COMPLEX ANALYSIS EXAMPLES 2, LENT 2022

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Use the Cauchy integral formula to compute $\int_{\partial D(0,2)} \frac{dz}{z^2+1}$ and $\int_{\partial D(0,2)} \frac{dz}{z^2-1}$. Are the answers an accident? Formulate and prove a result for a polynomial with n distinct roots.

2. (i) Use the Cauchy integral formula to compute

$$\int_{\partial D(0,1)} \frac{e^{\alpha z}}{2z^2 - 5z + 2} \, dz$$

where $\alpha \in \mathbb{C}$.

(ii) By considering suitable complex integrals, show that if $r \in (0, 1)$,

$$\int_0^{\pi} \frac{\cos n\theta}{1 - 2r\cos\theta + r^2} \, d\theta = \frac{\pi r^n}{1 - r^2} \qquad \text{and} \qquad \int_0^{2\pi} \cos(\cos\theta)\cosh(\sin\theta) \, d\theta = 2\pi.$$

3. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Prove that if any one of the following conditions hold, then f is constant:

(i) $f(z)/z \to 0$ as $|z| \to \infty$.

(ii) There exists $b \in \mathbb{C}$ and $\varepsilon > 0$ such that for every $z \in \mathbb{C}$, $|f(z) - b| > \varepsilon$.

(iii) f = u + iv and |u(z)| > |v(z)| for all $z \in \mathbb{C}$.

4. Let $f: D(a,r) \to \mathbb{C}$ be holomorphic, and suppose that z = a is a local maximum for $\operatorname{Re}(f)$. Show that f is constant. What if z = a is a local minimum for $\operatorname{Re}(f)$? What if z = a is a local minimum for $\operatorname{Re}(f)$? What if z = a is a local minimum for |f|? Do your answers change if additionally $f(a) \neq 0$?

5. (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)| < M(1+|z|)^k$ for all z. (ii) Show that an entire function f is a polynomial of positive degree if and only if $|f(z)| \to \infty$

(ii) Show that an entire function f is a polynomial of positive degree if and only if $|f(z)| \to \infty$ as $|z| \to \infty$.

6. Recall that the (global) maximum principle says that if U is a bounded open subset of \mathbb{C} and if f is continuous on \overline{U} (the closure of U in \mathbb{C}) and holomorphic in U, then $\sup_{\overline{U}} |f| = \sup_{\partial U} |f|$. Does this hold if U is not assumed to be bounded?

7. (i) (Schwarz's Lemma) Let f be holomorphic on D(0,1), satisfying $|f(z)| \leq 1$ and f(0) = 0. By applying the maximum principle to f(z)/z, show that $|f(z)| \leq |z|$. Show also that if |f(w)| = |w| for some $w \neq 0$ then f(z) = cz for some constant c.

(ii) Use Schwarz's Lemma to prove that any conformal equivalence from D(0, 1) to itself is given by a Möbius transformation.

8. Let $f : \partial D(0,1) \to \mathbb{C}$ be continuous. Show that the function $g(w) = \frac{1}{2\pi i} \int_{\partial D(0,1)} \frac{f(z)}{z-w} dz$ is holomorphic in $\mathbb{C} \setminus \partial D(0,1)$. Must there be a point $a \in \partial D(0,1)$ such that $g(w) \to f(a)$ as $w \to a, w \in D(0,1)$? If there is a sequence of polynomials (p_n) converging uniformly to f on $\partial D(0,1)$, show that there is a continuous function h on $\overline{D(0,1)}$ such that h is holomorphic on D(0,1) and h(w) = f(w) for every $w \in \partial D(0,1)$. Must it be true that $p_n(w) \to h(w)$ for every $w \in \overline{D(0,1)}$? How does h relate to g?

9. (i) Let f be an entire function such that for every positive integer n, f(1/n) = 1/n. Show that f(z) = z.

(ii) Let f be an entire function with $f(n) = n^2$ for every $n \in \mathbb{Z}$. Must $f(z) = z^2$?

(iii) Let f be holomorphic on D(0,2). Show that for some integer n > 0, $f(1/n) \neq 1/(n+1)$.

10. (i) Show that the power series $\sum_{n=1}^{\infty} z^{n!}$ defines an analytic function f on D(0, 1). Show that f cannot be analytically continued to any domain which properly contains D(0, 1). [Hint: consider $z = \exp(2\pi i p/q)$ with p/q rational.]

(ii) It is true, but it takes some effort to show, that if $U \subset \mathbb{C}$ is a domain and $(a_n)_{n=1}^{\infty}$ is a sequence of distinct points in U such that the set $\{a_n : n = 1, 2, 3, ...\}$ has no limit point in U, then there is a holomorphic function on U whose only zeros are the points a_n , n = 1, 2, 3, ... Use this fact to show that if $U \subset \mathbb{C}$ is any bounded domain, then there is a holomorphic function $f : U \to \mathbb{C}$ such that f has no analytic continuation to any domain which properly contains U.

11. (i) Let $w \in \mathbb{C}$, and let γ , $\delta \colon [0,1] \to \mathbb{C}$ be closed curves such that for all $t \in [0,1]$, $|\gamma(t) - \delta(t)| < |\gamma(t) - w|$. By computing the winding number of the closed curve

$$\sigma(t) = \frac{\delta(t) - w}{\gamma(t) - w}$$

about the origin, show that $I(\gamma; w) = I(\delta; w)$.

(ii) If $w \in \mathbb{C}$, r > 0, and γ is a closed curve which does not meet D(w, r), show that $I(\gamma; w) = I(\gamma; z)$ for every $z \in D(w, r)$.

(iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ , then the function $w \mapsto I(\gamma; w)$ is a locally constant function on U.

12. Find the Laurent expansion (in powers of z) of $1/(z^2 - 3z + 2)$ in each of the regions:

$$\{z : |z| < 1\}; \{z : 1 < |z| < 2\}; \{z : |z| > 2\}.$$

13. Classify the singularities of each of the following functions:

$$\frac{z}{\sin z}$$
, $\sin \frac{\pi}{z^2}$, $\frac{1}{z^2} + \frac{1}{z^2 + 1}$, $\frac{1}{z^2} \cos\left(\frac{\pi z}{z + 1}\right)$.

14. (Casorati-Weierstrass theorem) Let f be holomorphic on $D(a, R) \setminus \{a\}$ with an essential singularity at z = a. Show that for any $b \in \mathbb{C}$, there exists a sequence of points $z_n \in D(a, R)$ with $z_n \neq a$ such that $z_n \to a$ and $f(z_n) \to b$ as $n \to \infty$.

Find such a sequence when $f(z) = e^{1/z}$, a = 0 and b = 2.

[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, an analytic function takes *every* complex value except possibly one.]

15. Let f be a holomorphic function on $D(a, R) \setminus \{a\}$. Show that if f has a non-removable singularity at z = a, then the function $\exp f(z)$ has an essential singularity at z = a. Deduce that if there exists M such that $\operatorname{Re} f(z) < M$ for $z \in D(a, R) \setminus \{a\}$, then f has a removable singularity at z = a.