we have

rankA = dim Im(ψL : V → V ∗) = dimV − dimkerψL

and
kerψL =

{
v ∈ V : ψ(v, V ) = 0

}
= ⊥V.

But also

rankA = rankAT = dim Im(ψR : V → V ∗) = dimV − dimkerψR,

and kerψR = V ⊥.

Definition. A form ψ ∈ Bil(V ) is non-degenerate if any of the following equivalent
conditions hold:

• V ⊥ = ⊥V = {0};
• rankψ = dimV ;
• ψL : V → V ∗ taking v 7→ ψ(v, ·) is an isomorphism;
• ψR : V → V ∗ taking v 7→ ψ(·, v) is an isomorphism;
• for all v ∈ V \{0}, there is some w ∈ V such that ψ(v, w) ̸= 0; that is, a

non-degenerate bilinear form gives an isomorphism between V and V ∗.

Proposition 5.11. Let W ≤ V and ψ ∈ Bil(V ). Then

dimW + dimW⊥ − dim(W ∩ ⊥V ) = dimV.

Proof. Consider the map V →W ∗ taking v 7→ ψ(·, v). (When we write ψ(·, v) :W → F,
we mean the map w 7→ ψ(w, v).) The kernel is

ker =
{
v ∈ V : ψ(v, w) = 0 ∀w ∈W

}
=W⊥,

so rank-nullity gives
dimV = dimW⊥ + dim Im .

So what is the image? Recall that

dim Im(θ : V →W ∗) = dim Im(θ∗ :W =W ∗∗ → V ∗) = dimW − dimker θ∗.
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But
θ∗(w) = ψ(w, ·) : V → F,

and so θ∗(w) = 0 if and only if w ∈ ⊥V ; that is, ker θ∗ = W ∩ ⊥V , proving the
proposition.
Remark. If you are comfortable with the notion of a quotient vector space, consider
instead the map V → (W/W ∩ ⊥V )∗, v 7→ ψ(·, v) and show it is well-defined, surjective
and has W⊥ as the kernel.

Example 5.12. If V = R2, and Q

(
x1
x2

)
= x21 − x22, then A =

(
1
−1

)
.

Then if W =

⟨(
1
1

)⟩
, W⊥ =W and the proposition says 1 + 1− 0 = 2.

Or if we let V = C2, Q
(
x1
x2

)
= x21 + x22 , so A =

(
1

1

)
, and set W =

⟨(
1
i

)⟩
then W =W⊥.

Corollary 5.13. ψ
∣∣
W

:W ×W → F is non-degenerate if and only if V =W ⊕W⊥.

Proof. (⇐) ψ
∣∣
W

is non-degenerate means that for all w ∈W\{0}, there is some w ′ ∈W
such that ψ(w,w ′) ̸= 0, so if w ∈ W⊥ ∩W , w ̸= 0, then for all w ′ ∈ W , ψ(w,w ′) = 0,
a contradiction, and so W ∩W⊥ = {0}. Now

dim(W +W⊥) = dimW + dimW⊥ ≥ dimV,

by the proposition, so W +W⊥ = V (and also ψ is non-degenerate on all of V clearly).

(⇒) Clear by our earlier remarks that W ∩W⊥ = 0 if and only if ψ
∣∣
W

is non-degenerate.

..Theorem 5.14

Let ψ ∈ Bil−(V ) be an anti-symmetric bilinear form. Then there is some basis
v1, . . . , vn of V such that the matrix of ψ is

0 1
−1 0

0

0 1
−1 0

. . .
0 1
−1 0

0
. . .

0 0


In particular, rankψ is even! (F is arbitrary.)

Remark. If ψ ∈ Bil±(V ), then W⊥ = ⊥W for all W ≤ V .
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Proof. We induct on rankψ, if rankψ = 0, then ψ = 0 and we’re done.

Otherwise, there are some v1, v2 ∈ V such that ψ(v1, v2) ̸= 0. If v2 = λv1 then
ψ(v1, λv2) = λψ(v1, v1) = 0, as ψ is anti-symmetric; so v1, v2 are linearly independent.
Change v2 to v2/ψ(v1, v2).

So now ψ(v1, v2) = 1. Put W = ⟨v1, v2⟩, then ψ
∣∣
W

has matrix 0 1
−1 0

, which is

non-degenerate, so the corollary gives V =W ⊕W⊥. And now induction gives the basis
of W⊥, v3, . . . , vn, of the correct form, and v1, . . . , vn is our basis.

So we’ve shown that there is an isomorphism

Bil−(V )/GL(V )
∼−→
{
2i : 0 ≤ i ≤ 1

2 dimV
}
.

taking ψ 7→ rankψ.
Remark. A non-degenerate anti-symmetric form ψ is usually called a symplectic form.

Let ψ ∈ Bil−(V ) be non-degenerate, rankψ = n = dimV (even!). Put L = ⟨v1, v3, v5, . . .⟩,
with v1, . . . , vn as above, and then L⊥ = L. Such a subspace is called Lagrangian.

If U ≤ L, then U⊥ ≥ L⊥ = L, and so U ⊆ U⊥. Such a subspace is called isotropic.

Definition. If ψ ∈ Bil(V ), the isometries of ψ are

Isomψ =
{
g ∈ GL(V ) : gψ = ψ

}
=
{
g ∈ GL(V ) : ψ(g−1v, g−1w) = ψ(v, w) ∀v, w ∈ V

}
=
{
X ∈ GLn(F) : XAXT = A

}
if A is a matrix of ψ.

This is a group.

Exercise 5.15. Show that Isom(gψ) = g Isom(ψ)g−1, and so isomorphism bilinear
forms have isomorphic isometry groups.

If ψ ∈ Bil+(V ), ψ is non-degenerate, we often write O(ψ), the orthogonal group of ψ for
the isometry group of ψ.

Example 5.16. Suppose F = C. If ψ ∈ Bil+(V ), and ψ is non-degenerate, then ψ
is isomorphic to the standard quadratic form, whose matrix A = I, and so Isomψ
is conjugate to the group

Isom(A = I) =
{
X ∈ GLn(C) : XXT = I

}
= On(C),

which is what we usually call the orthogonal group.

If F = R, then

Op,q(R) =

{
X | X

(
Ip
−Iq

)
XT =

(
Ip
−Iq

)}
.

are the possible isometry groups of non-degenerate symmetric forms.



66 | Linear Algebra

For any field F, if ψ ∈ Bil−(F) is non-degenerate, then Isomψ is called the symplectic
group, and it is conjugate to the group

Sp2n(F) =
{
X : XJXT = J

}
,

where J is the matrix given by

J =



0 1
−1 0

0

0 1
−1 0

. . .

0
0 1
−1 0


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6 Hermitian forms
19 NovA non-degenerate quadratic form on a vector space over C doesn’t behave like an inner

product on R2. For example,

if Q
(
x1
x2

)
= x21 + x22 then we have Q

(
1

i

)
= 1 + i2 = 0.

We don’t have a notion of positive definite, but there is a modification of a notion of a
bilinear form which does.

Definition. Let V be a vector space over C; then a function ψ : V × V → C is
called sesquilinear if

(i) For all v ∈ V , ψ(·, v), u 7→ ψ(u, v) is linear; that is

ψ(λ1 u1 + λ2 u2, v) = λ1ψ(u1, v) + λ2ψ(u2, v)

(ii) For all u, v1, v2 ∈ V , λ1, λ2 ∈ C,

ψ(u, λ1 v1 + λ2 v2) = λ1 ψ(u, v1) + λ2 ψ(u, v2),

where z is the complex conjugate of z.

It is called Hermitian if it also satisfies

(iii) ψ(v, w) = ψ(w, v) for all v, w ∈ V .

Note that (i) and (iii) imply (ii).

Let V be a vector space over C, and ψ : V × V → C a Hermitian form. Define

Q(v) = ψ(v, v) = ψ(v, v)

by (iii), so Q : V → R.

Lemma 6.1. We have Q(v) = 0 for all v ∈ V if and only if ψ(v, w) = 0 for all v, w ∈ V .

Proof. We have.

Q(u± v) = ψ(u± v, u± v) = ψ(u, u) + ψ(v, v)± ψ(u, v)± ψ(v, u)
= Q(u) +Q(v)± 2ℜψ(u, v),

as z + z = 2ℜ(z). Thus

Q(u+ v)−Q(u− v) = 4ℜψ(u, v),
Q(u+ iv)−Q(u− iv) = 4 Iψ(u, v),

that is, Q : V → R determines ψ : V × V → C if Q is Hermitian:

ψ(u, v) = 1
4

[
Q(u+ v) + iQ(u+ iv)−Q(u− v)− iQ(u− iv)

]
.

Note that
Q(λv) = ψ(λv, λv) = λλψ(v, v) = |λ|2Q(v).

If ψ : V × V → C is Hermitian, and v1, . . . , vn is a basis of V , then we write A = (aij),
aij = ψ(vi, vj), and we call this the matrix of ψ with respect to v1, . . . , vn.

Observe that AT = A; that is, A is a Hermitian matrix.
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Exercise 6.2. Show that if we change basis, v ′
j =

∑
i pij vi, P = (pij), then

A 7→ PTAP .

..Theorem 6.3

If V is a finite dimensional vector space over C, and ψ : V × V → C is Hermitian,
then there is a basis for V such that the matrix A of ψ isIp −Iq

0


for some p, q ≥ 0. Moreover, p and q are uniquely determined by ψ: p is the maxi-
mum dimension of a positive definite subspace P , and q is the maximal dimension
of a negative definite subspace.

Here P ≤ V is positive definite if Q(v) ≥ 0 for all v ∈ P , and Q(v) = 0 when v ∈ P
implies v = 0; P is negative definite −Q is positive definite on P .

Proof. Exactly as for real symmetric forms, using the Hermitian ingredients before the
theorem instead of their bilinear counterparts.

Definition. If W ≤ V , then the orthogonal complement to W is given by

W⊥ =
{
v ∈ V | ψ(W, v) = ψ(v,W ) = 0

}
= ⊥W.

We say that ψ is non-degenerate if V ⊥ = 0, equivalenyly if p+ q = dimV . We also
define the unitary group

U(p, q) = Isom

(
Ip
−Iq

)

=

{
X ∈ GLn(C) | XT

(
Ip
−Iq

)
X =

(
Ip 0
0 −Iq

)}

=

{
stabilizers of the form

(
Ip
−Iq

)
with respect to GLn(C) action

}
,

where the action takes ψ 7→ gψ, with (gψ)(x, y) = ψ(g−1x, g−1y). Again, note g−1

here so that (gh)ψ = g(hψ).

In the special case where the form ψ is positive definite, that is, conjugate to In,
we call this the unitary group

U(n) = U(n, 0) =
{
X ∈ GLn(C) | XTX = I

}
.

Proposition 6.4. Let V be a vector space over C (or R), and ψ : V × V → C (or R) a
Hermitian (respectively, symmetric) form, so Q : V → R.

Let v1, . . . , vn be a basis of V , and A ∈ Matn(C) the matrix of ψ, so AT = A. Then
Q : V → R is positive definite if and only if, for all k, 1 ≤ k ≤ n, the top left k × k
submatrix of A (called Ak) has detAk ∈ R and detAk > 0.
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Proof. (⇒) If Q is positive definite, then A = PTIP = PTP for some P ∈ GLn(C), and
so

detA = detPT detP = |detP |2 > 0. (∗)

But if U ≤ V , as Q is positive definite on V , it is positive definite on U . Take U =
⟨v1, . . . , vk⟩, then Q | U is positive definite, Ak is the matrix of Q | U , and by (∗),
detAk > 0.

(⇐) Induct on n = dimV . The case n = 1 is clear. Now the induction hypothesis tells
us that ψ | ⟨v1, . . . , vn−1⟩ is positive definite, and hence the dimension of a maximum
positive definite subspace is p ≥ n− 1.

So by classification of Hermitian forms, there is some P ∈ GLn(C) such that

A = PT

(
In−1 0
0 c

)
P ,

where c = 0, 1 or −1. But detA = |detP |2 c > 0 by assumption, so c = 1, and A = PTP ;
that is, Q is positive definite.

Definition. If V is a vector space over F = R or F = C, then an inner product on
V is a positive definite symmetric bilinear/Hermitian form ⟨·, ·⟩ : V × V → F, and
we say that V is an inner product space.

Example 6.5. Consider Rn or Cn, and the dot product ⟨x,y⟩ =
∑
xi yi. These

forms behave exactly as our intuition tells us in R2.

6.1 Inner product spaces

Definition. Let V be an inner product space over F with ⟨·, ·⟩ : V ×V → C. Then
Q(v) ∈ R≥0, and so we can define

|v| =
√
Q(v)

to be the length or norm of v. Note that |v| = 0 if and only if v = 0.

Lemma 6.6 (Cauchy-Schwarz inequality).
∣∣⟨v, w⟩∣∣ ≤ |v| |w|.

Proof. As you’ve seen many times before:

0 ≤ ⟨−λv + w,−λv + w⟩
= |λ|2 ⟨v, v⟩+ ⟨w,w⟩ − λ ⟨v, w⟩ − λ ⟨v, w⟩.

The result is clear if v = 0, otherwise suppose |v| ̸= 0, and put λ = ⟨v, w⟩/ ⟨v, w⟩. We
get

0 ≤
∣∣⟨v, w⟩∣∣2
⟨v, v⟩

−
2
∣∣⟨v, w⟩∣∣2
⟨v, v⟩

+ ⟨w,w⟩ ,

that is,
∣∣⟨v, w⟩∣∣2 ≤ ⟨v, v⟩ ⟨w,w⟩.

Note that if F = R, then ⟨v, w⟩ / |w| |v| ∈ [−1, 1] so there is some θ ∈ [0, π) such that
cos θ = ⟨v, w⟩ / |v| |w|. We call θ the angle between v and w.
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Corollary 6.7 (Triangle inequality). For all v, w ∈ V , |v + w| ≤ |v|+ |w|.

Proof. As you’ve seen many times before:

|v + w|2 = ⟨v + w, v + w⟩
= |v|2 + 2ℜ⟨v, w⟩+ |w|2

≤
∣∣∣v2∣∣∣+ 2 |v| |w|+

∣∣∣w2
∣∣∣ (by lemma)

=
(
|v|+ |w|

)2
.

21 Nov Given v1, . . . , vn with
⟨
vi, vj

⟩
= 0 if i ̸= j, we say that v1, . . . , vn are orthogonal. If⟨

vi, vj
⟩
= δij , then we say that v1, . . . , vn are orthonormal.

So v1, . . . , vn orthogonal and vi ̸= 0 for all i implies that v̂1, . . . , v̂n are orthonormal,
where v̂i = vi/ |vi|.

Lemma 6.8. If v1, . . . , vn are non-zero and orthogonal, and if v =
∑n

i=1 λi vi, then
λi = ⟨v, vi⟩ / |vi|2.

Proof. ⟨v, vk⟩ =
∑n

i=1 λi ⟨vi, vk⟩ = λk ⟨vk, vk⟩, hence the result.

In particular, distinct orthonormal vectors v1, . . . , vn are linearly independent, since∑
i λi vi = 0 implies λi = 0.

As ⟨·, ·⟩ is Hermitian, we know there is a basis v1, . . . , vn such that the matrix of ⟨·, ·⟩ isIp −Iq
0

 .

As ⟨·, ·⟩ is positive definite, we know that p = n, q = 0, rank = dimV ; that is, this
matrix is In. So we know there exists an orthonormal basis v1, . . . , vn; that is V ∼= Rn,
with ⟨x, y⟩ =

∑
i xi yi, or V ∼= Cn, with ⟨x, y⟩ =

∑
i xi yi.

Here is another constructive proof that orthonormal bases exist.

..Theorem 6.9: Gram-Schmidt orthogonalisation

Let V have a basis v1, . . . , vn. Then there exists an orthonormal basis e1, . . . , en
such that ⟨v1, . . . , vk⟩ = ⟨e1, . . . , ek⟩ for all 1 ≤ k ≤ n.

Proof. Induct on k. For k = 1, set e1 = v1/ |v1|.

Suppose we’ve found e1, . . . , ek such that ⟨e1, . . . , ek⟩ = ⟨v1, . . . , vk⟩. Define

ẽk+1 = vk+1 −
∑

1≤i≤k
⟨vk+1, ei⟩ ei.

Thus
⟨ẽk+1, ei⟩ = ⟨vk+1, ei⟩ − ⟨vk+1, ei⟩ = 0 if i ≤ k.

Also ẽk+1 ̸= 0, as if ẽk+1 = 0, then vk+1 ∈ ⟨e1, . . . , ek⟩ = ⟨v1, . . . , vk⟩ which contradicts
v1, . . . , vk+1 linearly independent.

So put ek+1 = ẽk+1/ |ẽk+1|, and then e1, . . . , ek+1 are orthonormal, and ⟨e1, . . . , ek+1⟩ =
⟨v1, . . . , vk+1⟩.
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Corollary 6.10. Any orthonormal set can be extended to an orthonormal basis.

Proof. Extend the orthonormal set to a basis; now the Gram-Schmidt algorithm doesn’t
change v1, . . . , vk if they are already orthonormal.

Recall that if W ≤ V , W⊥ = ⊥W =
{
v ∈ V | ⟨v, w⟩ = 0 ∀w ∈W

}
.

Proposition 6.11. If W ≤ V , V an inner product space, then W ⊕W⊥ = V .

Proof 1. If ⟨·, ·⟩ is positive definite on V , then it is also positive definite on W , and
thus ⟨·, ·⟩|W is non-degenerate. If F = R, then ⟨·, ·⟩ is bilinear, and we’ve shown that
W ⊕W⊥ = V when the form ⟨·, ·⟩ |W is non-degenerate. If F = C, then exactly the
same proof for sesquilinear forms shows the result.

Proof 2. Pick an orthonormal basis w1, . . . , wr for W , and extend it to an orthonormal
basis for V , w1, . . . , wn.

Now observe that ⟨wr+1, . . . , wn⟩ = W⊥. Proof (⊆) is done. For (⊇): if
∑n

i=1 λiwi ∈
W⊥, then take ⟨·, wi⟩, i ≤ r, and we get λi = 0 for i ≤ r. So V =W ⊕W⊥.

Geometric interpretation of the key step in the Gram-Schmidt algorithm

Let V be an inner product space, with W ≤ V and V = W ⊕ W⊥. Define a map
π : V → W , the orthogonal projection onto W , defined as follows: if v ∈ V , then write
v = w + w ′, where w ∈W and w ′ ∈W⊥ uniquely, and set π(v) = w.

This satisfies π|W = id :W →W , π2 = π and π linear.

Proposition 6.12. If W has an orthonormal basis e1, . . . , ek and π : V →W as above,
then

(i) π(v) =
∑k

i=1 ⟨v, ei⟩ ei;
(ii) π(v) is the vector in W closest to v; that is,

∣∣v − π(v)∣∣ ≤ |v − w| for all w ∈ W ,
with equality if and only if w = π(v).

Proof.

(i) If v ∈ V , then put w =
∑k

i=1 ⟨v, ei⟩ ei, and w ′ = v − w. So w ∈ W , and we want
w ′ ∈W⊥. But ⟨

w ′, ei
⟩
= ⟨v, ei⟩ − ⟨v, ei⟩ = 0 for all i, 1 ≤ i ≤ k,

so indeed we have w ′ ∈W⊥, and π(v) = w by definition.

(ii) We have v − π(v) ∈W⊥, and if w ∈W , π(v)− w ∈W , then

|v − w|2 =
∣∣∣(v − π(v))+ (π(v)− w)∣∣∣2

=
∣∣v − π(v)∣∣2 + ∣∣π(v)− w∣∣2 + 2ℜ⟨v − π(v)

∈W⊥
, π(v)− w

∈W
⟩︸ ︷︷ ︸

=0

,

and so |v − w|2 ≥
∣∣v − π(v)∣∣2, with equality if and only if

∣∣π(v)− w∣∣ = 0; that is,
if π(v) = w.
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6.2 Hermitian adjoints for inner products

Let V and W be inner product spaces over F and α : V →W a linear map.

Proposition 6.13. There is a unique linear map α∗ :W → V such that for all v ∈ V ,
w ∈W ,

⟨
α(v), w

⟩
=
⟨
v, α∗(w)

⟩
. This map is called the Hermitian adjoint.

Moreover, if e1, . . . , en is an orthonormal basis of V , and f1, . . . , fm is an orthonormal
basis for W , and A = (aij) is the matrix of α with respect to these bases, then AT is the
matrix of α∗.

Proof. If β :W → V is a linear map with matrix B = (bij), then⟨
α(v), w

⟩
=
⟨
v, β(w)

⟩
for all v, w

if and only if ⟨
α(ej), fk

⟩
=
⟨
ej , β(fk)

⟩
for all 0 ≤ j ≤ n, 0 ≤ k ≤ m.

But we have

akj =
⟨∑

aij fi, fk
⟩
=
⟨
α(ej), fk

⟩
=
⟨
ej , β(fk)

⟩
=
⟨
ej ,
∑
bik ei

⟩
= bjk,

that is, B = AT. Now define α∗ to be the map with matrix AT.

Exercise 6.14. If F = R, identify V ∼−→ V ∗ by v 7→ ⟨v, ·⟩, W ∼−→W ∗ by w 7→ ⟨w, ·⟩,
and then show that α∗ is just the dual map.

More generally, if α : V →W defines a linear map over F, ψ ∈ Bil(V ), ψ ′ ∈ Bil(W ),
both non-degenerate, then you can define the adjoint by ψ′(α(v), w) = ψ(v, α∗(w))
for all v ∈ V , w ∈W , and show that it is the dual map.23 Nov

Lemma 6.15.

(i) If α, β : V →W , then (α+ β)∗ = α∗ + β∗.
(ii) (λα)∗ = λα∗.

(iii) α∗∗ = α.

Proof. Immediate from the properties of A→ AT.

Definition. A map α : V → V is self-adjoint if α = α∗.

If v1, . . . , vn is an orthonormal basis for V , and A is the matrix of α, then α is self-adjoint
if and only if A = A

T.

In short, if F = R, then A is symmetric, and if F = C, then A is Hermitian.

..Theorem 6.16

Let α : V → V be self-adjoint. Then

(i) All the eigenvalues of α are real.
(ii) Eigenvectors with distinct eigenvalues are orthogonal.
(iii) There exists an orthogonal basis of eigenvectors for α. In particular, α is

diagonalisable.
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Proof.

(i) First assume F = C. If αv = λv for a non-zero vector v and λ ∈ C, then

λ ⟨v, v⟩ = ⟨λv, v⟩ =
⟨
v, α∗v

⟩
= ⟨v, αv⟩ = ⟨v, λv⟩ = λ ⟨v, v⟩ ,

as α is self-adjoint. Since v ̸= 0, we have ⟨v, v⟩ ̸= 0 and thus λ = λ.

If F = R, then let A = AT be the matrix of α; regard it as a matrix over C, which
is obviously Hermitian, and then the above shows that the eigenvalue for A is real.
Remark. This shows that we should introduce some notation so that we can phrase
this argument without choosing a basis. Here is one way: let V be a vector
space over R. Define a new vector space, VC = V ⊕ iV , a new vector space
over R of twice the dimension, and make it a complex vector space by saying
that i (v + iw) = (−w + iv), so dimR V = dimC VC. Now suppose the matrix
of α : V → V is A. Then show the matrix of αC : VC → VC is also A, where
αC(v + iw) = α(v) + i α(w).

Now we can phrase (i) of the proof using VC: show λ ∈ R implies that we can
choose a λ-eigenvector v ∈ VC to be in V ⊆ VC.

(ii) If α(vi) = λi vi, i = 1, 2, where vi ̸= 0 and λ1 ̸= λ2, then

λ1 ⟨v1, v2⟩ = ⟨αv1, v2⟩ = ⟨v1, αv2⟩ = λ2 ⟨v1, v2⟩ ,

as α = α∗, so if ⟨v1, v2⟩ ̸= 0, then λ1 = λ2 = λ2, a contradiction.

(iii) Induct on dimV . The case dimV = 1 is clear, so assume n = dimV > 1. By
(i), there is a real eigenvalue λ, and an eigenvector v1 ∈ V such that α(v1) = λv1.
Thus V = ⟨v1⟩ ⊕ ⟨v1⟩⊥ as V is an inner product space. Now put W = ⟨v1⟩⊥.

Claim. α(W ) ⊆W ; that is, if ⟨x, v1⟩ = 0, then
⟨
α(x), v1

⟩
= 0.

Proof. We have⟨
α(x), v1

⟩
=
⟨
x, α∗(v1)

⟩
=
⟨
x, α(v1)

⟩
= λ ⟨x, v1⟩ = 0.

Also, α|W :W →W is self-adjoint, as
⟨
α(v), w

⟩
=
⟨
v, α(w)

⟩
for all v, w ∈ V , and

so this is also true for all v, w ∈ W . Hence by induction W has an orthonormal
basis v2, . . . , vn, and so v̂1, v2, . . . , vn is an orthonormal basis for V .

Definition. Let V be an inner product space over C. Then the group of isometries
of the form ⟨·, ·⟩, denoted U(V ), is defined to be

U(V ) = Isom(V ) =
{
α : V → V |

⟨
α(v), α(w)

⟩
= ⟨v, w⟩ ∀v, w ∈ V

}
=

{
α ∈ GL(V ) |

⟨
α(v), w ′⟩ = ⟨v, α−1w ′

⟩
∀v, w ′ ∈ V

}
,

putting w ′ = α(w). Now we note that α : V → V an isometry implies that α is an
isomorphism. This is because v ̸= 0 if and only if |v| ̸= 0, and α is an isometry, so
we have |αv| = |v| ̸= 0, and so α is injective.

=
{
α ∈ GL(V ) | α−1 = α∗

}
.

This is called the unitary group.
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If V = Cn, and ⟨·, ·⟩ is the standard inner product ⟨x, y⟩ =
∑

i xi yi, then we write

Un = U(n) = U(Cn) =
{
X ∈ GLn(C) | X

T ·X = I
}
.

So an orthonormal basis (that is, a choice of isomorphism V
∼−→ Cn) gives us an isomor-

phism U(V )
∼−→ Un.

..Theorem 6.17

Let V be an inner product space over C, and α : V → V an isometry; that is,
α∗ = α−1, and α ∈ U(V ). Then

(i) All eigenvalues λ of α have |λ| = 1; that is, they lie on the unit circle.
(ii) Eigenvectors with distinct eigenvalues are orthogonal.
(iii) There exists an orthonormal basis of eigenvectors for α; in particular α is

diagonalisable.

Remark. If V is an inner product space over R, then Isom ⟨·, ·⟩ = O(V ), the usual
orthogonal group, also denoted On(R). If we choose an orthonormal basis for V , then
α ∈ O(V ) if A, the matrix of α, has ATA = I.

Then this theorem applied to A considered as a complex matrix shows that A is diag-
onalisable over C, but as all the eigenvalues of A have |λ| = 1, it is not diagonalisable
over R unles the only eigenvalues are ±1.

Example 6.18. The matrix(
cos θ sin θ
− sin θ cos θ

)
= A ∈ O(2)

is diagonalisable over C, and conjugate to(
eiθ

e−iθ

)
,

but not over R, unless sin θ = 0.

Proof.

(i) If α(v) = λv, for v non-zero, then

λ ⟨v, v⟩ = ⟨λv, v⟩ =
⟨
α(v), v

⟩
=
⟨
v, α∗(v)

⟩
=
⟨
v, α−1(v)

⟩
=
⟨
v, λ−1v

⟩
= λ

−1 ⟨v, v⟩ ,

and so λ = λ
−1 and λλ = 1.

(ii) If α(vi) = λi vi, for v non-zero and λi ̸= λj :

λi
⟨
vi, vj

⟩
=
⟨
α(vi), vj

⟩
=
⟨
vi, α

−1(vj)
⟩
= λ

−1
j

⟨
vi, vj

⟩
= λj

⟨
vi, vj

⟩
,

and so λi ̸= λj implies
⟨
vi, vj

⟩
= 0.

(iii) Induct on n = dimV . If V is a vector space over C, then a non-zero eigenvector
v1 exists with some eigenvalue λ, so α(v1) = λv1.

Put W = ⟨v1⟩⊥, so V = ⟨v1⟩ ⊕W , as V is an inner product space.
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Claim. α(W ) ⊆W ; that is, ⟨x, v1⟩ implies
⟨
α(x), v1

⟩
= 0.

Proof. We have⟨
α(x), v1

⟩
=
⟨
x, α−1(v1)

⟩
=
⟨
x, λ−1(v1)

⟩
= λ−1 ⟨x, v1⟩ = 0.

Also,
⟨
α(v), α(w)

⟩
= ⟨v, w⟩ for all v, w ∈ V implies that this is true for all v, w ∈

W , so α|W is unitary; that is (α|W )∗ = (α|W )−1, so induction gives an orthonormal
basis of W , namely v2, . . . , vn of eigenvectors for α, and so v̂1, v2, . . . , vn is an
orthonormal basis for V .

Remark. The previous two theorems admit the following generalisation: define α : V →
V to be normal if αα∗ = α∗α; that is, if α and α∗ commute.

..Theorem 6.19

If α is normal, then there is an orthonormal basis consisting of eigenvalues for α.

Proof. Exercise!
26 NovRecall that

(i) GLn(C) acts on Matn(C) taking (P,A) 7→ PAP−1.

Interpretation: a choice of basis of a vector space V identifies Matn(C) ∼= L(V, V ),
and a change of basis changes A to PAP−1.

(ii) GLn(C) acts on Matn(C) taking (P,A) 7→ PAP
T.

Interpretation: a choice of basis of a vector space V identifies Matn(C) with
sesquilinear forms.

A change of basis changes A to PAPT (where P is Q−1, if Q is the change of basis
matrix).

These are genuinely different; that is, the theory of linear maps and sesquilinear forms
are different.

But we have P ∈ Un if and only if PT
P = I, and P−1 = P

T, and then these two actions
coincide! This occurs if and only if the columns of P are an orthonormal basis with
respect to usual inner product on Cn.

Proposition 6.20.

(i) Let A ∈ Matn(C) be Hermitian, so AT
= A. Then there exists a P ∈ Un such that

PAP−1 = PAP
T is real and diagonal.

(ii) Let A ∈ Matn(R) be symmetric, with AT = A. Then there exists a P ∈ On(R)
such that PAP−1 = PAPT is real and diagonal.

Proof. Given A ∈ Matn(F) (for F = C or R), the map α : Fn → Fn taking x 7→ Ax is
self-adjoint with respect to the standard inner product. By theorem 6.17, there is an
orthonormal basis of eigenvectors for α : Fn → Fn, that is, there are some λ1, . . . , λn ∈ R
such that Avi = λivi. Then

A
(
v1 · · · vn

)
=
(
λ1v1 · · ·λnvn

)
=
(
v1 · · · vn

)λ1 . . .
λn

 .
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If we set Q =
(
v1 · · · vn

)
∈ Matn(F), then

AQ = Q

λ1 . . .
λn

 ,

and v1, . . . , vn are an orthonormal basis if and only if QT
= Q−1, so we put P = Q−1

and get the result.

Corollary 6.21. If ψ is a Hermitian form on V with matrix A, then the signature
sign(ψ) is the number of positive eigenvalues of A less the number of negative eigenvalues.

Proof. If the matrix A is diagonal, then this is clear: rescale the basis vectors vi 7→
vi/ |vi|, and the signature is the number of original diagonal entries which are positive,
less the number which are negative.

Now for general A, the proposition shows that we can choose P ∈ Un such that PAP−1 =

PAP
T is diagonal, and this represents the same form with respect to the new basis, but

also has the same eigenvalues.

Corollary 6.22. Both rank(ψ) and sign(ψ) can be read off the characteristic polyno-
mialomial of any matrix A for ψ.

Exercise 6.23. Let ψ : Rn × Rn → R be ψ(x, y) = xTAy, where

A =


0 1 · · · · · · 1
1 0 1 · · · 1
... 1

. . . ...
... . . . ...
1 1 · · · 1 0

 .

Show that chA(x) = (x+ 1)n−1 (x− (n− 1)
)
, so the signature is 2−n and the rank

is n.

Another consequence of the proposition is the simultaneous diagonalisation of some
bilinear forms.

..Theorem 6.24

Let V be a finite dimensional vector space over C (or R), and φ,ψ : V ×V → F be
two Hermitian (symmetric) bilinear forms.

If φ is positive definite, then there is some basis v1, . . . , vn of V such that with re-
spect to this basis, both forms φ and ψ are diagonal; that is, ψ(vi, vj) = φ(vi, vj) =
0 if i ̸= j.

Proof. As φ is positive definite, there exists an orthonormal basis for φ; that is, some
w1, . . . , wn such that φ(wi, wj) = δij .

Now let B be the matrix of ψ with respect to this basis; that is, bij = ψ(wi, wj) = bji =
ψ(wj , wi), as ψ is Hermitian.
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By the proposition, there is some P ∈ Un (or On(R), if V is over R) such that

P
T
BP = D =

λ1 0
· · ·

0 λn


is diagonal, for λi ∈ R, and now the matrix of φ with respect to our new basis, is
P

T
IP = I, also diagonal.

Now we ask what is the “meaning” of the diagonal entries λ1, . . . , λn?

If φ,ψ : V ×V → F are any two bilinear/sesquilinear forms, then they determine (anti)-
linear maps V → V ∗ taking v 7→ φ(·, v) and v 7→ ψ(·, v), and if φ is a non-degenerate
form, then the map V → V ∗ taking v 7→ φ(·, v) is an (anti)-linear isomorphism. So we
can take its inverse, and compose with the map V → V ∗, v 7→ ψ(·, v) to get a (linear!)
map V → V . Then λ1, . . . , λn are the eigenvalues of this map.

Exercise 6.25. If φ,ψ are both not positive definite, then need they be simulta-
neously diagonalisable?

Remark. In coordinates: if we choose any basis for V , let the matrix of φ be A and that
for ψ be B, with respect to this basis. Then A = QTQ for some Q ∈ GLn(C) as φ is
positive definite, and then the above proof shows that

B = Q
−T
P

−T
DP−1Q−1,

since P−1 = P
T. Then

det(D − xI) = det(Q−T
(
P−TDP − xQTQ

)
Q−1)

= detAdet(B − xA),

and the diagonal entries are the roots of the polynomial det(B − xA); that is, the roots
of det(BA−1 − xI), as claimed.

28 NovConsider the relationship between On(R) ↪→ GLn(R), Un ↪→ GLn(C).

Example 6.26. Take n = 1. We have

GL1(C) = C∗ and U1 =
{
λ ∈ C : |λ| = 1

}
= S 1

We have C∗ = S 1 × R>0, with λr ← [ (λ, r).
In R, we have GL1(R) = R∗, O1(R) = {±1} and R∗ = {±1} × R>0.

For n > 1, Gram-Schmidt orthonormalisation tells us the relation: define

A =


λ1 0

. . .
0 λn

∣∣λi ∈ R>0

 , N(F) =


1 ∗

. . .
0 1

∣∣∗ ∈ F

 ,

where F = R or C. Then A as a set, is homeomorphic to Rn, and N(F) as a set
(not a group) is isomorphic to F

1
2
(n−1)n, so Rn(n−1)/2 or Cn(n−1)/2.
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Exercise 6.27. Show that

A ·N(F) =


λ1 ∗

. . .
0 λn

 | λi ∈ R>0, ∗ ∈ F


is a group, N(F) is a normal subgroup and A ∩N(F) = {I}.

..Theorem 6.28

Any A ∈ GLn(C) can be written uniquely as A = QR, with Q ∈ Un, R ∈ A·N(C).

Similarly, any A ∈ GLn(R) can be written uniquely as A = QR, with Q ∈ On(R),
R ∈ A ·N(R).

Example 6.29. n = 1 is above.

Proof. This is just Gram-Schmidt.

Write A =
(
v1 · · · vn

)
, vi ∈ Fn so v1, . . . , vn is a basis for Fn. Now the Gram-Schmidt

algorithm gives an orthonormal basis e1, . . . , en. Recall how it went: set

ẽ1 = v1,

ẽ2 = v2 −
⟨v2, ẽ1⟩
⟨ẽ1, ẽ1⟩

· ẽ1,

ẽ3 = v3 −
⟨v3, ẽ2⟩
⟨ẽ2, ẽ2⟩

· ẽ2 −
⟨v3, ẽ1⟩
⟨ẽ1, ẽ1⟩

· ẽ1

...

ẽn = vn −
n−1∑
i=1

⟨vn, ẽi⟩
ẽi, ẽi

· ẽi,

so that ẽ1, . . . , ẽn are orthogonal, and if we set ei = ẽi/ |ẽi|, then e1, . . . , en are an
orthonormal basis. So

ẽi = vi + correction terms
= vi + ⟨ẽ1, . . . , ẽi−1⟩
= vi + ⟨v1, . . . , vi−1⟩ ,

so we can write

ẽ1 = v1,

ẽ2 = v2 + (∗) v1,
ẽ3 = v3 + (∗) v2 + (∗) v1,

that is, (
ẽ1 · · · ẽn

)
=
(
v1 · · · vn

)1 ∗
. . .

0 1

 , with ∗ ∈ F,
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and (
ẽ1 · · · ẽn

)λ1 0
. . .

0 λn

 =
(
e1 · · · en

)
,

with λi = 1/ |ẽi|. So if Q =
(
e1 · · · en

)
, this is

Q = A

1 ∗
. . .

1


λ1 0

. . .
0 λn


︸ ︷︷ ︸

call this R−1

.

Thus QR = A, with R ∈ A ·N(F), and e1, . . . , en is an orthonormal basis if and only if
Q ∈ Un; that is, if QT

Q = I.

For uniqueness: if QR = Q ′R ′, then

(Q)−1Q
∈Un

= R ′R−1

∈A·N(F)
.

So it is enough to show that if X =
(
xij
)
∈ A ·N(F) ∩ Un, then X = I. But

X =

x11 ∗
. . .

0 xnn

 ,

and both the columns and the rows are orthonormal bases since X ∈ Un. Since the
columns are an orthonormal basis, |x11| = 1 implies x12 = x13 = · · · = x1n = 0, as∑n

i=1 |x1i|
2 = 1.

Then x11 ∈ R>0 ∩
{
λ ∈ C | |λ| = 1

}
implies x11 = 1, so

X =


1 0

0 X ′

 ,

with X ′ ∈ Un−1 ∩ A ·N(F), so induction gives X ′ = I.

Warning. Notice that Un is a group, A·N(C) is a group, and if you want you can make
Un ×A ·N(C) into a group by the direct product. But if you do this, then the map in
the theorem is not a group homomorphism.

The theorem says the map

ϕ : Un ×A ·N(C) −→ GLn(C)
(Q,R) 7−→ QR

is a bijection of sets, not an isomorphism of groups.

This theorem tells us that the ‘shape’ of the group GLn(C) and the shape of the group
Un are the “same” – one differs from another by the product of a space of the form Ck,
a vector space. You will learn in topology the precise words for this – these two groups
are homotopic – and you will learn later on that this means that many of their essential
features are the same.
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Finally (!!!), let’s give another proof that every element of the unitary group is diagonal-
isable. We already know a very strong form of this. The following proof gives a weaker
result, but gives it for a wider class of groups. It uses the same ideas as in in the above
(probably cryptic) remark.

Consider the map
θ : Matn(C)

=Cn2
=R2n2

−→ Matn(C)
=Cn2

=R2n2

A 7−→ A
T
A

.

This is a continuous map, and θ−1({I}) = Un, so as this is the inverse image of a
closed set, it is a closed subset of Cn2 . We also observe that

∑
j

∣∣aij∣∣2 = 1 implies
Un ⊆

{
(aij) |

∣∣aij∣∣ ≤ 1
}

is a bounded set, so Un is a closed bounded subset of Cn2 . Thus
Un is a compact topological space, and a group (a compact group).
Proposition 6.30. Let G ≤ GLn(C) be a subgroup such that G is also a closed bounded
subset, that is, a compact subgroup of GLn(C). Then if g ∈ G, then g is diagonalisable
as an element of GLn(C). That is, there is some P ∈ GLn(C) such that PgP−1 is
diagonal.

Example 6.31. Any g ∈ Un is diagonalisable.

Proof. Consider the sequence of elements 1, g, g2, g3, . . . in G. As G is a closed bounded
subset, it must have a convergent subsequence.

Let P ∈ GLn(C) such that PgP−1 is in JNF.

Claim. The sequence a1, a2, . . . , an in GLn converges if and only if Pa1P−1, Pa2P
−1, . . .

converges.

Proof of claim. For fixed P , the map A 7→ PAP−1 is a continuous map on Cn2 . This
implies the claim, as the matrix coefficients are linear functions of the matrix coefficients
on A.

If PgP−1 has a Jordan block of size a > 1,λ 1 0
. . . 1

0 λ

 = (λI + Ja) , λ ̸= 0,

then

(λI + Ja)
N = λnI +NλN−1Ja +

(
N

2

)
λN−2J2

a + · · ·

=


λN NλN−1

. . .
. . . NλN−1

λN

 .

If |λ| > 1, this has unbounded coefficients on the diagonal as N → ∞; if |λ| < 1, this
has unbounded coefficients on the diagonal as N → −∞, contradicting the existance of
a convergent subsequence.

So it must be that |λ| = 1. But now examine the entries just above the diagonal, and
observe these are unbounded as N → ∞, contradicting the existance of a convergent
subsequence.
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