Groups Rings and Modules: Example Sheet 1 of 4

1. (i) What are the orders of elements of the group S_{4} ? How many elements are there of each order?
(ii) How many subgroups of order 2 are there in S_{4} ? Of order 3? How many cyclic subgroups are there of order 4 ?
(iii) Find a non-cyclic subgroup $V \leqslant S_{4}$ of order 4. How many such subgroups are there?
(iv) Find a subgroup $D \leqslant S_{4}$ of order 8 . How many such subgroups are there?
2. (i) Show that A_{4} has no subgroups of index 2. Exhibit a subgroup of index 3 .
(ii) Show that A_{5} has no subgroups of index 2,3 , or 4 . Exhibit a subgroup of index 5 .
(iii) Show that A_{5} is generated by (12)(34) and (135).
3. Calculate the size of the conjugacy class of (123) as an element of S_{4}, as an element of S_{5}, and as an element of S_{6}. Find in each case its centraliser. Hence calculate the size of the conjugacy class of (123) in A_{4}, in A_{5}, and in A_{6}.
4. Suppose that $H, K \triangleleft G$ with $H \cap K=1$. Show that any element of H commutes with any element of K. Hence show that $H K \cong H \times K$.
5. Let p be a prime number, and G be a non-abelian group of order p^{3}.
(i) Show that the centre $Z(G)$ of G has order p.
(ii) Show that if $g \notin Z(G)$ then its centraliser $C(g)$ has order p^{2}.
(iii) Hence determine the sizes and numbers of conjugacy classes in G.
6. (i) For $p=2,3$ find a Sylow p-subgroup of S_{4}, and find its normaliser.
(ii) For $p=2,3,5$ find a Sylow p-subgroup of A_{5}, and find its normaliser.
7. Show that there are no simple groups of orders 441 or 351 .
8. Let p, q, and r be prime numbers, not necessarily distinct. Show that no group of order $p q$ is simple. Show that no group of order $p q^{2}$ is simple. Show that no group of order $p q r$ is simple.
9. (i) Show that any group of order 15 is cyclic.
(ii) Show that any group of order 30 has a normal subgroup of order 15 .
10. (Semi-direct product) Let N and H be groups, and $\phi: H \rightarrow \operatorname{Aut}(N)$ a homomorphism. Show that we can define a group operation on the set $N \times H$ by

$$
\left(n_{1}, h_{1}\right) \bullet\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot \phi\left(h_{1}\right)\left(n_{2}\right), h_{1} \cdot h_{2}\right)
$$

Show that the resulting group G contains copies of N and H as subgroups, that N is normal in G, that $N H=G$, and that $N \cap H=1$.
By finding an element of order 3 in $\operatorname{Aut}\left(C_{7}\right)$, construct a non-abelian group of order 21.

Further Questions

11. Let p be a prime number. How many elements of order p are there in S_{p} ? What are their centralisers? How many Sylow p-subgroups are there? What are the orders of their normalisers? If q is another prime number which divides $p-1$, show that there exists a non-abelian group of order $p q$.
12. Show that there are no simple groups of order 300 or 112.
13. Show that a group G of order 1001 contains normal subgroups of order 7, 11, and 13 . Hence show that G is cyclic. [Hint: You may want to use Question 4.]
14. Let G be a simple group of order 60 . Deduce that $G \cong A_{5}$, as follows. Show that G has six Sylow 5-subgroups. By considering the conjugation action of the set of Sylow 5subgroups, show that G is isomorphic to a subgroup $G \leqslant A_{6}$ of index 6 . By considering the action of A_{6} on A_{6} / G, show that that there is an automorphism of A_{6} taking G to A_{5}.
15. Let G be a group of order 60 which has more than one Sylow 5 -subgroup. Show that G is simple.
16. Let G be a finite group with cyclic and non-trivial Sylow 2-subgroup. By considering the permutation representation of G on itself, show that G has a normal subgroup of index 2. [Hint: Show that a generator for the Sylow subgroup induces an odd permutation of G.]
17. (Frattini argument) Let $K \triangleleft G$ and P be a Sylow p-subgroup of K. Show that any element $g \in G$ may be written as $g=n k$ with $n \in N_{G}(P)$ and $k \in K$, and hence that $G=N_{G}(P) K$. [Hint: Observe that P and $g^{-1} P g$ are both Sylow p-subgroups of K.] Deduce that $G / K \cong N_{G}(P) / N_{K}(P)$.
