Comments on and/or corrections to the questions on this sheet are always welcome, and may be emailed to me at hkrieger@dpmms.cam.ac.uk.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a real linear map. Regarding T as a map from \mathbb{C} into \mathbb{C}, show that there exist unique complex numbers A, B such that for every $z \in \mathbb{C}, T(z)=A z+B \bar{z}$. Show that T is complex differentiable if and only if $B=0$.
2. (i) Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function on a domain U. Show that f is constant if any one of its real part, modulus or argument is constant.
(ii) Find all entire functions of the form $f(x+i y)=u(x)+i v(y)$ where u and v are real valued.
(iii) Find all entire functions with real part $x^{3}-3 x y^{2}$.
3. Define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(0)=0$ and

$$
f(z)=\frac{(1+i) x^{3}-(1-i) y^{3}}{x^{2}+y^{2}} \quad \text { for } z=x+i y \neq 0
$$

Show that f satisfies the Cauchy-Riemann equations at 0 but it not differentiable there.
4. (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \log (1+z / n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞. Deduce

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z} \quad \text { for all } z \in \mathbb{C}
$$

(ii) Defining $z^{\alpha}=\exp (\alpha \log \mathrm{z})$ for $\alpha \in \mathbb{C}$ and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{d z} z^{\alpha}=\alpha z^{\alpha-1}$. Does $(z w)^{\alpha}=z^{\alpha} w^{\alpha}$ always hold?
5. (i) Verify directly that $e^{z}, \cos z$ and $\sin z$ satisfy the Cauchy-Riemann equations everywhere.
(ii) Find the set of complex numbers z for which $\left|e^{i z}\right|>1$, and the set of those for which $\left|e^{z}\right| \leq e^{|z|}$.
(iii) Find the zeros of $1+e^{z}$ and of $\cosh z$.
6. Prove that each of the following series converges uniformly on the corresponding subset of \mathbb{C} :

$$
\text { (a) } \sum_{n=1}^{\infty} \sqrt{n} e^{-n z} \quad \text { on }\{z: 0<r \leq \operatorname{Re}(z)\} ; \quad \text { (b) } \sum_{n=1}^{\infty} \frac{2^{n}}{z^{n}+z^{-n}} \quad \text { on }\{z:|z| \leq r<1 / 2\}
$$

7. Find conformal equivalences between the following pairs of domains:
(i) the sector $\{z \in \mathbb{C} \mid-\pi / 4<\arg (z)<\pi / 4\}$ and the open unit disc $D(0,1)$;
(ii) the lens $\{z \in \mathbb{C}||z-1|<\sqrt{2}$ and $| z+1 \mid<\sqrt{2}\}$ and $D(0,1)$;
(iii) the strip $S=\{z \in \mathbb{C} \mid 0<\operatorname{Im}(z)<1\}$ and the quadrant $Q=\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$.

By considering a suitable bounded solution of Laplace's equation $u_{x x}+u_{y y}=0$ on S, find a non-constant harmonic function on Q which is constant on its boundary axes.
8. (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a} z-1}$, with $|a|<1$ and $|\lambda|=1$. [Hint: first show that these maps form a group.]
(ii) Find a Möbius transformation taking the region between the circles $\{|z|=1\}$ and $\{|z-1|=5 / 2\}$ to an annulus $\{1<|z|<R\}$. [Hint: a circle can be described by an equation of the shape $|z-a| /|z-b|=\ell$.]
(iii) Find a conformal map from an infinite strip onto an annulus. Can such a map be the restriction to the strip of a Möbius map?
9. Calculate $\int_{\gamma} z \sin z d z$ when γ is the straight line joining 0 to i.
10. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivatives) on the domains indicated:

$$
\text { (a) } \frac{1}{z}-\frac{1}{z-1} \quad(0<|z|<1) ; \quad \text { (b) } \frac{z}{1+z^{2}} \quad(1<|z|<\infty)
$$

11. Let $U \subset \mathbb{C}$ be a domain, and let $u: U \rightarrow \mathbb{R}$ be a C^{2} harmonic function. Show that if $z_{0} \in U$ then for any disk $D=D\left(z_{0}, r\right) \subset U$, there is a holomorphic function $f: D \rightarrow \mathbb{C}$ such that $u=\operatorname{Re}(f)$ on D. Show by an example that this need not hold globally; that is, there exists a choice of domain U and C^{2} harmonic function u on U so that u is not the real part of any holomorphic function on U.
