
Analysis I Lent term 2019

Example Sheet 3

1. Show that limx→+∞ x
n exp(−x) = 0 for any n ∈ N directly from the definition of

the exponential function.

2. Show that (1 + a
n
)n → exp(a) as n → ∞ by applying the mean value theorem to

log(1 + x) on the interval [0, a
n
]. Compare with Problem 7 on Example Sheet 1.

3. For a > 0, find limn→∞ n(a1/n − 1).

4. Find the flaw in the following argument: “Let f be differentiable on (a, b) and
suppose that c ∈ (a, b). If c + h ∈ (a, b), then (f(c + h) − f(c))/h = f ′(c + θh) for
some θ ∈ [0, 1]. Let h→ 0, then f ′(c+ θh)→ f ′(c). Thus f ′ is continuous at c.”

5. Suppose that f is twice differentiable at x. Prove that

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

Formulate and prove an analogous statement for higher derivatives.

6. Suppose f : R → R is k-times differentiable and satisfies f(x) = xkα(x), where
α(x)→ 0 as x→ 0. Show that f (i)(0) = 0 for 0 ≤ i ≤ k.

7. Let f(x) =
√
x. Express f(1+h) as a quadratic in h plus a remainder term involving

h3. By taking h = −0.02, find an approximate value for
√

2 and prove it is accurate
to seven decimal places.

8. Let f : R → R be defined by f(x) = exp(−1/x2) for x 6= 0, f(0) = 0. Prove
carefully that f is infinitely differentiable, and that f (k)(0) = 0 for all k ∈ N. Hence
the Taylor series of f centered at 0 does not converge to f(x) for any x 6= 0. Explain
how this fact is compatible with Taylor’s theorem.

9. Find the radius of convergence of the following power series:

∑
n
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10. Prove that tan : (−π/2, π/2)→ R is a bijection. Now let g(x) = x−x3/3+x5/5+. . .
for |x| < 1. By considering g′(x), show that tan−1(x) = g(x) for |x| < 1.
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11. Show that π
4

= 4 tan−1 1
5
− tan−1 1

239
. Use this identity to compute π to five decimal

places. (Machin used it to compute the first 100.) Justify the accuracy of your
calculation.

12. We say that
∏∞

n=1(1+an) converges if the sequence pn = (1+a1)(1+a2) . . . (1+an)
converges. Suppose that an ≥ 0 for all n. Putting sn = a1 + a2 + . . . + an, prove
that sn ≤ pn ≤ exp(sn). Deduce that

∏∞
n=1(1+an) converges if and only if

∑∞
n=1 an

converges. Evaluate
∏∞

n=2

(
1 + 1

n2−1

)
.

13. (i) If z ∈ C \ {0}, prove that there exists λ ∈ C such that exp(λ) = z. (ii) Let
L(z) =

∑∞
i=1

−1
n

(1− z)n. Prove that L is well-defined on D = {z ∈ C | |1− z| < 1},
and that L : D → C is complex differentiable. What is its derivative? By considering
the function z exp(−L(z)), show that exp(L(z)) = z for all z ∈ D. (iii) Show that
there is no continuous function L : C \ {0} → C satisfying exp(L(z)) = z for all
z ∈ C.

14. Construct a C∞ function f : R→ R which satisfies f(x) = 0 for x ≤ 0 and f(x) = 1
for x ≥ 1. Deduce that if g1, g2 : R → R are C∞ and a < b, then there is a C∞

function g : R → R which satisfies g(x) = g1(x) for x ≤ a and g(x) = g2(x) for
x ≥ b.
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