COMPLEX ANALYSIS EXAMPLES 3, LENT 2022

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

- 1. The Weierstrass approximation theorem in real analysis says that every continuous function $f:I\to\mathbb{R}$ on a compact interval $I\subset\mathbb{R}$ is the uniform limit of a sequence of polynomials. The direct analogue of this to the complex setting (obtained by replacing \mathbb{R} with \mathbb{C} , I with a compact set $K\subset\mathbb{C}$ and real polynomials with complex polynomials) is false, even if we make a suitable holomorphicity assumption on f. Construct, for any given compact set $K\subset\mathbb{C}$ with $\mathbb{C}\setminus K$ not connected, a function f that is holomorphic on an open set containing K such that f is not the uniform limit on K of a sequence of complex polynomials. [Hint: you may wish to generalise the idea of Q 13(ii) in sheet 1 for the construction, and use the global maximum principle to prove it works.] Look up, on the other hand, Runge's theorem and Mergelyan's theorem!
- 2. (a) Draw a (convincing!) picture of a domain Ω and a closed curve γ in Ω such that γ is homologous to zero in Ω but is not null-homotopic in Ω . (The reverse direction, as proved in lecture, is always true, i.e. if γ is null-homotopic in Ω , then it is homologous to zero in Ω). (b) Let U be a domain with the property that *every* closed piecewise C^1 curve in U is homologous to zero in U.
- (i) Use Cauchy's theorem to show that if f is a nowhere vanishing holomorphic function on U, then f admits a holomorphic square-root (i.e. there is a holomorphic function h such that $h^2(z) = f(z)$ for every $z \in U$.)
- (ii) The key ingredient of a standard proof of the Riemann mapping theorem is to show that whenever a domain has the property that every nowhere zero holomorphic function on it admits a holomorphic square-root, then it is homeomorphic to the open unit disk (the non-trivial case of this being when the domain is not equal to \mathbb{C} , in which case the homeomorphism is in fact shown to be a conformal map). Assuming this, deduce that U is simply connected, i.e. has the property that every closed curve in U is null-homotopic in U. Thus a domain U is simply connected if and only if every closed curve in U is homologous to zero in U.
- **3**. (a) Let $0 \le r < R \le \infty$, $A = \{r < |z| < R\}$ and let f be holomorphic on A. Show that there is a *unique* decomposition $f = f_1 + f_2$ such that f_1 is holomorphic on $\{|z| > r\}$ and $f_2(z) \to 0$ as $z \to \infty$.
- (b) How does this extend to the case when A is a (bounded) domain between two non-concentric disjoint circles? What about a domain bounded by three disjoint circles?
- **4.** Use the residue theorem to give a proof of Cauchy's derivative formula: if f is holomorphic on D(a, R), and |w a| < r < R, then

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial D(a,r)} \frac{f(z)}{(z-w)^{n+1}} dz.$$

- **5.** Let U be a domain in $\mathbb{C} \approx \mathbb{R}^2$ and let $u: U \to \mathbb{R}$ be a \mathbb{C}^2 harmonic function.
- (a) If U is simply connected, show that there is a holomorphic function $f:U\to\mathbb{C}$ such that $u = \operatorname{Re} f$. (Hint: consider $g = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$).
- (b) If U = D(a, r), show that

$$\sup_{z \in D(a,r/2)} |Du(z)| \le \frac{C}{r} \sup_{z \in D(a,r)} |u|$$

where C is a fixed constant independent of u, r and a. Here $Du = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y})$ and |Du| = $\sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2}$. (Hint: we can assume without loss of generality that a = 0, r = 1 and $\sup_{D(0,1)} |u| = 1$; why? Now apply the Cauchy derivative estimate to a suitable holomorphic function).

- (c) Now suppose $U = D(0,1) \setminus \{0\}$. If u has a continuous extension to D(0,1), show that the point z=0 is a removable singularity of u, i.e. show that the extended function is C^2 and harmonic in D(0,1). (Hint: start by using (b) to analyse the behaviour of q on approach to
- (d) In (c), it suffices to assume that u is bounded on U. How can you generalise your proof to this case?
- (e) In (c), what if we only assume $\lim_{z\to 0} |z| |u(z)| = 0$? Compare with the case of holomorphic $f: D(0,1) \setminus \{0\} \to \mathbb{C}$ satisfying $\lim_{z\to 0} |z||f(z)| = 0$.
- **6**. Evaluate the following integrals:

(a)
$$\int_0^\pi \frac{d\theta}{4 + \sin^2 \theta};$$
 (b) $\int_0^\infty \sin x^2 dx;$ (c) $\int_0^\infty \frac{x^2}{(x^2 + 4)^2 (x^2 + 9)} dx;$ (d) $\int_0^\infty \frac{\log (x^2 + 1)}{x^2 + 1} dx.$

- 7. For $\alpha \in (-1,1)$ with $\alpha \neq 0$, compute $\int_0^\infty \frac{x^\alpha}{x^2+x+1} dx$.
- 8. (i) For a positive integer N, let γ_N be the square contour with vertices $(\pm 1 \pm i)(N+1/2)$. Show that there exists $\tilde{C} > 0$ such that for every N, $|\cot \pi z| < C$ on γ_N .
- (ii) By integrating $\frac{\pi \cot \pi z}{z^2 + 1}$ around γ_N , show that $\sum_{n=0}^{\infty} \frac{1}{n^2 + 1} = \frac{1 + \pi \coth \pi}{2}$. (iii) Evaluate $\sum_{n=0}^{\infty} (-1)^n / (n^2 + 1)$.
- **9**. Let f be holomorphic in an open set U except at a point $a \in U$ and at a sequence of points $a_n \in U$ with $a_n \neq a$ and $a_n \to a$. Suppose that each a_n is a pole of f. Note that a is then a non-isolated singularity. (i) Give an explicit example of such a function f, points a_n and a. (ii) What can you say (in general) about the image $f(U \setminus \{a, a_1, a_2, \ldots\})$?
- 10. Let f_n be a sequence of holomorphic functions on a domain U converging locally uniformly to a function $f:U\to\mathbb{C}$. If $f_n(z)\neq 0$ for each n and each $z\in U$, show that either f(z) = 0 for all $z \in U$ or $f(z) \neq 0$ for all $z \in U$. What if we allow each f_n to have at most k zeros in U for some fixed positive integer k independent of n?
- 11. Establish the following refinement of the Fundamental Theorem of Algebra. Let p(z) = $z^n + a_{n-1}z^{n-1} + \dots + a_0$ be a polynomial of degree n, and let $A = \max\{|a_i|: 0 \le i \le n-1\}$. Then p(z) has n roots (counted with multiplicity) in the disk |z| < A + 1.
- **12**. If $f:U\to\mathbb{C}$ is holomorphic and one-to-one, show that $f'(z)\neq 0$ for all $z\in U$.

- 13. (i) Show that $z^4 + 12z + 1 = 0$ has exactly three zeros with 1 < |z| < 4.
- (ii) Prove that $z^5 + 2 + e^z$ has exactly three zeros in the half-plane $\{z \mid \text{Re}(z) < 0\}$.
- (iii) Show that the equation $z^4 + z + 1 = 0$ has one solution in each quadrant. Prove that all solutions lie inside the circle $\{z: |z| = 3/2\}$.
- 14. Let f be a function which is analytic on $\mathbb C$ apart from a finite number of poles. Show that if there exists k such that $|f(z)| \leq |z|^k$ for all z with |z| sufficiently large, then f is a rational function (i.e. a quotient of two polynomials).
- 15. Show that the equation $z \sin z = 1$ has only real solutions. [Hint: Find the number of real roots in the interval $[-(n+1/2)\pi, (n+1/2)\pi]$ and compare with the number of zeros of $z \sin z - 1$ is a square box $\{|\text{Re } z|, |\text{Im } z| < (n + 1/2)\pi\}.$
- **16**. Let U be a domain, let $f: U \to \mathbb{C}$ be holomorphic and suppose $a \in U$ with $f'(a) \neq 0$. Show that for r > 0 sufficiently small,

$$g(w) = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{zf'(z)}{f(z) - w} dz$$

defines a holomorphic function g in a neighbourhood of f(a) which is inverse to f.

The following integrals are *not* part of the question sheet, but are provided as a starting point for revision, or for the enthusiast.

(1)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx \qquad \text{where } a, \ m \in \mathbb{R}^+;$$

(1)
$$\int_{-\infty}^{\infty} \frac{\sin mx}{x(a^2 + x^2)} dx$$
 where $a, m \in \mathbb{R}^+$;
(2) $\int_{0}^{2\pi} \frac{\cos^3 3t}{1 - 2a\cos t + a^2} dt$ where $a \in (0, 1)$;

(3)
$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{1+x^2} dx$$
 ("dog-bone" contour);
(4)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx$$
 where $t \in \mathbb{R}$.

(4)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-itx} dx \qquad \text{where } t \in \mathbb{R}.$$

(5) By integrating $z/(a-e^{-iz})$ round the rectangle with vertices $\pm \pi$, $\pm \pi + iR$, prove

$$\int_0^{\pi} \frac{x \sin x}{1 - 2a \cos x + a^2} \, dx = \frac{\pi}{a} \log(1 + a)$$

for every $a \in (0,1)$.

(6) Assuming $\alpha \geq 0$ and $\beta \geq 0$ prove that

$$\int_0^\infty \frac{\cos \alpha x - \cos \beta x}{x^2} \, dx = \frac{\pi}{2} (\beta - \alpha),$$

and deduce the value of

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx.$$