ANALYSIS I EXAMPLES 2

G.P. Paternain Lent 2022

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

- **1**. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = x if $x \in \mathbb{Q}$ and f(x) = 1 x otherwise. Find $\{a : f \text{ is continuous at } a\}$.
- **2**. Write down the definition of " $f(x) \to \infty$ as $x \to \infty$ ". Prove that $f(x) \to \infty$ as $x \to \infty$ if, and only if, $f(x_n) \to \infty$ for every sequence such that $x_n \to \infty$.
- **3**. Let $f, g : \mathbb{R} \to \mathbb{R}$ be such that $f(x) \to \ell$ as $x \to a$ and $g(y) \to k$ as $y \to \ell$. Must it be true that $g(f(x)) \to k$ as $x \to a$?
- **4.** Let $f_n: [0,1] \to [0,1]$ be continuous, $n \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous on [0,1] for each $n \in \mathbb{N}$. Must $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous?
- **5**. Let $f:[0,1] \to [0,1]$ be a continuous function. Prove that there exists $c \in [0,1]$ such that f(c) = c. Such a c is called a *fixed point* of f. Give an example of a bijection of [0,1] with no fixed point. If $h:(0,1) \to (0,1)$ is a continuous bijection, must it have a fixed point?
- **6**. Let $f(x) = \sin^2 x + \sin^2(x + \cos^7 x)$. Assuming the familiar features of sin without justification, prove that there exists k > 0 such that f(x) > k for all $x \in \mathbb{R}$.
- 7. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous, that f(0) = f(1) = 0, and that for every $x \in (0,1)$ there exists $0 < \delta < \min\{x, 1-x\}$ with $f(x) = (f(x-\delta) + f(x+\delta))/2$. Show that f(x) = 0 for all x.
- **8**. Let $f:[a,b]\to\mathbb{R}$ be bounded. Suppose that $f((x+y)/2)\leq (f(x)+f(y))/2$ for all $x,y\in[a,b]$. Prove that f is continuous on (a,b). Must it be continuous at a and b too?
- 9. Prove that $2x^5 + 3x^4 + 2x + 16 = 0$ has no real solutions outside [-2, -1] and exactly one inside.
- **10**. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Which of (1)–(4) must be true?
 - (1) If f is increasing then $f'(x) \ge 0$ for all $x \in (a, b)$.
 - (2) If f'(x) > 0 for all $x \in (a, b)$ then f is increasing.
 - (3) If f is strictly increasing then f'(x) > 0 for all $x \in (a, b)$.
 - (4) If f'(x) > 0 for all $x \in (a, b)$ then f is strictly increasing.

[Increasing means $f(x) \le f(y)$ if x < y, and strictly increasing means f(x) < f(y) if x < y.]

- **11.** Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable for all x. Prove that if $f'(x) \to \ell$ as $x \to \infty$ then $f(x)/x \to \ell$. If $f(x)/x \to \ell$ as $x \to \infty$, must f'(x) tend to a limit?
- 12. Let $f(x) = x + 2x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable everywhere and that f'(0) = 1, but that there is no interval around 0 on which f is increasing.
- **13**. Let $f: \mathbb{R} \to \mathbb{R}$ be a function which has the intermediate value property: If f(a) < c < f(b), then f(x) = c for some x between a and b. Suppose also that for every rational r, the set S_r of all x with f(x) = r is closed, that is, if x_n is any sequence in S_r with $x_n \to a$, then $a \in S_r$. Prove that f is continuous.