Comments on and/or corrections to the questions on this sheet are always welcome, and may be emailed to me at hkrieger@dpmms.cam.ac.uk.

1. Use the residue theorem to give a proof of Cauchy's derivative formula: if f is holomorphic on $D(a, R)$, and $|w-a|<r<R$, then

$$
f^{(n)}(w)=\frac{n!}{2 \pi i} \int_{|z-a|=r} \frac{f(z)}{(z-w)^{n+1}} d z
$$

2. Let $g(z)=p(z) / q(z)$ be a rational function with $\operatorname{deg}(q) \geq \operatorname{deg}(p)+2$. Show that the sum of the residues of f at all its poles equals zero.
3. Evaluate the following integrals:
(a) $\int_{0}^{\pi} \frac{d \theta}{4+\sin ^{2} \theta}$
(b) $\int_{0}^{\infty} \sin x^{2} d x$
(c) $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)^{2}\left(x^{2}+9\right)} d x$
(d) $\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x$
4. For $\alpha \in(-1,1)$ with $\alpha \neq 0$, compute

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{x^{2}+x+1} d x
$$

5. Prove the following refinement of the Fundamental Theorem of Algebra: let $p(z)=z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{1} z+a_{0}$ be a polynomial of degree n, and write $A=\max \left\{\left|a_{i}\right|\right\}$. Then p has n roots (counted with multiplicity) in the disk $|z|<A+1$.
6. Let $p(z)=z^{5}+z$. Find all z such that $|z|=1$ and $\operatorname{Im} p(z)=0$. Calculate Re $p(z)$ for such z. Hence sketch the curve $p \circ \gamma$, where $\gamma(t)=e^{2 \pi i t}$ and use your sketch to determine the number of z (counted with multiplicity) such that $|z|<1$ and $p(z)=x$ for each real number x.
7. (i) For a positive integer N, let γ_{N} be the square contour with vertices $(\pm 1 \pm i)(N+1 / 2)$. Show that there exists $C>0$ such that for every $N,|\cot \pi z|<C$ on γ_{N}.
(ii) By integrating $\frac{\pi \cot \pi z}{z^{2}+1}$ around γ_{N}, show that

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=\frac{1+\pi \operatorname{coth} \pi}{2}
$$

(iii) Evaluate $\sum_{n=0}^{\infty}(-1)^{n} /\left(n^{2}+1\right)$.
8. (i) Show that $z^{4}+12 z+1$ has exactly three zeroes with $1<|z|<4$.
(ii) Prove that $z^{5}+2+e^{z}$ has exactly three zeros in the half-plane $\{z \mid \operatorname{Re}(\mathrm{z})<0\}$.
(iii) Show that the equation $z^{4}+z+1=0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $|z|=3 / 2$.
9. Show that the equation $z \sin z=1$ has only real solutions.

Hint: Find the number of real roots in the interval $[-(n+1 / 2)] \pi,(n+1 / 2) \pi]$ and compare with the number of zeros of $z \sin z-1$ in the square box $\{|\operatorname{Re}(z)|,|\operatorname{Im}(z)|<(n+1 / 2) \pi\}$.
10. (i) Let $w \in \mathbb{C}$, and let $\gamma, \delta:[0,1] \rightarrow \mathbb{C}$ be closed curves such that for all $t \in[0,1],|\gamma(t)-\delta(t)|<|\gamma(t)-w|$. By computing the winding number of the closed curve $\sigma(t)=\frac{\delta(t)-w}{\gamma(t)-w}$ about the origin, show that $I(\gamma ; w)=I(\delta ; w)$.
(ii) If $w \in \mathbb{C}, r>0$, and γ is a closed curve which does not meet $D(w, r)$, show that $I(\gamma ; w)=I(\gamma ; z)$ for every $z \in D(w, r)$.
(iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ, then the function $w \mapsto I(\gamma ; w)$ is a locally constant function on U.
11. Let U be a domain, $f: U \rightarrow \mathbb{C}$ holomorphic, and suppose $a \in U$ with $f^{\prime}(a) \neq 0$. Show that for $r>0$ sufficiently small,

$$
g(w):=\frac{1}{2 \pi i} \int_{|z-a|=r} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

defines a holomorphic function on a neighborhood of $f(a)$ which is inverse to f.

The following integrals are not part of the example sheet, but may be useful for revision or fun.

1. For $a, m \in \mathbb{R}^{+}$, evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin m x}{x\left(a^{2}+x^{2}\right)} d x
$$

2. For $a \in(0,1)$, evaluate

$$
\int_{0}^{2 \pi} \frac{\cos ^{3} 3 t}{1-2 a \cos t+a^{2}} d t
$$

3. Using a 'dog-bone contour', evaluate

$$
\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x
$$

4. For $t \in \mathbb{R}$, evaluate

$$
\int_{-\infty}^{\infty} e^{-a x^{2}} e^{-i t x} d x \quad \text { where } a>0, t \in \mathbb{R}
$$

5. For $t \in \mathbb{R}$, evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-i t x} d x
$$

6. Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$
\int_{0}^{\infty} \frac{\cos \alpha x-\cos \beta x}{x^{2}}=\frac{\pi}{2}(\beta-\alpha)
$$

and deduce the value of

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

