All rings in this course are commutative and have a multiplicative identity.

1. Let \(\omega = \frac{1}{2} (1 + \sqrt{-3}) \in \mathbb{C} \), let \(R = \{ a + b\omega : a, b \in \mathbb{Z} \} \), and let \(F = \{ a + b\omega : a, b \in \mathbb{Q} \} \). Show that \(R \) is a subring of \(\mathbb{C} \), and that \(F \) is a subfield of \(\mathbb{C} \). What are the units of \(R \)?

2. An element \(r \) of a ring \(R \) is called nilpotent if \(r^n = 0 \) for some \(n \).
 (i) What are the nilpotent elements of \(\mathbb{Z}/6\mathbb{Z} \)? Of \(\mathbb{Z}/8\mathbb{Z} \)? Of \(\mathbb{Z}/24\mathbb{Z} \)? Of \(\mathbb{Z}/1000\mathbb{Z} \)?
 (ii) Show that if \(r \) is nilpotent then \(r \) is not a unit, but \(1 + r \) and \(1 - r \) are units.
 (iii) Show that set of the nilpotent elements form an ideal \(N \) of \(R \). What are the nilpotent elements in the quotient ring \(R/N \)?

3. Let \(r \) be an element of a ring \(R \). Show that the polynomial \(1 + rX \in R[X] \) is a unit if and only if \(r \) is nilpotent. Is it possible for the polynomial \(1 + X \) to be a product of two non-units?

4. Show that if \(I \) and \(J \) are ideals in the ring \(R \), then so is \(I \cap J \), and the quotient \(R/(I \cap J) \) is isomorphic to a subring of the product \(R/I \times R/J \).

5. Let \(I_1 \subset I_2 \subset I_3 \subset \cdots \) be ideals in a ring \(R \). Show that the union \(I = \bigcup_{n=1}^{\infty} I_n \) is also an ideal. If each \(I_n \) is proper, explain why \(I \) must be proper.

6. Write down a prime ideal in \(\mathbb{Z} \times \mathbb{Z} \) that is not maximal. Explain why in a finite ring all prime ideals are maximal.

7. Explain why, for \(p \) a prime number, there is a unique ring of order \(p \). How many rings are there of order \(4 \)?

8. Let \(R \) be an integral domain and \(F \) be its field of fractions. Suppose that \(\phi : R \to K \) is an injective ring homomorphism from \(R \) to a field \(K \). Show that \(\phi \) extends to an injective homomorphism \(\Phi : F \to K \) from \(F \) to \(K \). What happens if we do not assume that \(\phi \) is injective?

9. Let \(R \) be any ring. Show that the ring \(R[X] \) is a principal ideal domain if and only if \(R \) is a field.

10. An element \(r \) of a ring \(R \) is called idempotent if \(r^2 = r \).
 (i) What are the idempotent elements of \(\mathbb{Z}/6\mathbb{Z} \)? Of \(\mathbb{Z}/8\mathbb{Z} \)? Of \(\mathbb{Z}/24\mathbb{Z} \)? Of \(\mathbb{Z}/1000\mathbb{Z} \)?
 (ii) Show that if \(r \) is idempotent then so is \(r' = 1 - r \), and that \(rr' = 0 \). Show also that the ideal \((r) \) is naturally a ring, and that \(R \) is isomorphic to \((r) \times (r') \).

11. Let \(F \) be a field, and let \(R = F[X, Y] \) be the polynomial ring in two variables.
 (i) Let \(I \) be the principal ideal \((X - Y) \) of \(R \). Show that \(R/I \cong F[X] \).
 (ii) Describe \(R/I \) when \(I = (X^2 + Y) \).
 (iii) What can you say about \(R/(X^2 - Y^2) \)? Is it an integral domain? Does it have nilpotent or idempotent elements?
 (iv) Show that \(\mathbb{C}[X, Y]/(X^2 + Y^2 - 1) \cong \mathbb{C}[T, T^{-1}] \). [Hint: Think about trigonometric functions.]
Additional Questions

12. Is every abelian group the additive group of some ring?

13. Let I be an ideal of the ring R and P_1, \ldots, P_n be prime ideals of R. Show that if $I \subset \bigcup_{i=1}^{n} P_i$, then $I \subset P_i$ for some i.

14. A sequence $\{a_n\}$ of rational numbers is a Cauchy sequence if $|a_n - a_m| \to 0$ as $m, n \to \infty$, and $\{a_n\}$ is a null sequence if $a_n \to 0$ as $n \to \infty$. Quoting any standard results from Analysis, show that the set of Cauchy sequences with componentwise addition and multiplication form a ring C, and that the null sequences form a maximal ideal N.

Deduce that C/N is a field, with a subfield which may be identified with \mathbb{Q}. Explain briefly why the equation $x^2 = 2$ has a solution in this field.

15. Let \wp be a set of prime numbers. Write \mathbb{Z}_\wp for the collection of all rationals m/n (in lowest terms) such that the only prime factors of the denominator n are in \wp.

 (i) Show that \mathbb{Z}_\wp is a subring of the field \mathbb{Q} of rational numbers.
 (ii) Show that any subring R of \mathbb{Q} is of the form \mathbb{Z}_\wp for some set \wp of primes.
 (iii) Given (ii), what are the maximal subrings of \mathbb{Q}?

16. Show that there is no isomorphism as in Question 11 (iv) if both instances of \mathbb{C} are replaced by \mathbb{Q}.

Comments or corrections to or257@cam.ac.uk