
MATHEMATICAL TRIPOS: PART IA Lent 2022

PROBABILITY Dominic Yeo
Example Sheet 3 (of 4)

1. Let X be a random variable.

(a) Show that, for all p ∈ (0,∞) and all x ∈ (0,∞),

P(|X| ≥ x) ≤ E(|X|p)x−p.

(b) Show that, for all z ≥ 1,
P(X ≥ x) ≤ E(zX)z−x.

2. Let Xn be a binomial random variable corresponding to n independent trials, each with success
probability 1/3. Find upper bounds on P(Xn ≥ 2

3
n) using (a) Markov’s inequality; (b) Chebyshev’s

inequality; (c) the Chernoff bound method suggested in Problem 1(b). Comment on the quality of
these bounds when n is large.

3. For a random variable X with mean µ and variance σ2 <∞, define the function

V (x) = E[(X − x)2].

Express the random variable V (X) in terms of µ, σ2 and X, and hence show that

E[V (X)] = 2σ2.

[Hint: Re-characterise V before trying to ‘substitute in’ the random variable X. ]

4. Consider a random sample X1, . . . , Xn taken from a distribution having mean µ and variance
σ2 < ∞. Use Chebyshev’s inequality to determine a sample size n that will be sufficient, whatever
the distribution, for the probability to be at least 0.99 that the sample mean X̄ will be within two
standard deviations of µ.

5. Let (Xn : n ∈ N) be a sequence of independent identically distributed random variables, with
mean µ and variance σ2 < ∞. Set S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1. Let N be a bounded
non-negative integer-valued random variable which is independent of the sequence (Xn : n ∈ N).

(a) Recall the proof from lectures that E[SN ] = µE[N ].

Show that E(S2
N |N = n) = nσ2 + n2µ2 and hence express var(SN) in terms of var(N).

(b) Verify that E[SN ] = µE[N ] by differentiating the PGF of SN .

(c) Find a counterexample to the result E[SN ] = µE[N ] when N is not independent of (Xn).
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6. A bug jumps around the vertices of a triangle, labelled {1, 2, 3}. At every jump, it moves from its
current position to one of the other two vertices with probability 1/2 each (independently of how it
arrived at its current position). The bug starts at vertex 1.

(a) Let pn be the probability that the bug is at vertex 1 after n jumps. Find pn for each n ≥ 0.

(b) What happens to pn as n→∞?

(c) Let N be the number of jumps until the bug visits vertex 3. Find E[N ].

[The conclusion of part (b) is extended with great generality in Part 1B Markov Chains.]

7. A slot machine operates so that at the first turn the probability for the player to win is 1/2.
Thereafter the probability for the player to win is 1/2 if he lost at the last turn, but is p < 1/2 if he
won at the last turn. If un is the probability that the player wins at the nth turn, show that, provided
n > 1,

un + (1
2
− p)un−1 = 1

2
.

Observe that this equation also holds for n = 1, if we set u0 = 0. Solve the equation, showing that

un =
1 + (−1)n−1(1

2
− p)n

3− 2p
.

8. Suppose we conduct a sequence of independent Bernoulli trials and denote by X the number of
trials up to and including the ath success.

(a) Show that

P(X = r) =

(
r − 1

a− 1

)
paqr−a, r = a, a+ 1, . . . .

(b) Show that the generating function GX for this distribution is pata(1− qt)−a.

Deduce that E(X) = a/p and var(X) = aq/p2.

[Hint: consider writing X as a sum of independent random variables. ]

(c) Find an expression for P(X is even).

9. Let X have the uniform distribution on {1, 2, . . . , 6}, and let X1, X2 be two independent copies of
X, representing rolling a dice twice. Suppose Y is any probability distribution on {1, 2, . . . , 6}, with
Y1, Y2 two independent copies of Y .

(a) Find the generating function of X1 +X2.

(b) Suppose that X1 +X2 has the same distribution on {2, 3, . . . , 12} as Y1 +Y2. Prove that Y must
itself be uniform.
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(c) Now suppose that Y has the uniform distribution on (y1, y2, . . . , y6) where the yi are (not neces-
sarily distinct) integers between 1 and 11. Suppose Z has the uniform distribution (z1, z2, . . . , z6)
satisfying the same conditions. If Y, Z are independent, and Y + Z has the same distribution
as X1 +X2, does this imply that {y1, . . . , y6} = {z1, . . . , z6} = {1, . . . , 6}?

10. At time 0, a blood culture starts with one red cell. At the end of one minute, the red cell dies
and is replaced by one of the following combinations with probabilities as indicated:

2 red cells 1
4
, 1 red, 1 white 2

3
, 2 white 1

12
.

Each red cell lives for one minute and gives birth to offspring in the same way as the parent cell.
Each white cell lives for one minute and dies without reproducing. Assume the individual cells behave
independently.

(a) At time n+ 1
2

minutes after the culture began, what is the probability that no white cells have
yet appeared?

(b) What is the probability that the entire culture dies out eventually?

11. Consider a population of animals in which each mature individual produces a random number of
offspring with generating function F . Suppose we start with a population of k immature individuals,
each of which grows to maturity with probability p, independently of the other individuals.

(a) Find the generating function for the distribution of the number of immature individuals in the
next generation.

(b) Find the generating function for the distribution of the number of mature individuals in the
next generation, given that there are k mature individuals in the parent generation.

(c) Show that the distributions in (a) and (b) have the same mean, but not necessarily the same
variance.

12. Let F (t) = 1 − p(1 − t)β, where p ∈ (0, 1) and β ∈ (0, 1) are constants. Show that F (t) is the
generating function of a probability distribution on Z+ and that its iterates are given by

Fn(t) = 1− p1+β+···+βn−1

(1− t)βn for n = 1, 2, . . . .

Find the mean m of the associated distribution and the extinction probability of the branching process
whose offspring distribution has generating function F .

Extensions

13. Let qλ be the extinction probability of a branching process with Poisson(λ) offspring distribution.
Consider ζλ = 1 − qλ the corresponding survival probability. Show that ζλ satisfies ζλ = 1 − e−λζλ .
Describe the behaviour of ζ1+ε as ε ↓ 0, in the form ζ1+ε ∼ Cεα, for constants C, α to be determined.

[Hint: start by showing ζλ → 0 as λ ↓ 1, then expand.]
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14. Let G be a graph, consisting of a finite collection of vertices V (G), some pairs of which are
connected by an edge. We declare the neighbours of a vertex v to be those vertices w such that v, w
are directly connected by an edge. We assume the graph is connected, so that there is a path of edges
joining any pair of vertices. Let A be a non-empty subset of the vertices, and B = V (G) \ A. For
each vertex v ∈ A, we declare a value aV ∈ R.

Use a probabilistic argument to show that there exists a function f : V (G)→ R such that f(v) = av
for all v ∈ A, and for all v ∈ B, f(v) is the average of the values taken by f on the neighbours of v.

Can you justify that f is unique?

[Note: such a function f is called the (discrete) harmonic extension of (av). ]

15. Let T be a branching process tree with offspring distribution X satisfying µ = E[X] ≤ 1. Or-
der the individuals in a breadth-first manner, so that the root is x1, and the the children of the root are
x2, . . . , x1+Z1 , and the individuals in the (n+1)th generation are xZ0+Z1+...+Zn+1, . . . , xZ0+Z1+...+Zn+Zn+1 .
Let c(xi) be the number of children of individual xi.

(a) Consider the random process given by S0 = 0 and Sm = c(x1)+ . . .+ c(xm)−m. Explain briefly
why (S0, S1, . . .) is a random walk whose increments have distribution X − 1.

(b) Show that |T |, the total number of individuals in the population, has the same distribution as
τ := inf{m ≥ 0 : Sm = −1}.

(c) Prove that P(|T | = m) = 1
m
P(Sm = −1).

(d) Suppose that X takes the values 2 and 0 each with probability 1/2. Explain why E[|T |] = ∞,
and find constants C, α such that P(|T | = m) ∼ Cm−α.

[Hint: you may find a question on a previous sheet helpful.]

16. Let T be a branching process tree with supercritical offspring distribution X satisfying µ =
E[X] > 1. Denote by Ψ the extinction event {|T | <∞}, and assume q = P(Ψ) ∈ (0, 1).

(a) Explain briefly why the conditional branching process tree (T | Ψ) is itself a branching process,
and describe its offspring distribution X̂.

(b) Show that if X ∼ Po(µ), then X̂ ∼ Po(ν), where ν 6= µ and satisfies µe−µ = νe−ν . Show that
ν is monotone as a function of µ.

(c) Now return to T , with X ∼ Po(µ). Colour blue all individuals with infinitely many descendents,
and colour red all others, so that Ψc = {root is blue}. State the distribution of the number of
blue children of the root. Now characterise the distribution of the number of blue children of
the root, conditional on Ψc, and check that the conditional mass function sums to 1.

Give as complete as description as you can manage for the structure of the blue and red indi-
viduals in T , conditional on Ψc.
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