Comments on and/or corrections to the questions on this sheet are always welcome, and may be emailed to me at hkrieger@dpmms.cam.ac.uk.

1. (i) Use the Cauchy integral formula to compute

$$
\int_{|z|=1} \frac{e^{\alpha z}}{2 z^{2}-5 z+2} d z
$$

where $\alpha \in \mathbb{C}$.
(ii) By considering the real part of a suitable complex integral, show that if $r \in(0,1)$,

$$
\int_{0}^{\pi} \frac{\cos n \theta}{1-2 r \cos \theta+r^{2}} d \theta=\frac{\pi r^{n}}{1-r^{2}} \quad \text { and } \quad \int_{0}^{2 \pi} \cos (\cos \theta) \cosh (\sin \theta) d \theta=2 \pi
$$

2. Find the Laurent expansion (in powers of z) of $1 /\left(z^{2}-3 z+2\right)$ in each of the regions:

$$
\{z||z|<1\} ; \quad\{z|1<|z|<2\} ; \quad\{z| | z \mid>2\}
$$

3. Classify the singularities of each of the following functions:

$$
\frac{z}{\sin z}, \quad \sin \frac{\pi}{z^{2}}, \quad \frac{1}{z^{2}}+\frac{1}{z^{2}+1}, \quad \frac{1}{z^{2}} \cos \left(\frac{\pi z}{z+1}\right)
$$

4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Prove that if any one of the following conditions hold, then f is constant:
(i) $f(z) / z \rightarrow 0$ as $|z| \rightarrow \infty$.
(ii) There exists $b \in \mathbb{C}$ and $\epsilon>0$ such that for every $z \in \mathbb{C},|f(z)-b|>\epsilon$.
(iii) $f=u+i v$ and $|u(z)|>|v(z)|$ for all $z \in \mathbb{C}$.
5. Let $f: D(a, r) \rightarrow \mathbb{C}$ be holomorphic, and suppose that $z=a$ is a local maximum for $\operatorname{Re}(f)$. Show that f is constant.
6. (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)|<M(1+|z|)^{k}$ for all z.
(ii) Show that an entire function f is a polynomial of positive degree if and only if $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$.
(iii) Let f be a function which is analytic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq|z|^{k}$ for all z with $|z|$ sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
7. (i) (Schwarz's Lemma) Let f be analytic on $D(0,1)$, satisfying $|f(z)| \leq 1$ and $f(0)=0$. By applying the maximum principle to $f(z) / z$, show that $|f(z)| \leq|z|$. Show also that if $|f(w)|=|w|$ for some $w \neq 0$ then $f(z)=c z$ for some constant c.
(ii) Use Schwarz's Lemma to prove that any conformal equivalence from $D(0,1)$ to itself is given by a Möbius transformation.
8. (i) Let f be an entire function such that for every positive integer $n, f(1 / n)=1 / n$. Show that $f(z)=z$.
(ii) Let f be an entire function with $f(n)=n^{2}$ for every $n \in \mathbb{Z}$. Must $f(z)=z^{2}$?
(iii) Let f be holomorphic on $D(0,2)$. Show that for some integer $n>0, f(1 / n) \neq 1 /(n+1)$.
9. (Casorati-Weierstrass theorem) Let f be holomorphic on $D(a, R) \backslash\{a\}$ with an essential singularity at $z=a$. Show that for any $b \in \mathbb{C}$, there exists a sequence of points $z_{n} \in D(a, R)$ with $z_{n} \neq a$ such that $z_{n} \rightarrow a$ and $f\left(z_{n}\right) \rightarrow b$ as $n \rightarrow \infty$.

Find such a sequence when $f(z)=e^{1 / z}, a=0$ and $b=2$.
[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, an analytic function takes every complex value except possibly one.]
10. Let $D \subset \mathbb{C}$ be a simply-connected domain which does not contain 0 . Show that there exists a branch of the logarithm on D.
11. Show that the power series $\sum_{n=1}^{\infty} z^{2^{n}}$ defines an analytic function f on $D(0,1)$. Show that f cannot be analytically continued to any domain which properly contains $D(0,1)$.

