Comments on and/or corrections to the questions on this sheet are always welcome, and may be emailed to me at hkrieger@dpmms.cam.ac.uk.

- **1**. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a real linear map. Regarding T as a map from \mathbb{C} into \mathbb{C} , show that there exist unique complex numbers A, B such that for every $z \in \mathbb{C}$, $T(z) = Az + B\overline{z}$. Show that T is complex differentiable if and only if B = 0.
- **2**. (i) Let $f: U \to \mathbb{C}$ be a holomorphic function on a domain U. Show that f is constant if any one of its real part, modulus or argument is constant.
 - (ii) Find all entire functions of the form f(x+iy) = u(x) + iv(y) where u and v are real valued.
 - (iii) Find all entire functions with real part $x^3 3xy^2$.
- **3**. Define $f: \mathbb{C} \to \mathbb{C}$ by f(0) = 0 and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2}$$
 for $z = x + iy \neq 0$.

Show that f satisfies the Cauchy-Riemann equations at 0 but it not differentiable there.

4. (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1 + z/n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞ . Deduce

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z \quad \text{for all } z \in \mathbb{C}.$$

- (ii) Defining $z^{\alpha} = \exp(\alpha \operatorname{Log} z)$ for $\alpha \in \mathbb{C}$ and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{dz}z^{\alpha} = \alpha z^{\alpha-1}$. Does $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$ always hold?
- 5. (i) Verify directly that e^z , $\cos z$ and $\sin z$ satisfy the Cauchy-Riemann equations everywhere.
 - (ii) Find the set of complex numbers z for which $|e^{iz}| > 1$, and the set of those for which $|e^{z}| \le e^{|z|}$.
 - (iii) Find the zeros of $1 + e^z$ and of $\cosh z$.
- **6.** Prove that each of the following series converges uniformly on the corresponding subset of C:

$$(a) \sum_{n=1}^{\infty} \sqrt{n} e^{-nz} \quad \text{on } \{z : 0 < r \le \text{Re}(z)\}; \qquad (b) \sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}} \quad \text{on } \{z : |z| \le r < 1/2\}.$$

- 7. Find conformal equivalences between the following pairs of domains:
 - (i) the sector $\{z \in \mathbb{C} \mid -\pi/4 < \arg(z) < \pi/4\}$ and the open unit disc D(0,1);
 - (ii) the lens $\{z \in \mathbb{C} \mid |z-1| < \sqrt{2} \text{ and } |z+1| < \sqrt{2} \}$ and D(0,1);
 - (iii) the strip $S = \{z \in \mathbb{C} \mid 0 < \text{Im}(z) < 1\}$ and the quadrant $Q = \{z \in \mathbb{C} \mid \text{Re}(z) > 0 \text{ and Im}(z) > 0\}$.

By considering a suitable bounded solution of Laplace's equation $u_{xx} + u_{yy} = 0$ on S, find a non-constant harmonic function on Q which is constant on its boundary axes.

- **8.** (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a}z-1}$, with |a| < 1 and $|\lambda| = 1$. [Hint: first show that these maps form a group.]
- (ii) Find a Möbius transformation taking the region between the circles $\{|z|=1\}$ and $\{|z-1|=5/2\}$ to an annulus $\{1 < |z| < R\}$. [Hint: a circle can be described by an equation of the shape $|z-a|/|z-b| = \ell$.]
- (iii) Find a conformal map from an infinite strip onto an annulus. Can such a map be the restriction to the strip of a Möbius map?
- **9.** Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to i.
- 10. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivatives) on the domains indicated:

$$(a) \ \frac{1}{z} - \frac{1}{z-1} \quad \ (0 < |z| < 1); \qquad \ (b) \ \frac{z}{1+z^2} \quad \ (1 < |z| < \infty).$$

11. Let $U \subset \mathbb{C}$ be a domain, and let $u: U \to \mathbb{R}$ be a C^2 harmonic function. Show that if $z_0 \in U$ then for any disk $D = D(z_0, r) \subset U$, there is a holomorphic function $f: D \to \mathbb{C}$ such that u = Re(f) on D. Show by an example that this need *not* hold globally; that is, there exists a choice of domain U and C^2 harmonic function u on U so that u is not the real part of any holomorphic function on U.