ANALYSIS II-EXAMPLES 4 Michaelmas 2025

Please email comments, corrections to: n.wickramasekera@dpmms.cam.ac.uk.

1. Quickies: (a) Let f: R? — R and a € R™. If the directional derivatives D, f(a) exist
for all directions v € R? and if D, f(a) depends linearly on u, does it follow that f is
differentiable at a?

(b) Let f: R? — R. If f is differentiable at 0 € R?, and if the partial derivatives of f exist
in a neighbourhood of 0, does it follow that one partial derivative is continuous at 07

(c) Let f: [a,b] — R? be continuous, and differentiable on (a,b). Does it follow that there
exists ¢ € (a,b) such that f(b) — f(a) = f'(c)(b—a)?

(d) Let F': [0,1] x R™ — R be continuous and a = (ag, ..., am_1) € R™. Suppose that F
is uniformly Lipschitz in the R™ variables near a, i.e. for some constant K and an open
subset U of R™ containing a, |F(t,z) — F(t,y)| < K|z — y|| for all t € [0,1], z,y € U.
Use the Picard-Lindel6f existence theorem for first order ODE systems to show that there
is an € > 0 such that, writing f) for the jth derivative of f, the mth order initial value
problem

) =F(t, f@), fP @), ... () for e [0,6);
f(j)(O) =a; for 0<j<m-—1
has a unique C™ solution f : [0,¢) — R.

2. (The operator norm). Show that any linear map A: R™ — R™ is continuous. Let
L(R™;R™) be the vector space of linear maps from R"™ to R™. Recall that the operator
norm on L£(R"™;R™) is defined by [|A|op = sup,cg [|A(x)| where S = {z € R" : ||z|| = 1}.
Prove the following: (i) || - ||lop is @ norm on £(R™;R™) and that if A € L(R™;R™) then
IAllop = sup,ern oy Lpoil; (i) if A € L(R™R™) and B € L(R™;RP) then Bo A €
L(R™;RP) and ||B o Allop < ||BllopllAllop; (iii) if A € L(R™;R) then there is a € R™ such
that Az = a -z for all x € R™ and in this case ||A|o, = [la]; (iv) if A € L(R;R™) then
there is a € R™ such that Az = za for all € R and in this case |A|,, = [|a]; (v) if
A e L(R™;R™) and (A;;) is the matrix of A relative to the standard bases of R™ and R™,

1/2 1/2
then \/Lﬁ (E?:1 Py A%) < || Allop < <Z?:1 > Afj) , with equality on the right
hand side inequality if and only if either A = 0 or rank (A) = 1.

3. Let M,, be the space of n x n real matrices equipped with a norm. Show that the
determinant function det: M,, — R is differentiable at the identity matrix I € M,, with
Ddet(I)(H) = tr(H). Deduce that det is differentiable at any invertible matrix A with

Ddet(A)(H) = det Atr(A~1H). Show further that det is twice differentiable at I and find
D2 det(I) as a bilinear map.

4. Let U C R"™ be open and path-connected, and let f : U — R" be differentiable.
Recall from lectures that if ||Df(z)|,p < M for some constant M and all z in a ball



B C U, then f|g is Lipschitz on B (in fact || f(z) — f(y)|| < M|z —y| for all z,y € B.) If
|Df(x)||op < M for all z € U, does it follow that f is Lipschitz on U?

5. Let U C R™ be open, f: U — R be a C? function and let a € U.

(i) Recall that if a is a critical point of f and if the Hessian form Hyq(u) =
szzl D;; f(a)u;u; is positive definite (resp. negative definite), then f has a strict lo-
cal minimum (resp. strict local maximum) at a. Prove that if a is a critical point of f and
if Hy q is indefinite (i.e. if 3u;, us € R™ such that Hy ,(u1) > 0 and Hy 4(u2) < 0), then f
has neither a local minimum nor a local maximum at a.

(ii) Prove that if f has a local minimum (resp. local maximum) at a then Df(a) = 0 and

Hy o is positive semi-definite (resp. negative semi-definite).

6. (a) (Necessity of continuity of second order partial derivatives in certain theorems).
2 2
Define f:R? — R by f(z,y) = & =) if (2,4) # (0,0) and f(0,0) = 0. Verify

:c2+y2
that: (i) f is C! on R?; (ii) all second order partial derivatives of f exist on R?; (iii)
aigy (0) # a?/gm (0); (iv) Df(0) = 0; (v) there are no constants a,b,c € R such that
fl@,y) = az® + bry + cy® + Ex,y) for E(z,y) = o(||(z,y)|*).
(b) Find all critical points of the function f : R? — R defined by f(z,y) = 5 (2 + y3) —

2% — 2y? — 3z + 3y, and for each critical point a € R?, determine whether f has a local

minimum, local maximum or neither at a.

7. Let U be a bounded open subset of R” and let f: U — R be continuous on U (the
closure of U in R™) and C? on U. Suppose that f satisfies the partial differential inequality
A f(z) +b(z) - Df(z) + c(x) f(x) > 0 for every x € U where A is the Laplace’s operator
defined by A f =" D;;f,and b: U — R", ¢: U — R are any functions with ¢(z) <0
for each © € U. If f is positive somewhere in U, show that

sup f =sup f
T oU

where QU = U \ U is the boundary of U. [Hint: if not, arque that f must have a positive
local mazimum at some (interior) point xo € U, and consider A f(xo) + b(xg) - D f(zo) +
c(z0) f (20)]-

Deduce that if b, ¢ are as above, and if ¢: 0U — R is a given continuous function,
then for any ¢g: U — R there is at most one continuous function f on U that is C? on U
and solves the boundary value problem A f +b-Df(x)+cf =ginU, f=p on dU.

8. Use the Contraction Mapping Theorem to show that the equation cosz = x has a
unique real solution. Find this solution to some reasonable accuracy using a calculator
(remember to work in radians!), and justify the claimed accuracy of your approximation.

9. Give an example of a non-empty complete metric space (X, d) and a function f: X — X
satisfying d(f(x), f(y)) < d(z,y) for all z, y € X with x # y, but such that f has
no fixed point. Suppose now that X is a non-empty compact subset of R™ with the



Euclidean metric. Show that in this case f must have a fixed point. If g: X — X satisfies
d(g(x),9(y)) < d(z,y) for all z, y € X, must g have a fixed point?

10. Let M, be the space of n x n real matrices equipped with a norm, and let
f: M, — M, be the map f(A) = A2  Show that f is differentiable and that
Df: M,, — L(M,; M,) is continuous on all of M,,. Deduce that there is a continu-
ous square-root function near the identity I € M, ; that is, show that there is an open ball
B.(I) for some ¢ > 0 and a continuous function g: B.(I) — M, such that (g(A4))?> = A
for all A € B.(I). Is it possible to define a continuous square-root function on all of M,,?

11. Let f: R™ — R™ be a C' map. Suppose that ||Df(x) — I||,p < u for some u € (0,1)
and all z € R”, where I is the identity map on R™ and || - ||, is the operator norm. Show
that f is an open mapping, i.e. that f maps open subsets to open subsets. Show that
|z —yll < (1 —pw) | f(z) — f(y)|l for all x,y € R™, and deduce that f is one-to-one and
that f(R™) is closed in R™. Conclude that f is a diffeomorphism of R™, i.e. that f is a
bijection with C! inverse. What can you say about a C! map f: R® — R" assumed to
satisfy only that | Df(z) — I|| < 1 for all z € R"?

12. Let C = {(z,y) € R? : 2® + 4 — 3zy = 0}. Show that for each point (zg,y0) € C \
{(0,0), (23,23)}, there exists an open set U C R2 containing (x,%o), an open interval
I C R containing x¢ and a C! function g: I — R such that C NU = graphg = {(z, g(x)) :
xel}.

13. Let F:[a,b] x R™ — R™ be continuous, o € R™ and R > 0. Suppose that
|F|| < R(b— a)™! and that ||F(t,z) — F(t,y)|| < K|z — y|| for some

SUP(y, 4] Brao) |
K and all t € [a,b], x,y € Br(zo). Recall from lectures that under these hypotheses,
for each ty € [a,b], there is a unique f € C([a,b]; Br(zo)) solving the integral equa-
tion f(t) = zo + fti) F(s, f(s))ds, t € [a,b]. Show that this f is in fact the unique func-
tion in C([a,b]; R™) solving the integral equation. [Hint: for g € C([a,b];R™) solving
g(t) = x0+fti F(s,g(s))ds, t € [a,b], let AT = {t € [to,b] : ||g(c) —x0|| < R Vo € [to,t]}
and consider the possibility that sup AT < b].



