MATHEMATICAL TRIPOS: PART IA PROBABILITY

Example Sheet 2 (of 4)

1. Let $A, B \in \mathcal{F}$ be two events such that $\mathbb{P}(B) = 0$ or 1. Show that A and B are independent.

[Note, this generalises the result in lectures where $B = \emptyset$ or $B = \Omega$.]

2. A coin with probability $p \in [0, 1]$ of heads is tossed *n* times. Let *E* be the event 'a head is obtained on the first toss' and F_k the event 'exactly *k* heads are obtained'. For which pairs of non-negative integers (n, k) are *E* and F_k independent?

3. Independent trials are performed, each with probability p of success. Let P_n be the probability that n trials result in an even number of successes. Show that

$$P_n = \frac{1}{2}(1 + (1 - 2p)^n).$$

4. Two players A and B throw darts at a board and the first to score a bull wins the contest. The outcomes of different throws are independent and on each of their throws A has probability p_A and B has probability p_B of scoring a bull.

- (a) Suppose they play separately, and A first scores a bull on throw X_A , while B first succeeds on throw X_B . Find the distribution of $Z = \min(X_A, X_B)$.
- (b) Now suppose they throw alternately, and the first to score a bull wins the contest. If A has first throw, calculate the probability p that A wins.
- 5. Consider the probability space $\Omega = \{0, 1\}^3$ with equally likely outcomes.
 - (a) Show that there are 70 different Bernoulli random variables of parameter 1/2 that can be defined on Ω .
 - (b) How many Bernoulli random variables of parameter 1/3 can be defined on Ω ?
 - (c) What is the length of the longest sequence of independent Bernoulli random variables of parameter 1/2 that can be defined on Ω ?

6. Suppose that X and Y are independent Poisson random variables with parameters λ and μ respectively. Find the distribution of X + Y. Prove that the conditional distribution of X, given that X + Y = n, is binomial with parameters n and $\lambda/(\lambda + \mu)$.

7. The number of misprints on each page has a Poisson distribution with parameter λ , and the numbers on different pages are independent.

(a) What is the probability that the second misprint will occur on page r?

Lent 2022 Dominic Yeo (b) A proof-reader studies a single page looking for misprints. She catches each misprint (independently of others) with probability $p \in [0, 1]$. Let X be the number of misprints she catches and let Y be the number she misses. Find the distributions of the random variables X and Y and show they are independent. Compare with the previous exercise.

8. Let X_1, \ldots, X_n be independent identically distributed random variables with mean μ and variance σ^2 . Find the means of the random variables

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$,

and the variance of \bar{X} .

9. Sarah collects figures from cornflakes packets. Each packet contains one of n distinct figures. Each type of figure is equally likely. Show that the expected number of packets Sarah needs to buy to collect a complete set of n is

$$n\sum_{i=1}^{n}\frac{1}{i}$$

10. Let a_1, a_2, \ldots, a_n be a ranking of the yearly rainfalls in Cambridge over the next n years. Assume that a_1, a_2, \ldots, a_n is a random permutation of $1, 2, \ldots, n$. Say that k is a record year if $a_k < a_i$ for all i < k. Thus the first year is always a record year. Let $Y_i = 1$ if i is a record year and 0 otherwise. Find the distribution of Y_i and show that Y_1, Y_2, \ldots, Y_n are independent. Calculate the mean and variance of the number N of record years in the next n years.

11. A fair coin is tossed n + 1 times. For $1 \le i \le n$, let A_i be the event that the *i*th and (i + 1)th outcomes are both heads.

- (a) Find $\mathbb{P}(A_i \cap A_j)$ for all $1 \leq i \neq j \leq n$.
- (b) Define $M = \mathbf{1}_{A_1} + \ldots + \mathbf{1}_{A_n}$, the number of occurrences of HH in the sequence. Find the mean and variance of M. (Hint: you need to use covariances!)
- (c) Similarly, find the mean and variance of the number of occurrences of TH in the sequence.

12. Let $s \in (1, \infty)$ and let X be a random variable in $\{1, 2, ...\}$ with distribution

$$\mathbb{P}(X=n) = n^{-s} / \zeta(s)$$

where $\zeta(s)$ is a suitable normalizing constant. For each prime number p let A_p be the event that X is divisible by p. Find $\mathbb{P}(A_p)$ and show that the events $(A_p : p \text{ prime})$ are independent. Deduce that

$$\prod_{p} \left(1 - \frac{1}{p^s} \right) = \frac{1}{\zeta(s)}.$$

Extensions

13. Let X be a geometric random variable on $\{0, 1, 2, ...\}$ with parameter $p \in (0, 1)$, and Y a Poisson random variable with parameter $\lambda > 0$. Compare the distributions of i) X - n, conditional on $X \ge n$; and ii) Y - n, conditional on $Y \ge n$, when n is large.

14. Can you construct non-negative integer valued random variables X and $(X_n)_{n\geq 1}$ with $\mathbb{E}[X], \mathbb{E}[X_n]$ all finite, and such that

$$\mathbb{P}(X_n = k) \to \mathbb{P}(X = k) \text{ as } n \to \infty,$$

holds for every $k \in \{0, 1, \ldots\}$, but for which $\mathbb{E}[X_n] \not\to \mathbb{E}[X]$?

15. Let σ_n be a uniformly chosen permutation from Σ_n , and consider the cycle decomposition of σ_n . Let $\alpha_{n,k}$ be the number of cycles in σ_n of length k. Find $\mathbb{E}[\alpha_{n,k}]$. Let α_n be the total number of cycles in σ_n . Show that $\mathbb{E}[\alpha_n] \to \infty$ as $n \to \infty$.

Now, let ℓ_n be the length of the cycle of σ_n which includes the element 1. Find the distribution of ℓ_n , and also $\mathbb{E}[\ell_n]$.

Note that $\mathbb{E}[\ell_n]\mathbb{E}[\alpha_n] \gg n$. Explain why this is not a contradiction.

16. In a community of N people, birthdays are independent, and uniformly chosen from the 365 days of the non-leap year. How would you try to find an expression for the probability that at least k people share a birthday? (Ie, at least one day d such that at least k people were born on day d.)

Would this analysis be easier if instead you assumed the number of people in the community was random, with Poisson(N) distribution? (Hint: Exercise 7 is useful.)

What about if the birthdays were independent but not distributed uniformly?