
ANALYSIS II—EXAMPLES 4 Michaelmas 2025

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Let f : R2 → R and a ∈ Rn. If the directional derivatives Duf(a) exist

for all directions u ∈ R2 and if Duf(a) depends linearly on u, does it follow that f is

differentiable at a?

(b) Let f : R2 → R. If f is differentiable at 0 ∈ R2, and if the partial derivatives of f exist

in a neighbourhood of 0, does it follow that one partial derivative is continuous at 0?

(c) Let f : [a, b]→ R2 be continuous, and differentiable on (a, b). Does it follow that there

exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a)?

(d) Let F : [0, 1]× Rm → R be continuous and a = (a0, . . . , am−1) ∈ Rm. Suppose that F

is uniformly Lipschitz in the Rm variables near a, i.e. for some constant K and an open

subset U of Rm containing a, |F (t, x) − F (t, y)| ≤ K‖x − y‖ for all t ∈ [0, 1], x, y ∈ U .

Use the Picard–Lindelöf existence theorem for first order ODE systems to show that there

is an ε > 0 such that, writing f (j) for the jth derivative of f , the mth order initial value

problem

f (m)(t) = F (t, f(t), f (1)(t), . . . , f (m−1)(t)) for t ∈ [0, ε);

f (j)(0) = aj for 0 ≤ j ≤ m− 1

has a unique Cm solution f : [0, ε)→ R.

2. (The operator norm). Show that any linear map A : Rn → Rm is continuous. Let

L(Rn;Rm) be the vector space of linear maps from Rn to Rm. Recall that the operator

norm on L(Rn;Rm) is defined by ‖A‖op = supx∈S ‖A(x)‖ where S = {x ∈ Rn : ‖x‖ = 1}.
Prove the following: (i) ‖ · ‖op is a norm on L(Rn;Rm) and that if A ∈ L(Rn;Rm) then

‖A‖op = supx∈Rn\{0}
‖A(x)‖
‖x‖ ; (ii) if A ∈ L(Rn;Rm) and B ∈ L(Rm;Rp) then B ◦ A ∈

L(Rn;Rp) and ‖B ◦ A‖op ≤ ‖B‖op‖A‖op; (iii) if A ∈ L(Rn;R) then there is a ∈ Rn such

that Ax = a · x for all x ∈ Rn and in this case ‖A‖op = ‖a‖; (iv) if A ∈ L(R;Rm) then

there is a ∈ Rm such that Ax = xa for all x ∈ R and in this case ‖A‖op = ‖a‖; (v) if

A ∈ L(Rn;Rm) and (Aij) is the matrix of A relative to the standard bases of Rn and Rm,

then 1√
n
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, with equality on the right

hand side inequality if and only if either A = 0 or rank (A) = 1.

3. Let Mn be the space of n × n real matrices equipped with a norm. Show that the

determinant function det : Mn → R is differentiable at the identity matrix I ∈ Mn with

D det(I)(H) = tr(H). Deduce that det is differentiable at any invertible matrix A with

D det(A)(H) = detA tr(A−1H). Show further that det is twice differentiable at I and find

D2 det(I) as a bilinear map.

4. Let U ⊂ Rn be open and path-connected, and let f : U → Rm be differentiable.

Recall from lectures that if ‖Df(x)‖op ≤ M for some constant M and all x in a ball



B ⊂ U , then f |B is Lipschitz on B (in fact ‖f(x)− f(y)‖ ≤M‖x− y‖ for all x, y ∈ B.) If

‖Df(x)‖op ≤M for all x ∈ U , does it follow that f is Lipschitz on U?

5. Let U ⊆ Rn be open, f : U → R be a C2 function and let a ∈ U.
(i) Recall that if a is a critical point of f and if the Hessian form Hf,a(u) =∑n

i,j=1Dijf(a)uiuj is positive definite (resp. negative definite), then f has a strict lo-

cal minimum (resp. strict local maximum) at a. Prove that if a is a critical point of f and

if Hf,a is indefinite (i.e. if ∃u1, u2 ∈ Rn such that Hf,a(u1) > 0 and Hf,a(u2) < 0), then f

has neither a local minimum nor a local maximum at a.

(ii) Prove that if f has a local minimum (resp. local maximum) at a then Df(a) = 0 and

Hf,a is positive semi-definite (resp. negative semi-definite).

6. (a) (Necessity of continuity of second order partial derivatives in certain theorems).

Define f : R2 → R by f(x, y) = xy(x2−y2)
x2+y2 if (x, y) 6= (0, 0) and f(0, 0) = 0. Verify

that: (i) f is C1 on R2; (ii) all second order partial derivatives of f exist on R2; (iii)
∂ f

∂ x∂y (0) 6= ∂ f
∂y∂x (0); (iv) Df(0) = 0; (v) there are no constants a, b, c ∈ R such that

f(x, y) = ax2 + bxy + cy2 + E(x, y) for E(x, y) = o(‖(x, y)‖2).

(b) Find all critical points of the function f : R2 → R defined by f(x, y) = 1
3 (x3 + y3)−

x2 − 2y2 − 3x + 3y, and for each critical point a ∈ R2, determine whether f has a local

minimum, local maximum or neither at a.

7. Let U be a bounded open subset of Rn and let f : U → R be continuous on U (the

closure of U in Rn) and C2 on U. Suppose that f satisfies the partial differential inequality

∆ f(x) + b(x) ·Df(x) + c(x)f(x) ≥ 0 for every x ∈ U where ∆ is the Laplace’s operator

defined by ∆ f =
∑n

i=1Diif , and b : U → Rn, c : U → R are any functions with c(x) < 0

for each x ∈ U. If f is positive somewhere in U , show that

sup
U

f = sup
∂ U

f

where ∂ U = U \ U is the boundary of U . [Hint: if not, argue that f must have a positive

local maximum at some (interior) point x0 ∈ U, and consider ∆ f(x0) + b(x0) ·Df(x0) +

c(x0)f(x0)].

Deduce that if b, c are as above, and if ϕ : ∂ U → R is a given continuous function,

then for any g : U → R there is at most one continuous function f on U that is C2 on U

and solves the boundary value problem ∆ f + b ·Df(x) + cf = g in U , f = ϕ on ∂ U .

8. Use the Contraction Mapping Theorem to show that the equation cosx = x has a

unique real solution. Find this solution to some reasonable accuracy using a calculator

(remember to work in radians!), and justify the claimed accuracy of your approximation.

9. Give an example of a non-empty complete metric space (X, d) and a function f :X → X

satisfying d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y, but such that f has

no fixed point. Suppose now that X is a non-empty compact subset of Rn with the



Euclidean metric. Show that in this case f must have a fixed point. If g : X → X satisfies

d(g(x), g(y)) ≤ d(x, y) for all x, y ∈ X, must g have a fixed point?

10. Let Mn be the space of n × n real matrices equipped with a norm, and let

f : Mn → Mn be the map f(A) = A2. Show that f is differentiable and that

Df : Mn → L(Mn;Mn) is continuous on all of Mn. Deduce that there is a continu-

ous square-root function near the identity I ∈Mn; that is, show that there is an open ball

Bε(I) for some ε > 0 and a continuous function g : Bε(I) → Mn such that (g(A))2 = A

for all A ∈ Bε(I). Is it possible to define a continuous square-root function on all of Mn?

11. Let f : Rn → Rn be a C1 map. Suppose that ‖Df(x) − I‖op ≤ µ for some µ ∈ (0, 1)

and all x ∈ Rn, where I is the identity map on Rn and ‖ · ‖op is the operator norm. Show

that f is an open mapping, i.e. that f maps open subsets to open subsets. Show that

‖x − y‖ ≤ (1 − µ)−1‖f(x) − f(y)‖ for all x, y ∈ Rn, and deduce that f is one-to-one and

that f(Rn) is closed in Rn. Conclude that f is a diffeomorphism of Rn, i.e. that f is a

bijection with C1 inverse. What can you say about a C1 map f : Rn → Rn assumed to

satisfy only that ‖Df(x)− I‖ < 1 for all x ∈ Rn?

12. Let C = {(x, y) ∈ R2 : x3 + y3 − 3xy = 0}. Show that for each point (x0, y0) ∈ C \
{(0, 0), (2

2
3 , 2

1
3 )}, there exists an open set U ⊂ R2 containing (x0, y0), an open interval

I ⊂ R containing x0 and a C1 function g : I → R such that C ∩U = graph g ≡ {(x, g(x)) :

x ∈ I}.

13. Let F : [a, b] × Rn → Rn be continuous, x0 ∈ Rn and R > 0. Suppose that

sup
[a,b]×BR(x0)

‖F‖ ≤ R(b − a)−1 and that ‖F (t, x) − F (t, y)‖ ≤ K‖x − y‖ for some

K and all t ∈ [a, b], x, y ∈ BR(x0). Recall from lectures that under these hypotheses,

for each t0 ∈ [a, b], there is a unique f ∈ C([a, b];BR(x0)) solving the integral equa-

tion f(t) = x0 +
∫ t

t0
F (s, f(s)) ds, t ∈ [a, b]. Show that this f is in fact the unique func-

tion in C([a, b];Rn) solving the integral equation. [Hint: for g ∈ C([a, b];Rn) solving

g(t) = x0 +
∫ t

t0
F (s, g(s)) ds, t ∈ [a, b], let Λ+ = {t ∈ [t0, b] : ‖g(σ)−x0‖ ≤ R ∀σ ∈ [t0, t]}

and consider the possibility that sup Λ+ < b].


