COMPLEX ANALYSIS EXAMPLES 2, LENT 2022

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Use the Cauchy integral formula to compute $\int_{\partial D(0,2)} \frac{d z}{z^{2}+1}$ and $\int_{\partial D(0,2)} \frac{d z}{z^{2}-1}$. Are the answers an accident? Formulate and prove a result for a polynomial with n distinct roots.
2. (i) Use the Cauchy integral formula to compute

$$
\int_{\partial D(0,1)} \frac{e^{\alpha z}}{2 z^{2}-5 z+2} d z
$$

where $\alpha \in \mathbb{C}$.
(ii) By considering suitable complex integrals, show that if $r \in(0,1)$,

$$
\int_{0}^{\pi} \frac{\cos n \theta}{1-2 r \cos \theta+r^{2}} d \theta=\frac{\pi r^{n}}{1-r^{2}} \quad \text { and } \quad \int_{0}^{2 \pi} \cos (\cos \theta) \cosh (\sin \theta) d \theta=2 \pi
$$

3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Prove that if any one of the following conditions hold, then f is constant:
(i) $f(z) / z \rightarrow 0$ as $|z| \rightarrow \infty$.
(ii) There exists $b \in \mathbb{C}$ and $\varepsilon>0$ such that for every $z \in \mathbb{C},|f(z)-b|>\varepsilon$.
(iii) $f=u+i v$ and $|u(z)|>|v(z)|$ for all $z \in \mathbb{C}$.
4. Let $f: D(a, r) \rightarrow \mathbb{C}$ be holomorphic, and suppose that $z=a$ is a local maximum for $\operatorname{Re}(f)$. Show that f is constant. What if $z=a$ is a local minimum for $\operatorname{Re}(f)$? What if $z=a$ is a local minimum for $|f|$? Do your answers change if additionally $f(a) \neq 0$?
5. (i) Let f be an entire function. Show that f is a polynomial, of degree $\leq k$, if and only if there is a constant M for which $|f(z)|<M(1+|z|)^{k}$ for all z.
(ii) Show that an entire function f is a polynomial of positive degree if and only if $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$.
6. Recall that the (global) maximum principle says that if U is a bounded open subset of \mathbb{C} and if f is continuous on \bar{U} (the closure of U in \mathbb{C}) and holomorphic in U, then $\sup _{\bar{U}}|f|=\sup _{\partial U}|f|$. Does this hold if U is not assumed to be bounded?
7. (i) (Schwarz's Lemma) Let f be holomorphic on $D(0,1)$, satisfying $|f(z)| \leq 1$ and $f(0)=0$. By applying the maximum principle to $f(z) / z$, show that $|f(z)| \leq|z|$. Show also that if $|f(w)|=|w|$ for some $w \neq 0$ then $f(z)=c z$ for some constant c.
(ii) Use Schwarz's Lemma to prove that any conformal equivalence from $D(0,1)$ to itself is given by a Möbius transformation.
8. Let $f: \partial D(0,1) \rightarrow \mathbb{C}$ be continuous. Show that the function $g(w)=\frac{1}{2 \pi i} \int_{\partial D(0,1)} \frac{f(z)}{z-w} d z$ is holomorphic in $\mathbb{C} \backslash \partial D(0,1)$. Must there be a point $a \in \partial D(0,1)$ such that $g(w) \rightarrow f(a)$ as $w \rightarrow a, w \in D(0,1)$? If there is a sequence of polynomials $\left(p_{n}\right)$ converging uniformly to f on $\partial D(0,1)$, show that there is a continuous function h on $\overline{D(0,1)}$ such that h is holomorphic
on $D(0,1)$ and $h(w)=f(w)$ for every $w \in \partial D(0,1)$. Must it be true that $p_{n}(w) \rightarrow h(w)$ for every $w \in \overline{D(0,1)}$? How does h relate to g ?
9. (i) Let f be an entire function such that for every positive integer $n, f(1 / n)=1 / n$. Show that $f(z)=z$.
(ii) Let f be an entire function with $f(n)=n^{2}$ for every $n \in \mathbb{Z}$. Must $f(z)=z^{2}$?
(iii) Let f be holomorphic on $D(0,2)$. Show that for some integer $n>0, f(1 / n) \neq 1 /(n+1)$.
10. (i) Show that the power series $\sum_{n=1}^{\infty} z^{n!}$ defines an analytic function f on $D(0,1)$. Show that f cannot be analytically continued to any domain which properly contains $D(0,1)$. [Hint: consider $z=\exp (2 \pi i p / q)$ with p / q rational.]
(ii) It is true, but it takes some effort to show, that if $U \subset \mathbb{C}$ is a domain and $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence of distinct points in U such that the set $\left\{a_{n}: n=1,2,3, \ldots\right\}$ has no limit point in U, then there is a holomorphic function on U whose only zeros are the points a_{n}, $n=1,2,3, \ldots$ Use this fact to show that if $U \subset \mathbb{C}$ is any bounded domain, then there is a holomorphic function $f: U \rightarrow \mathbb{C}$ such that f has no analytic continuation to any domain which properly contains U.
11. (i) Let $w \in \mathbb{C}$, and let $\gamma, \delta:[0,1] \rightarrow \mathbb{C}$ be closed curves such that for all $t \in[0,1]$, $|\gamma(t)-\delta(t)|<|\gamma(t)-w|$. By computing the winding number of the closed curve

$$
\sigma(t)=\frac{\delta(t)-w}{\gamma(t)-w}
$$

about the origin, show that $I(\gamma ; w)=I(\delta ; w)$.
(ii) If $w \in \mathbb{C}, r>0$, and γ is a closed curve which does not meet $D(w, r)$, show that $I(\gamma ; w)=I(\gamma ; z)$ for every $z \in D(w, r)$.
(iii) Deduce that if γ is a closed curve in \mathbb{C} and U is the complement of (the image of) γ, then the function $w \mapsto I(\gamma ; w)$ is a locally constant function on U.
12. Find the Laurent expansion (in powers of z) of $1 /\left(z^{2}-3 z+2\right)$ in each of the regions:

$$
\{z:|z|<1\} ; \quad\{z: 1<|z|<2\} ; \quad\{z:|z|>2\} .
$$

13. Classify the singularities of each of the following functions:

$$
\frac{z}{\sin z}, \quad \sin \frac{\pi}{z^{2}}, \quad \frac{1}{z^{2}}+\frac{1}{z^{2}+1}, \quad \frac{1}{z^{2}} \cos \left(\frac{\pi z}{z+1}\right) .
$$

14. (Casorati-Weierstrass theorem) Let f be holomorphic on $D(a, R) \backslash\{a\}$ with an essential singularity at $z=a$. Show that for any $b \in \mathbb{C}$, there exists a sequence of points $z_{n} \in D(a, R)$ with $z_{n} \neq a$ such that $z_{n} \rightarrow a$ and $f\left(z_{n}\right) \rightarrow b$ as $n \rightarrow \infty$.

Find such a sequence when $f(z)=e^{1 / z}, a=0$ and $b=2$.
[A much harder theorem of Picard says that in any neighbourhood of an essential singularity, an analytic function takes every complex value except possibly one.]
15. Let f be a holomorphic function on $D(a, R) \backslash\{a\}$. Show that if f has a non-removable singularity at $z=a$, then the function $\exp f(z)$ has an essential singularity at $z=a$. Deduce that if there exists M such that $\operatorname{Re} f(z)<M$ for $z \in D(a, R) \backslash\{a\}$, then f has a removable singularity at $z=a$.

