

Linear Algebra: Example Sheet 3 of 4

The first eleven questions cover the relevant part of the course and should ensure good understanding. The remaining questions may or may not be harder; they are intended to be attempted only after completion of the first part.

1. Show that none of the following matrices are conjugate:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Is the matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

conjugate to any of them? If so, which?

2. Find a basis with respect to which $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ is in Jordan normal form. Hence compute $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^n$.

3. (a) Show that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
 (b) Let A be a 5×5 complex matrix with $A^4 = A^2 \neq A$. What are the possible minimal and characteristic polynomials? How many possible JNFs are there for A ? [There are enough that you probably don't want to list all the possibilities.]

4. Let α be an endomorphism of the finite dimensional vector space V over F , with characteristic polynomial $\chi_\alpha(t) = t^n + c_{n-1}t^{n-1} + \dots + c_0$. Show that $\det(\alpha) = (-1)^n c_0$ and $\text{tr}(\alpha) = -c_{n-1}$.

5. Let α be an endomorphism of the finite-dimensional vector space V , and assume that α is invertible. Describe the eigenvalues and the characteristic and minimal polynomial of α^{-1} in terms of those of α .

6. Prove that any square complex matrix is conjugate to its transpose. [You may want to check it first for a Jordan block matrix.]
 Prove that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan normal form a Jordan block $J_m(\lambda^{-1})$. For an arbitrary non-singular square matrix A , describe the Jordan normal form of A^{-1} in terms of that of A .

7. Let V be a complex vector space of dimension n and let α be an endomorphism of V with $\alpha^{n-1} \neq 0$ but $\alpha^n = 0$. Show that there is a vector $\mathbf{x} \in V$ for which $\mathbf{x}, \alpha(\mathbf{x}), \alpha^2(\mathbf{x}), \dots, \alpha^{n-1}(\mathbf{x})$ is a basis for V . Give the matrix of α relative to this basis.
 Let $p(t) = a_0 + a_1 t + \dots + a_k t^k$ be a polynomial. What is the matrix for $p(\alpha)$ with respect to this basis? What is the minimal polynomial for α ? What are the eigenvalues and eigenvectors?
 Show that if an endomorphism β of V commutes with α then $\beta = p(\alpha)$ for some polynomial $p(t)$. [It may help to consider $\beta(\mathbf{x})$.]

8. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimal polynomial of A , over the complex numbers, has real coefficients.

9. Let V be a 4-dimensional vector space over \mathbb{R} , and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^* dual to the basis $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ for V . Determine, in terms of the ξ_i , the bases dual to each of the following:
 (a) $\{\mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_3\}$;
 (b) $\{\mathbf{x}_1, 2\mathbf{x}_2, \frac{1}{2}\mathbf{x}_3, \mathbf{x}_4\}$;
 (c) $\{\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2 + \mathbf{x}_3, \mathbf{x}_3 + \mathbf{x}_4, \mathbf{x}_4\}$;
 (d) $\{\mathbf{x}_1, \mathbf{x}_2 - \mathbf{x}_1, \mathbf{x}_3 - \mathbf{x}_2 + \mathbf{x}_1, \mathbf{x}_4 - \mathbf{x}_3 + \mathbf{x}_2 - \mathbf{x}_1\}$.

10. Let P_n be the space of real polynomials of degree at most n . For $x \in \mathbb{R}$ define $\varepsilon_x \in P_n^*$ by $\varepsilon_x(p) = p(x)$. Show that $\varepsilon_0, \dots, \varepsilon_n$ form a basis for P_n^* , and identify the basis of P_n to which it is dual.

11. (a) Show that if $\mathbf{x} \neq \mathbf{y}$ are vectors in the finite dimensional vector space V , then there is a linear functional $\theta \in V^*$ such that $\theta(\mathbf{x}) \neq \theta(\mathbf{y})$.
 (b) Suppose that V is finite dimensional. Let $A, B \leq V$. Prove that $A \leq B$ if and only if $A^o \geq B^o$. Show that $A = V$ if and only if $A^o = \{\mathbf{0}\}$. Deduce that a subset $F \subset V^*$ of the dual space spans V^* if and only if $\{\mathbf{v} \in V : f(\mathbf{v}) = 0 \text{ for all } f \in F\} = \{\mathbf{0}\}$.

12. (a) Let A and B be diagonalisable matrices. Show that there exists an invertible matrix P such that PAP^{-1} and PBP^{-1} are both diagonal if and only if $AB = BA$.
 (b) Suppose $AB = BA$. Show there exists an invertible matrix P such that PAP^{-1} and PBP^{-1} are both upper triangular.
 [Begin by observing that B preserves $\ker(A - \lambda I)^a$, for all λ and a .]

13. Let $\mathcal{P}_n = \{(k_1 \geq k_2 \geq k_3 \dots \geq k_n \geq 0) \mid \sum_i k_i = n\} \simeq \{m : \mathbb{N} \rightarrow \mathbb{N} \mid \sum_{i \geq 1} i \cdot m(i) = n\}$ be the set of all partitions of n . Show that $|\mathcal{P}_n|$ is the coefficient of x^n in the series

$$\prod_{i \geq 1} \frac{1}{(1 - x^i)} = (1 + x + x^2 + \dots)(1 + x^2 + x^4 + \dots)(1 + x^3 + x^6 + \dots) \dots$$

and write down the first 8 terms. [Treat this as a formal expression in x ; you do not need to worry about where this series converges.]

14. Let V be a vector space of finite dimension over a field F . Let α be an endomorphism of V and let U be an α -invariant subspace of V (so $\alpha(U) \leq U$). The quotient group $V/U = \{\mathbf{v} + U : \mathbf{v} \in V\}$ is a vector space under natural operations (called the quotient space). Write $\bar{V} = V/U$, $\bar{\mathbf{v}} = \mathbf{v} + U$, and define $\bar{\alpha} \in L(\bar{V})$ by $\bar{\alpha}(\bar{\mathbf{v}}) = \overline{\alpha(\mathbf{v})}$. Check that $\bar{\alpha}$ is a well-defined endomorphism of \bar{V} . Consider a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ of V containing a basis $\mathbf{v}_1, \dots, \mathbf{v}_k$ of U . Show that the matrix of α with respect to $\mathbf{v}_1, \dots, \mathbf{v}_n$ is $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$, with B the matrix of the restriction α_U of α to U with respect to $\mathbf{v}_1, \dots, \mathbf{v}_k$, and C the matrix of $\bar{\alpha}$ with respect to $\overline{\mathbf{v}_{k+1}}, \dots, \overline{\mathbf{v}_n}$. Deduce that $\chi_\alpha = \chi_{\alpha_U} \chi_{\bar{\alpha}}$.

15. (Another proof of the Cayley Hamilton Theorem.) Assume that the Cayley Hamilton Theorem holds for any endomorphism on any vector space over the field F of dimension less than n . Let V be a vector space of dimension n and let α be an endomorphism of V . If U is a proper α -invariant subspace of V , use the previous question and the induction hypothesis to show that $\chi_\alpha(\alpha) = 0$. If no such subspace exists, show that there exists a basis $\mathbf{v}, \alpha(\mathbf{v}), \dots, \alpha^{n-1}(\mathbf{v})$ of V . Show that α has matrix

$$\begin{pmatrix} 0 & & -a_0 \\ 1 & \ddots & -a_1 \\ & \ddots & 0 & \vdots \\ & & 1 & -a_{n-1} \end{pmatrix}$$

with respect to this basis, for suitable $a_i \in F$. By expanding in the last column or otherwise, show that $\chi_\alpha(t) = t^n + a_{n-1}t^{n-1} + \dots + a_0$. Show that $\chi_\alpha(\alpha)(\mathbf{v}) = \mathbf{0}$, and deduce that $\chi_\alpha(\alpha)$ is 0 on V .

16. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi : P \rightarrow \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \dots)$.
 In terms of this identification, describe the effect on a sequence (a_0, a_1, a_2, \dots) of the linear maps dual to each of the following linear maps $P \rightarrow P$:

- The map D defined by $D(p)(t) = p'(t)$.
- The map S defined by $S(p)(t) = p(t^2)$.
- The map E defined by $E(p)(t) = p(t-1)$.
- The composite DS .
- The composite SD .

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

17. Let $\alpha : V \rightarrow V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^* : V^* \rightarrow V^*$ be its dual. Show that a complex number λ is an eigenvalue for α if and only if it is an eigenvalue for α^* . How are the algebraic and geometric multiplicities of λ for α and α^* related? How are the minimal and characteristic polynomials for α and α^* related?