

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = x^2$ when $x \in \mathbb{Q}$, and $f(x) = -x^2$ when $x \notin \mathbb{Q}$. At which points is f (a) continuous (b) differentiable?
2. Carefully define what it means that $f(x) \rightarrow \ell$ as $x \rightarrow \infty$. Prove that this happens if and only if $f(x_n) \rightarrow \ell$ for every sequence such that $x_n \rightarrow \infty$.
3. Let $f_n: [0, 1] \rightarrow [0, 1]$ be a continuous function for each $n \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous on $[0, 1]$ for each n . Must the function h defined by $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous on $[0, 1]$?
4. Let $g: [0, 1] \rightarrow [0, 1]$ be a continuous function. Prove that there exists some $c \in [0, 1]$ such that $g(c) = c$. Such a c is called a *fixed point* of g . Give an example of a bijection $h: [0, 1] \rightarrow [0, 1]$ with no fixed point. Give an example of a continuous bijection $k: (0, 1) \rightarrow (0, 1)$ with no fixed point.
5. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a continuous, injective function. Show that $f^{-1}: f(I) \rightarrow I$ is continuous.
6. A function f defined on a set A is *locally bounded* if every point in A has a neighbourhood on which f is bounded: for all $a \in A$ there exists $\delta > 0$ and $C \in \mathbb{R}$ such that if $x \in A$ and $|x - a| < \delta$ then $|f(x)| \leq C$. Show that every continuous function is locally bounded. Show that a locally bounded function on a closed bounded interval is bounded.
7. (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = x^2 \sin(\frac{1}{x})$ if $x \neq 0$ and $f(0) = 0$. Prove that f is differentiable everywhere. For which x is f' continuous at x ? (ii) Give an example of a function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is differentiable everywhere such that g' is not bounded on the interval $(-\delta, \delta)$ for any $\delta > 0$.
8. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the inequality $|f(x) - f(y)| \leq |x - y|^2$ for every $x, y \in \mathbb{R}$. Show that f is constant.
9. Prove that the real polynomial $p(x) = 2x^5 + 3x^4 + 2x + 16$ takes the value 0 exactly once, and that the number where it takes that value is somewhere in the interval $[-2, -1]$.

10. Let $f: (-1, 1) \rightarrow \mathbb{R}$ be a continuous function that is differentiable at every $x \neq 0$. Show that if $\lim_{x \rightarrow 0} f'(x)$ exists, then f is differentiable at 0, and find $f'(0)$.

11. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by setting $f(x) = 0$ if x is irrational, and $f(x) = 1/q$ when $x = p/q$ for coprime integers p and q with $q > 0$. Prove that f is continuous at every irrational and discontinuous at every rational.
⁺ Does there exist a function $g: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at every rational and discontinuous at every irrational?

12. A function f defined on a set A is *locally constant* if every point in A has a neighbourhood on which f is constant: for all $a \in A$ there exists $\delta > 0$ and $c \in \mathbb{R}$ such that if $x \in A$ and $|x - a| < \delta$ then $f(x) = c$. Show that if $I \subset \mathbb{R}$ is an interval, then every locally constant function on I is constant, whereas if I is not an interval, then there exists a locally constant function on I that is not constant.

13. Let $f: [0, 1] \rightarrow \mathbb{R}$ be continuous with $f(0) = f(1) = 0$. Suppose that for every $x \in (0, 1)$ there exists $\delta > 0$ such that both $x - \delta$ and $x + \delta$ belong to $(0, 1)$ and $f(x) = \frac{1}{2}(f(x - \delta) + f(x + \delta))$. Prove that $f(x) = 0$ for all $x \in [0, 1]$.

14. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes every value on every interval. That is, for every $a < b$ and every y there exists $x \in (a, b)$ such that $f(x) = y$. Can such a function be continuous at any point?