COMPLEX ANALYSIS EXAMPLES 1, LENT 2022

Neshan Wickramasekera.

Please send comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a real linear map. Regarding T as a map from \mathbb{C} into \mathbb{C} by identifying \mathbb{R}^{2} with \mathbb{C} in the usual way, show that there exist unique complex numbers A, B such that for every $z \in \mathbb{C}, T(z)=A z+B \bar{z}$. Show that T is complex differentiable if and only if $B=0$.
2. (i) Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function defined on a domain D. Show that f is constant if any one of its real part, imaginary part, modulus or argument is constant.
(ii) Find all holomorphic functions on \mathbb{C} of the form $f(x+i y)=u(x)+i v(y)$ where u and v are both real valued.
(iii) Find all holomorphic functions on \mathbb{C} with real part $x^{3}-3 x y^{2}$.
3. (i) Define $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(0)=0$, and

$$
f(z)=\frac{(1+i) x^{3}-(1-i) y^{3}}{x^{2}+y^{2}} \quad \text { for } z=x+i y \neq 0
$$

Show that f satisfies the Cauchy-Riemann equations at 0 . Show further that f is continuous everywhere but is not differentiable at 0 .
(ii) Define $g: \mathbb{C} \rightarrow \mathbb{C}$ by $g(0)=0$ and $g(z)=e^{-\frac{1}{z^{4}}}$ for $z \neq 0$. Show that g satisfies the Cauchy-Riemann equations everywhere, but is not continuous (hence also not differentiable) at 0 .
4. (i) Define the differential operators $\frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$. Let $U \subset \mathbb{C}$ be open, and let $f: U \rightarrow \mathbb{C}$ be a C^{1} function in the sense that $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are each C^{1} on U (with U taken as an open subset of \mathbb{R}^{2}). Prove that f is holomorphic iff $\partial f / \partial \bar{z}=0$. Show that

$$
\Delta=4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the usual Laplacian in \mathbb{R}^{2}.
(ii) Let $f: U \rightarrow V$ be holomorphic and let $g: V \rightarrow \mathbb{C}$ be harmonic. Show that the composition $g \circ f$ is harmonic.
5. (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \log (1+z / n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞. Deduce that for any $z \in \mathbb{C}$,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z}
$$

(ii) Defining $z^{\alpha}=\exp (\alpha \log z)$, where \log is the principal branch of the logarithm and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{d z}\left(z^{\alpha}\right)=\alpha z^{\alpha-1}$. Does $(z w)^{\alpha}=z^{\alpha} w^{\alpha}$ always hold?
6. Prove that each of the following series converges uniformly on compact (i.e. closed and bounded) subsets of the given domains in \mathbb{C} :
(a) $\sum_{n=1}^{\infty} \sqrt{n} e^{-n z}$ on $\{z: 0<\operatorname{Re}(z)\}$;
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{z^{n}+z^{-n}} \quad$ on $\left\{z: 0<|z|<\frac{1}{2}\right\}$.
7. Find conformal equivalences between the following pairs of domains:
(i) the sector $\{z \in \mathbb{C}:-\pi / 4<\arg (z)<\pi / 4\}$ and the open unit disc $D(0,1)$;
(ii) the lune $\{z \in \mathbb{C}:|z-1|<\sqrt{2}$ and $|z+1|<\sqrt{2}\}$ and $D(0,1)$;
(iii) the $\operatorname{strip} S=\{z \in \mathbb{C}: 0<\operatorname{Im}(z)<1\}$ and the quadrant $Q=\{z \in \mathbb{C}: \operatorname{Re}(z)>$ 0 and $\operatorname{Im}(z)>0\}$.

By considering a suitable solution of Laplace's equation $u_{x x}+u_{y y}=0$ on S, find a non-constant harmonic function φ on Q which extends continuously to $\bar{Q} \backslash\{0\}$ with constant values on each of the two components of $\partial Q \backslash\{0\}$. (φ need not be continuous at the origin. Here \bar{Q} denotes the closure of Q in \mathbb{R}^{2} and $\partial Q=\bar{Q} \backslash Q$.)
8. (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a} z-1}$, with $|a|<1$ and $|\lambda|=1$. [Hint: first show that these maps form a group.]
(ii) Find a Möbius transformation taking the region between the circles $\{|z|=1\}$ and $\{|z-1|=$ $5 / 2\}$ to an annulus $\{1<|z|<R\}$. [Hint: a circle can be described by an equation of the shape $|z-a| /|z-b|=\ell$.]
(iii) Find a conformal map from an infinite strip onto an annulus. Can such a map ever be a Möbius transformation?
9. Let $U \subset \mathbb{C}$ be open and let $f=u+i v: U \rightarrow \mathbb{C}$. Suppose that u and v are C^{1} on U as real functions of the real variables x, y where $x+i y \in U$. Let $w \in U$ and suppose that the map f is angle-preserving at w in the following sense: for any two C^{1} curves $\gamma_{1}, \gamma_{2}:(-1,1) \rightarrow U$ with $\gamma_{j}(0)=w$ and $\gamma_{j}^{\prime}(0) \neq 0$ for $j=1,2$, the curves $\alpha_{j}=f \circ \gamma_{j}=u \circ \gamma_{j}+i v \circ \gamma_{j}$ satisfy $\alpha_{j}^{\prime}(0) \neq 0$ and $\arg \frac{\alpha_{1}^{\prime}(0)}{\gamma_{1}^{\prime}(0)}=\arg \frac{\alpha_{2}^{\prime}(0)}{\gamma_{2}^{\prime}(0)}$. Show that f is complex differentiable at w with $f^{\prime}(w) \neq 0$. [You may find it useful to employ the operator $\frac{\partial}{\partial \bar{z}}$ in Q4].
10. Use the (real) inverse function theorem (from the Analysis \& Topology course) to prove the following holomorphic inverse function theorem: if $U \subset \mathbb{C}$ is open, $f: U \rightarrow \mathbb{C}$ is holomorphic and $f^{\prime}\left(z_{0}\right) \neq 0$ for some $z_{0} \in U$, then there is an open neighborhood V of z_{0} and an open neighborhood W of $f\left(z_{0}\right)$ such that $\left.f\right|_{V}: V \rightarrow W$ is a bijection with holomorphic inverse. [Use the fact that holomorphic functions are C^{1}, i.e. have C^{1} real and imaginary parts; we will prove this-in fact that holomorphic functions are infinitely differentiable - later in the course.]
11. Calculate $\int_{\gamma} z \sin z d z$ when γ is the straight line joining 0 to i.
12. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivatives) on the domains indicated:

$$
\text { (a) } \quad \frac{1}{z}-\frac{1}{z-1} \quad(0<|z|<1) ; \quad \text { (b) } \frac{z}{1+z^{2}} \quad(1<|z|<\infty)
$$

13. Does there exist a sequence of polynomials $p_{n}(z)$ converging uniformly to $1 / z$ on: (i) the disk $\{z \in \mathbb{C}:|z-1|<1 / 2\} ?$ (ii) the annulus $\{z \in \mathbb{C}: 1 / 2<|z|<1\} ?$
14. Let $U \subset \mathbb{C}$ be a domain, and let $u: U \rightarrow \mathbb{R}$ be a C^{2} harmonic function. Show that if $z_{0} \in U$ then for any disk $D=D\left(z_{0}, \rho\right) \subset U$, there is a holomorphic function $f: D \rightarrow \mathbb{C}$ such that $u=\operatorname{Re}(f)$ on D. Show by an example that this need not hold globally, i.e. that there need not exist holomorphic $f: U \rightarrow \mathbb{C}$ such that $u=\operatorname{Re}(f)$ on all of U.
