ANALYSIS I EXAMPLES 1

G.P. Paternain Lent 2022

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Prove that if $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ then $a_{n}+b_{n} \rightarrow a+b$.
2. Sketch the graphs of $y=x$ and $y=\left(x^{4}+1\right) / 3$, and thereby illustrate the behaviour of the real sequence a_{n} where $a_{n+1}=\left(a_{n}^{4}+1\right) / 3$. For which of the three starting cases $a_{1}=0, a_{1}=1$ and $a_{1}=2$ does the sequence converge? Now prove your assertion.
3. Let $a_{1}>b_{1}>0$ and let $a_{n+1}=\left(a_{n}+b_{n}\right) / 2, b_{n+1}=2 a_{n} b_{n} /\left(a_{n}+b_{n}\right)$ for $n \geq 1$. Show that $a_{n}>a_{n+1}>b_{n+1}>b_{n}$ and deduce that the two sequences converge to a common limit. What limit?
4. The real sequence a_{n} is bounded but does not converge. Prove that it has two convergent subsequences with different limits.
5. Investigate the convergence of the following series. For those expressions containing the complex number z, find those z for which convergence occurs.

$$
\sum_{n} \frac{\sin n}{n^{2}} \quad \sum_{n} \frac{n^{2} z^{n}}{5^{n}} \quad \sum_{n} \frac{(-1)^{n}}{4+\sqrt{n}} \quad \sum_{n} \frac{z^{n}(1-z)}{n}
$$

6. Show that $\sum \frac{1}{n(\log n)^{\alpha}}$ converges if $\alpha>1$ and diverges otherwise.

Does $\sum 1 /(n \log n \log \log n)$ converge?
7. Consider the two series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$ and $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots$, having the same terms but taken in a different order. Let s_{n} and t_{n} be the corresponding partial sums to n terms. Show that $s_{2 n}=h_{2 n}-h_{n}$ and $t_{3 n}=h_{4 n}-\frac{1}{2} h_{2 n}-\frac{1}{2} h_{n}$, where $h_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{n}$. Show that s_{n} converges to a limit $s>0$ and that t_{n} converges to $3 s / 2$.
8. For $n \geq 1$, let

$$
a_{n}=\frac{1}{\sqrt{n}}+\frac{(-1)^{n-1}}{n} .
$$

Show that each a_{n} is positive and that $\lim a_{n}=0$. Show also that $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ diverges. [This shows that, in the alternating series test, it is essential that the moduli of the terms decrease as n increases.]
9. Let a_{n} and b_{n} be two sequences and let $S_{n}=\sum_{j=1}^{n} a_{j}$ and $S_{0}=0$. Show that for any $1 \leq m \leq n$ we have:

$$
\sum_{j=m}^{n} a_{j} b_{j}=S_{n} b_{n}-S_{m-1} b_{m}+\sum_{j=m}^{n-1} S_{j}\left(b_{j}-b_{j+1}\right) .
$$

Suppose now that b_{n} is a decreasing sequence of positive terms tending to zero. Moreover, suppose that S_{n} is a bounded sequence. Prove that $\sum_{j=1}^{\infty} a_{j} b_{j}$ converges. Deduce the alternating series test.

Does the series $\sum_{n=1}^{\infty} \frac{\cos (n)}{n}$ converge or diverge?
10. Suppose that $\sum a_{n}$ diverges and $a_{n}>0$. Show that there exist b_{n} with $b_{n} / a_{n} \rightarrow 0$ and $\sum b_{n}$ divergent.
11. Let $z \in \mathbb{C}$ such that $z^{2^{j}} \neq 1$ for any positive integer j. Show that the series

$$
\frac{z}{1-z^{2}}+\frac{z^{2}}{1-z^{4}}+\frac{z^{4}}{1-z^{8}}+\frac{z^{8}}{1-z^{16}}+\cdots
$$

converges to $z /(1-z)$ if $|z|<1$, converges to $1 /(1-z)$ if $|z|>1$, and diverges if $|z|=1$.
12. Prove that every real sequence has a monotonic subsequence. Deduce the Bolzano-Weierstrass theorem.
13. Let x be a real number and suppose the real series $\sum a_{n}$ converges, but does not converge absolutely. Prove that the terms can be rearranged so that the resulting series converges to x. That is, there is a bijection σ of the positive integers such that $\sum_{n} a_{\sigma(n)}=x$.
14. Can we write the open interval $(0,1)$ as a disjoint union of closed intervals of positive length?

