Groups Rings and Modules: Example Sheet 3 of 4

All rings in this course are commutative with a 1.

1. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\omega]$ are Euclidean domains, where $\omega=\frac{1}{2}(-1+\sqrt{-3})$. Show also that the usual Euclidean function $\phi(r)=N(r)$ does not make $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain. Could there be some other Euclidean function ϕ making $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain?
2. Show that the ideal $(2,1+\sqrt{-7})$ in $\mathbb{Z}[\sqrt{-7}]$ is not principal.
3. Find an element of $\mathbb{Z}[\sqrt{-17}]$ that is a product of two irreducibles and also a product of three irreducibles.
4. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains: $\mathbb{Z}[X], \quad \mathbb{Z}[X] /\left(X^{2}+1\right), \quad \mathbb{Z}[X] /\left(2, X^{2}+1\right), \quad \mathbb{Z}[X] /\left(2, X^{2}+X+1\right), \quad \mathbb{Z}[X] /\left(3, X^{3}-X+1\right)$.
5. Determine which of the following polynomials are irreducible in $\mathbb{Q}[X]$:

$$
X^{4}+2 X+2, \quad X^{4}+18 X^{2}+24, \quad X^{3}-9, \quad X^{3}+X^{2}+X+1, \quad X^{4}+1, \quad X^{4}+4
$$

6. Let R be an integral domain. The greatest common divisor (gcd) of non-zero elements a and b in R is an element d in R such that d divides both a and b, and if c divides both a and b then c divides d.
(i) Show that the gcd of a and b, if it exists, is unique up to multiplication by a unit.
(ii) In lectures we have seen that, if R is a UFD, the gcd of two elements exists. Give an example to show that this is not always the case in an integral domain.
(iii) Show that if R is a PID, the gcd of elements a and b exists and can be written as $r a+s b$ for some $r, s \in R$. Give an example to show that this is not always the case in a UFD.
(iv) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be used to find the gcd of any two non-zero elements. Use the algorithm to find the gcd of $11+7 i$ and $18-i$ in $\mathbb{Z}[i]$.
7. Find all ways of writing the following integers as sums of two squares: $221,209 \times$ $221,121 \times 221,5 \times 221$.
8. By considering factorisations in $\mathbb{Z}[\sqrt{-2}]$, show that the only integer solutions to the equation $x^{2}+2=y^{3}$ are $x= \pm 5, y=3$.
9. Let R be any ring. Show that the ring $R[X]$ is a principal ideal domain if and only if R is a field. Can every ideal in $\mathbb{C}[X, Y]$ be generated by two elements?
10. Exhibit an integral domain R and a (non-zero, non-unit) element of R that is not a product of irreducibles.
11. Let \mathbb{F}_{q} be a finite field with q elements.
(i) Show that the prime subfield K (that is, the smallest subfield) of \mathbb{F}_{q} has p elements for some prime number p. Show that \mathbb{F}_{q} is a vector space over K and deduce that $q=p^{n}$, for some n.
(ii) Assuming that a field with p^{n} elements exists, show that $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ contains an element of order $p^{n}-1$.

Further Questions

12. (i) Consider the polynomial $f=X^{3} Y+X^{2} Y^{2}+Y^{3}-Y^{2}-X-Y+1$ in $\mathbb{C}[X, Y]$. Write it as an element of $(\mathbb{C}[X])[Y]$, that is collect together terms in powers of Y, and then use Eisenstein's criterion to show that f is prime in $\mathbb{C}[X, Y]$.
(ii) Let F be any field. Show that the polynomial $f=X^{2}+Y^{2}-1$ is irreducible in $F[X, Y]$, unless F has characteristic 2. What happens in that case?
13. Show that the subring $\mathbb{Z}[\sqrt{2}]$ of \mathbb{R} is a Euclidean domain. Show that the units are $\pm(1 \pm \sqrt{2})^{n}$ for $n \geqslant 0$.
14. If a UFD has at least one irreducible, must it have infinitely many (pairwise nonassociate) irreducibles?
15. Use your answer to Question 11 to show that if p and ℓ are primes, and ℓ is odd, then every Sylow ℓ-subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is cyclic.
16. Let $\mathbb{F}_{4}=\mathbb{F}_{2}[\omega] /\left(\omega^{2}+\omega+1\right)=\{0,1, \omega, \omega+1\}$, a field with four elements.

Show that the groups $\mathrm{SL}_{2}\left(\mathbb{F}_{4}\right)$ and $\mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right)$ both have order 60 . By exhibiting two Sylow 5 -subgroups and using some questions from Example Sheet 1, or otherwise, show that they are both isomorphic to the alternating group A_{5}. Show that $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right)$ and $\mathrm{PGL}_{2}\left(\mathbb{F}_{5}\right)$ both have order 120, but that only one of these is isomorphic to S_{5}.
[You may find it helpful to show, using the Cayley-Hamilton theorem or otherwise, that the order of an element $I \neq A \in \mathrm{SL}_{2}\left(\mathbb{F}_{4}\right)$ is uniquely determined by its trace.]

