COMPLEX ANALYSIS EXAMPLES 3, LENT 2022

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. The Weierstrass approximation theorem in real analysis says that every continuous function $f: I \rightarrow \mathbb{R}$ on a compact interval $I \subset \mathbb{R}$ is the uniform limit of a sequence of polynomials. The direct analogue of this to the complex setting (obtained by replacing \mathbb{R} with \mathbb{C}, I with a compact set $K \subset \mathbb{C}$ and real polynomials with complex polynomials) is false, even if we make a suitable holomorphicity assumption on f. Construct, for any given compact set $K \subset \mathbb{C}$ with $\mathbb{C} \backslash K$ not connected, a function f that is holomorphic on an open set containing K such that f is not the uniform limit on K of a sequence of complex polynomials. [Hint: you may wish to generalise the idea of Q 13(ii) in sheet 1 for the construction, and use the global maximum principle to prove it works.] Look up, on the other hand, Runge's theorem and Mergelyan's theorem!
2. (a) Draw a (convincing!) picture of a domain Ω and a closed curve γ in Ω such that γ is homologous to zero in Ω but is not null-homotopic in Ω. (The reverse direction, as proved in lecture, is always true, i.e. if γ is null-homotopic in Ω, then it is homologous to zero in Ω). (b) Let U be a domain with the property that every closed piecewise C^{1} curve in U is homologous to zero in U.
(i) Use Cauchy's theorem to show that if f is a nowhere vanishing holomorphic function on U, then f admits a holomorphic square-root (i.e. there is a holomorphic function h such that $h^{2}(z)=f(z)$ for every $z \in U$.)
(ii) The key ingredient of a standard proof of the Riemann mapping theorem is to show that whenever a domain has the property that every nowhere zero holomorphic function on it admits a holomorphic square-root, then it is homeomorphic to the open unit disk (the non-trivial case of this being when the domain is not equal to \mathbb{C}, in which case the homeomorphism is in fact shown to be a conformal map). Assuming this, deduce that U is simply connected, i.e. has the property that every closed curve in U is null-homotopic in U. Thus a domain U is simply connected if and only if every closed curve in U is homologous to zero in U.
3. (a) Let $0 \leq r<R \leq \infty, A=\{r<|z|<R\}$ and let f be holomorphic on A. Show that there is a unique decomposition $f=f_{1}+f_{2}$ such that f_{1} is holomorphic on $\{|z|<R\}, f_{2}$ is holomorphic on $\{|z|>r\}$ and $f_{2}(z) \rightarrow 0$ as $z \rightarrow \infty$.
(b) How does this extend to the case when A is a (bounded) domain between two nonconcentric disjoint circles? What about a domain bounded by three disjoint circles?
4. Use the residue theorem to give a proof of Cauchy's derivative formula: if f is holomorphic on $D(a, R)$, and $|w-a|<r<R$, then

$$
f^{(n)}(w)=\frac{n!}{2 \pi i} \int_{\partial D(a, r)} \frac{f(z)}{(z-w)^{n+1}} d z .
$$

5. Let U be a domain in $\mathbb{C} \approx \mathbb{R}^{2}$ and let $u: U \rightarrow \mathbb{R}$ be a C^{2} harmonic function.
(a) If U is simply connected, show that there is a holomorphic function $f: U \rightarrow \mathbb{C}$ such that $u=\operatorname{Re} f$. (Hint: consider $g=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}$).
(b) If $U=D(a, r)$, show that

$$
\sup _{z \in D(a, r / 2)}|D u(z)| \leq \frac{C}{r} \sup _{z \in D(a, r)}|u|
$$

where C is a fixed constant independent of u, r and a. Here $D u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ and $|D u|=$ $\sqrt{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}}$. (Hint: we can assume without loss of generality that $a=0, r=1$ and $\sup _{D(0,1)}|u|=1$; why? Now apply the Cauchy derivative estimate to a suitable holomorphic function).
(c) Now suppose $U=D(0,1) \backslash\{0\}$. If u has a continuous extension to $D(0,1)$, show that the point $z=0$ is a removable singularity of u, i.e. show that the extended function is C^{2} and harmonic in $D(0,1)$. (Hint: start by using (b) to analyse the behaviour of g on approach to $0)$.
(d) In (c), it suffices to assume that u is bounded on U. How can you generalise your proof to this case?
(e) In (c), what if we only assume $\lim _{z \rightarrow 0}|z \| u(z)|=0$? Compare with the case of holomorphic $f: D(0,1) \backslash\{0\} \rightarrow \mathbb{C}$ satisfying $\lim _{z \rightarrow 0}|z||f(z)|=0$.
6. Evaluate the following integrals:
(a) $\int_{0}^{\pi} \frac{d \theta}{4+\sin ^{2} \theta}$;
(b) $\int_{0}^{\infty} \sin x^{2} d x$;
(c) $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)^{2}\left(x^{2}+9\right)} d x$;
(d) $\int_{0}^{\infty} \frac{\log \left(x^{2}+1\right)}{x^{2}+1} d x$.
7. For $\alpha \in(-1,1)$ with $\alpha \neq 0$, compute $\int_{0}^{\infty} \frac{x^{\alpha}}{x^{2}+x+1} d x$.
8. (i) For a positive integer N, let γ_{N} be the square contour with vertices $(\pm 1 \pm i)(N+1 / 2)$.

Show that there exists $C>0$ such that for every $N,|\cot \pi z|<C$ on γ_{N}.
(ii) By integrating $\frac{\pi \cot \pi z}{z^{2}+1}$ around γ_{N}, show that $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=\frac{1+\pi \operatorname{coth} \pi}{2}$.
(iii) Evaluate $\sum_{n=0}^{\infty}(-1)^{n} /\left(n^{2}+1\right)$.
9. Let f be holomorphic in an open set U except at a point $a \in U$ and at a sequence of points $a_{n} \in U$ with $a_{n} \neq a$ and $a_{n} \rightarrow a$. Suppose that each a_{n} is a pole of f. Note that a is then a non-isolated singularity. (i) Give an explicit example of such a function f, points a_{n} and a. (ii) What can you say (in general) about the image $f\left(U \backslash\left\{a, a_{1}, a_{2}, \ldots\right\}\right)$?
10. Let f_{n} be a sequence of holomorphic functions on a domain U converging locally uniformly to a function $f: U \rightarrow \mathbb{C}$. If $f_{n}(z) \neq 0$ for each n and each $z \in U$, show that either $f(z)=0$ for all $z \in U$ or $f(z) \neq 0$ for all $z \in U$. What if we allow each f_{n} to have at most k zeros in U for some fixed positive integer k independent of n ?
11. Establish the following refinement of the Fundamental Theorem of Algebra. Let $p(z)=$ $z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a polynomial of degree n, and let $A=\max \left\{\left|a_{i}\right|: 0 \leq i \leq n-1\right\}$. Then $p(z)$ has n roots (counted with multiplicity) in the disk $|z|<A+1$.
12. If $f: U \rightarrow \mathbb{C}$ is holomorphic and one-to-one, show that $f^{\prime}(z) \neq 0$ for all $z \in U$.
13. (i) Show that $z^{4}+12 z+1=0$ has exactly three zeros with $1<|z|<4$.
(ii) Prove that $z^{5}+2+e^{z}$ has exactly three zeros in the half-plane $\{z \mid \operatorname{Re}(z)<0\}$.
(iii) Show that the equation $z^{4}+z+1=0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z:|z|=3 / 2\}$.
14. Let f be a function which is analytic on \mathbb{C} apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq|z|^{k}$ for all z with $|z|$ sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
15. Show that the equation $z \sin z=1$ has only real solutions. [Hint: Find the number of real roots in the interval $[-(n+1 / 2) \pi,(n+1 / 2) \pi]$ and compare with the number of zeros of $z \sin z-1$ is a square box $\{|\operatorname{Re} z|,|\operatorname{Im} z|<(n+1 / 2) \pi\}$.]
16. Let U be a domain, let $f: U \rightarrow \mathbb{C}$ be holomorphic and suppose $a \in U$ with $f^{\prime}(a) \neq 0$. Show that for $r>0$ sufficiently small,

$$
g(w)=\frac{1}{2 \pi i} \int_{\partial D(a, r)} \frac{z f^{\prime}(z)}{f(z)-w} d z
$$

defines a holomorphic function g in a neighbourhood of $f(a)$ which is inverse to f.
The following integrals are not part of the question sheet, but are provided as a starting point for revision, or for the enthusiast.
(1) $\int_{-\infty}^{\infty} \frac{\sin m x}{x\left(a^{2}+x^{2}\right)} d x \quad$ where $a, m \in \mathbb{R}^{+}$;
(2) $\int_{0}^{2 \pi} \frac{\cos ^{3} 3 t}{1-2 a \cos t+a^{2}} d t \quad$ where $a \in(0,1)$;
(3) $\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x \quad$ ("dog-bone" contour);
(4) $\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-i t x} d x \quad$ where $t \in \mathbb{R}$.
(5) By integrating $z /\left(a-e^{-i z}\right)$ round the rectangle with vertices $\pm \pi, \pm \pi+i R$, prove that

$$
\int_{0}^{\pi} \frac{x \sin x}{1-2 a \cos x+a^{2}} d x=\frac{\pi}{a} \log (1+a)
$$

for every $a \in(0,1)$.
(6) Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$
\int_{0}^{\infty} \frac{\cos \alpha x-\cos \beta x}{x^{2}} d x=\frac{\pi}{2}(\beta-\alpha),
$$

and deduce the value of

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

