MATHEMATICAL TRIPOS: PART IA PROBABILITY

Lent 2022 Dominic Yeo

Example Sheet 4 (of 4)

1. Let $X \sim \text{Exp}(\lambda)$.

- (a) Find $\mathbb{P}(a < X < b)$ for 0 < a < b.
- (b) Find $\mathbb{P}(\sin X > \frac{1}{2})$.
- (c) For $x \in \mathbb{R}$, the *ceiling*, denoted $\lceil x \rceil$, of x is the smallest integer greater than or equal to x. Find the distribution of $\lceil X \rceil$.

2. The area of a circle is exponentially distributed with parameter λ . Find the probability density function of the radius of the circle. Have you seen this distribution before for some value of λ ?

3. A stick is broken in two places, independently uniformly distributed along its length. What is the probability that the three pieces will make a triangle?

4. The random variables X and Y are independent and exponentially distributed with parameters λ and μ respectively. Find the distribution of min $\{X, Y\}$ and find $\mathbb{P}(X > Y)$.

5. A radioactive source emits particles in a random direction (with all directions being equally likely). It is held at a distance a from a vertical infinite plane photographic plate.

- (a) Show that, given the particle hits the plate, the horizontal coordinate of its point of impact (with the point nearest the source as origin) has the Cauchy density function $a/(\pi(a^2 + x^2))$.
- (b) Can you compute the mean of this distribution?

6. A random variable X is said to have *log-normal distribution* if $Y = \log X$ is normally distributed.

- (a) Find the mean and variance of X in the case where $Y \sim N(\mu, \sigma^2)$.
- (b) Log-normal distributions are used to model quantities X which are believed to arise as the product of many positive random factors $X = \xi_1 \xi_2 \dots \xi_n$, such as particle sizes after a crushing process or stock prices. Making any reasonable assumptions you wish, give a justification for such a model.
- 7. The random variables X and Y are independent, with joint density $f_{X,Y}$.
 - (a) Let Z = X + Y. Find the joint distribution of (X, Z), and then the marginal of Z, recovering the convolution result from lectures.
 - (b) Assume $X, Y \sim \text{Exp}(\lambda)$. Show that the random variables X+Y and X/(X+Y) are independent and find their distributions.

- 8. Let x_1, x_2, \ldots, x_n be positive real numbers.
 - (a) Show that their harmonic mean is no greater than their arithmetic mean, that is,

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_{i}}\right)^{-1} \leq \frac{1}{n}\sum_{i=1}^{n}x_{i}.$$

(b) Show that, if y_1, \ldots, y_n is any reordering of x_1, \ldots, x_n , then

$$\frac{1}{n}\sum_{i=1}^{n}\frac{y_i}{x_i} \ge 1.$$

9. Suppose X is a real-valued random variable and $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are two non-decreasing functions. Prove the 'Chebyshev order inequality':

$$\mathbb{E}(f(X))\mathbb{E}(g(X)) \le \mathbb{E}(f(X)g(X)).$$

[*Hint.* Consider $(f(X_1) - f(X_2))(g(X_1) - g(X_2))$ where X_1 and X_2 are independent copies of X.]

10. Fix $\lambda > 0$, and for every $n \ge 1$, let $X_n \sim \text{Geom}(\lambda/n)$, supported on $\{1, 2, \ldots\}$. Prove that $\frac{X_n}{n}$ converges in distribution to $\text{Exp}(\lambda)$, (i) directly; (ii) using MGFs.

11. (a) Consider a random sample (X_1, \ldots, X_n) taken from a normal distribution $N(\mu, \sigma^2)$. How large must n be to ensure that the probability that the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is within one standard deviation σ of the mean μ is at least 0.99?

[*Hint. For the distribution function* Φ *of* N(0,1) *we have* $\Phi(2.58) = 0.995$.]

- (b) A random sample is taken in order to find the proportion p of left-handed people in a large population. Guided by the central limit theorem, determine a sample size such that the probability of a sampling error less than 0.04 will be 0.99 or greater.
- 12. Show that, as $n \to \infty$,

$$e^{-n}\left(1+\frac{n}{1!}+\frac{n^2}{2!}+\dots+\frac{n^n}{n!}\right) \to \frac{1}{2}.$$

Extensions

13. Let us define discrete random variables X and Y by a joint probability mass function as shown:

	X	-1	0	1
Υ				
-1		a	b	с
0		d	е	f
1		g	h	i

Write down the marginal mass functions $p_X(\cdot)$ and $p_Y(\cdot)$ of X and Y.

A lecturer is trying to choose $\{a, b, \ldots, i\}$ to illustrate the general principle that Cov(X, Y) = 0does not imply X, Y independent. Describe geometrically the sets of $\{a, b, \ldots, i\}$ s which (i) induce independence, and (ii) induce zero covariance, and conclude that if the lecturer chooses uniformly at random from the set in (ii) (*), this will illustrate their point with probability one.

[You may reflect on how to make (*) formal, but this is not part of the question.]

14. The Polya urn model for contagion is as follows. We start with an urn which contains one white marble and one black marble. At each second we choose a marble at random from the urn and replace it together with one more marble of the same colour. Calculate the probability that when n marble are in the urn, i of them are white, and conclude a limit result for convergence in distribution of the proportion of white marbles in the urn.

Can you strengthen this to an almost sure limit result?

[Hint: start by simulating the limit X and consider, conditional on X, an IID sequence of biased coin tosses with appropriate parameter.]

15. We recall Q15 from Sheet 2. Let σ_n be a uniformly chosen permutation from Σ_n , and α_n the number of cycles in σ_n . Denote by $\mathcal{C} = (C_1, C_2, \ldots, C_{\alpha_n})$ the lengths of these cycles, in decreasing order. Note that conditional on \mathcal{C} , the elements $\{1, 2, \ldots, n\}$ are assigned to the cycles uniformly.

Let ℓ_n be the length of the cycle containing the element 1. Let β_n be the length of a cycle chosen uniformly from the α_n possible cycles. Find expressions for $\mathbb{E}[\ell_n | \mathcal{C}]$ and $\mathbb{E}[\beta_n | \mathcal{C}]$ in terms of \mathcal{C} , and prove that $\mathbb{E}[\ell_n] \geq \mathbb{E}[\beta_n]$. Finally, prove that $\mathbb{E}[\beta_n]\mathbb{E}[\alpha_n] \geq n$.

16. Daniel is playing *Snakes and Ladders*, which we model by adapting a random walk.

(a) To avoid tears, initially there are no snakes. Let X_1, X_2, \ldots be IID uniform choices from $\{1, 2, \ldots, 6\}$, denoting dice rolls, with $S_n = X_1 + \ldots + X_n$ denoting position after n moves.

Daniel plays until time $T_N := \inf\{n \ge 0 : S_n \ge N\}$, where N is large for the sake of his parents' productivity. Derive a CLT for T_N , ie a limit in distribution for $\frac{T_N - a_N}{b_N}$, for some a_N, b_N .

(b) Let $\alpha_N = \lfloor N/3 \rfloor$ and $\beta_N = \lfloor 2N/3 \rfloor$. We introduce a snake from $\beta_N \mapsto \alpha_N$, so that now

$$S_{n+1} := \begin{cases} S_n + X_n & \text{if } S_n + X_n \neq \beta_N \\ \alpha_N & \text{if } S_n + X_n = \beta_N. \end{cases}$$

When N is large, state the limiting probability that the second case (ie the snake move) occurs at least once. [You do not need to prove the validity of this limit.]

For large N, describe approximately the distribution of $T_N := \inf\{n \ge 0 : S_n \ge N\}$, and explain why there is no choice of a_N, b_N such that $\frac{T_N - a_N}{b_N}$ has a continuous limit in distribution.