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Preface

These notes are based on lectures given by the second author for Part III of the Mathematical Tripos at
the University of Cambridge. The aim is to expose the students to a circle of ideas which arises from certain
inverse problems in geometry and dynamical systems. The main unifying theme is the study of the X-ray
transform for compact simple manifolds with boundary and for closed manifolds carrying suitable Anosov
flows. There are surprising similarities between these two cases and several of these questions can be dealt
with a remarkable energy-type identity called the Pestov identity.

The spirit and content of the notes have considerable overlap with Sharafutdinov’s book [Sha94] and
in particular with his lecture notes ‘Ray Transform on Riemannian manifolds. Eight lectures on Integral
Geometry’ [Sha]. However, there are several differences. We focus almost exclusively on surfaces and thus
we avoid the machinery of semi-basic tensor fields. Our treatment is purely based on the elementary Cartan
structural equations on the unit circle bundle and is inspired by Uhlmann and Sharafutdinov’s beautiful
paper [SU00]. We feel that this makes first contact with the subject more accessible to students, while still
providing them with the main underlying ideas. The notes also contain elementary treatments of magnetic
flows and thermostats and several applications which are not covered in the references above. These include
a thorough study of the regularity of the Anosov splitting, entropy production and transparent connections.
It is also worth pointing out that the monograph by Knieper [Kni02] contains a more intrinsic derivation of
the Pestov identity (in any dimension) as well as a comprehensive discussion of rigidity issues for geodesic
flows.
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CHAPTER 1

Introduction

We being by introducing the main players in this monograph. The first section defines the geodesic
flow and explains the Anosov condition. The second section defines the X-ray transform, and presents a re-
sult on the kernel of the X-ray transform on the round sphere S2. The final section is a brief introduction to
contact and symplectic geometry, summarizing for the convenience of the reader the necessary background
information for future chapters.

We will make the following assumption throughout in order to avoid needless repetition:
All manifolds in this book are connected and orientable, and all flows are of class C1 and without fixed

points.
Occasionally this will be unnecessary, but for the sake of a uniform presentation we will keep these

hypotheses throughout.

1.1. The geodesic flow and the Anosov condition

Let .M; g/ be a closed (i.e. compact and without boundary) Riemannian manifold. Recall that a curve

 is called a geodesic if it is a solution to the 2nd order ODE called the standard geodesic equation

(1.1.1)
D P


dt
D 0;

where D
dt

is the covariant derivative arising from the Levi-Civita connection on M . In general we will
parametrize geodesics so they have unit speed, that is, j P
.t/j D 1 for all t 2 R. A closed geodesic 
 is a
geodesic 
 W R ! M such that there exists T > 0 such that 
.0/ D 
.T /, and P
.0/ D P
.T / (note this
is not the same as simply requiring the geodesic to be a loop). The smallest such value of T is called the
period of 
 .

Given .x; v/ 2 TM there exists a unique geodesic 
.x;v/ onM such that 
.x;v/.0/ D x and P
.x;v/.0/ D
v (in general we say a curve 
 W .��; �/! M is adapted to .x; v/ if 
.0/ D x and P
.0/ D v). Since M is
closed each geodesic is defined on all of R. Given t 2 R, we define a diffeomorphism �t W TM ! TM as
follows:

�t .x; v/ WD .
.x;v/.t/; P
.x;v/.t//:

Note that �t is a flow, that is, �t ı �s D �tCs .

DEFINITION 1.1. We define the unit sphere bundle SM to be the fibre bundle over M given by

SM WD f.x; v/ 2 TM W jvj D 1g :

Note that SM is a sphere bundle, since if � W SM ! M denotes the footpoint map, we have ��1.x/ Š
Sn�1. SM is a manifold of dimension 2n � 1, where dimM D n. If M is closed then SM is closed.

Since a geodesic is parametrized to have unit speed, �t leaves SM invariant and thus �t defines a flow
on SM , that is, if .x; v/ 2 SM then �t .x; v/ 2 SM . We call the restriction of �t to SM the geodesic flow
of .M; g/.

Let �t W N ! N be an arbitrary (smooth) flow on a closed Riemannian manifold .N; g/. �t determines
a vector field X , its infinitesimal generator defined by

(1.1.2) X.x/ D
d

dt

ˇ̌
tD0
�t .x/:

In the case of the geodesic flow, X is a vector field on SM , known as the geodesic vector field. We say that
�t W N ! N is a nonsingular flow if the infinitesimal generator X is nonsingular, that is, X.x/ ¤ 0 for all
x 2 N .

6



1.1. THE GEODESIC FLOW AND THE ANOSOV CONDITION 7

DEFINITION 1.2. A closed set ƒ � N is called �t -invariant (or simply ‘invariant’) if �t .ƒ/ � ƒ for
all t 2 R. A closed invariant set ƒ � N is called hyperbolic if there exist subbundles Es; Eu � TƒN

(here TƒN WD f.x; v/ 2 TN W x 2 ƒg - note this is not the same as Tƒ) such that: for all x 2 ƒ

TxN D RX.x/˚Es.x/˚Eu.x/;

and for all t 2 R,

d�t .E
s.x// � Es.�tx/;

d�t .E
u.x// � Eu.�tx/;

and for all t � 0,

kd�t jEsk � Ce
��t ;

kd��t jEuk � Ce
��t ;

where C;� > 0 are constants.
If N is itself a hyperbolic set we say that �t is an Anosov flow. We call the subbundles Es and Eu the

stable and unstable bundles respectively.

REMARK 1.3. Actually by slightly decreasing the value of � we can always assume that C D 1.
That is, we can find a new metric g0 such that the the corresponding constant C.g0/ D 1. Moreover, with
this metric the subbundles RX;Es and Eu are orthogonal. We call the metric g0 an adjusted metric on
N . This is a common trick in hyperbolic dynamical systems and often simplifies many arguments. For
completeness, here is a proof of this fact.

LEMMA 1.4. Suppose �t W N ! N is an Anosov flow. Let g be a Riemannian metric on N , and let
C D C.g/; � D �.g/ > 0 be constants such that for all x 2 N and all t � 0,

jdx�t .v/j � Ce
��t
jvj for all v 2 Es.x/;

jdx��t .v/j � Ce
��t
jvj for all v 2 Eu.x/:

Then there exists a metric g0 which is equivalent to g such that if C 0; �0 denote the corresponding constants
for g0 then C 0 D 1.

PROOF. Fix some �0 < �. For u 2 RX , v 2 Es , w 2 Eu and large T > 0 set:

juj0 WD juj I

jvj0 WD

Z T

0

e�
0s
jd�s.v/j dsI

jwj0 WD

Z T

0

e�
0s
jd��s.w/j dsI

juC v C wj0 WD

q
juj2 C jvj2 C jwj2:

EXERCISE 1.5. Show that (for T > 0 large enough) the metric g0 obtained form the norm j�j0 satisfies
the conditions of the lemma.

�

It is not hard to see that the subbundles Es and Eu are necessarily continuous (see Exercise 11.1 in
Chapter 11). Actually the distributions are more regular than this; we will discuss this much more fully in
Chapter 11. Observe that the adjusted metric g0 is as regular as the subbundles Es and Eu.

The following theorem, which we will prove in Chapter 5 shows that Anosov flows appear rather
frequently.

THEOREM 1.6. If .M; g/ is a closed surface with negative curvature then the geodesic flow on M is
Anosov.
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REMARK 1.7. A caveat on notation: Unfortunately there is no generally accepted convention in the
literature when it comes to naming the (un)stable bundles. The bundles Es and Eu that we defined above
are often referred to as the strong (un)stable bundles; this is to distinguish them from the weak (un)stable
bundles that we will introduce later (see Exercise 3.24). As such, it is quite common to see the notation
Ess and Esu (for ‘strong stable’ and ‘strong unstable’) for what we call Es and Eu. We call the weak
stable bundle E� and the weak unstable bundle EC; sometimes (when the strong stable bundles are called
Ess and Esu) these bundles are called Es and Eu. Even more confusingly, it is also not unusual to see
the weak stable bundle referred to as EC and the weak unstable bundle referred to as E� - the opposite
of what we use. The conventions we have chosen to follow are probably the most common, although the
reader however is strongly cautioned to make doubly sure whenever he or she reads papers in this area that
they are fully aware of exactly which permutation of the above symbols the author of that particular paper
is using!

1.2. The X-ray transform

DEFINITION 1.8. Let .M; g/ be a closed manifold. Let G.M; g/ denote the set of all closed geodesics
on M . Let h 2 C1.M;R/. Consider I Œh� W G.M; g/! R defined by

(1.2.1) I Œh� .
/ WD

Z T

0

h. P
.t//dt;

where T is the period of 
 . More generally, this defines a map I W C1.M;R/! Maps.G.M; g/;R/ called
the X-ray transform. The main question we wish to answer in these notes is: can we reconstruct h from
knowledge of I Œh�? Since I is linear we could alternatively ask: what is the kernel of I ?

We can ask a similar question for 1-forms: for � 2 �1.M/ and 
 2 G.M; g/ define

I Œ��.
/ WD

Z



�

and then define I W �1.M/! Maps.G.M; g/;R/. Similarly we can define

I W �.Sym2.T �M//! Maps.G.M; g/;R/

by setting

I Œˇ�.
/ D

Z T

0

ˇ
.t/. P
.t/; P
.t//dt

for a symmetric 2-tensor ˇ.

For 1-forms the kernel of I is never trivial, since one easily sees that if � is exact then I Œ�� D 0. In
this case the interesting question becomes whether this natural obstruction is in fact the only obstruction.
The following is a special case of one of the main results of this monograph, proved in Chapter 8.

THEOREM 1.9. Let .M; g/ be a closed surface and suppose the geodesic flow �t on M is Anosov. If
h 2 C1.M;R/ and if � 2 �1.M/ then

I ŒhC �� D 0 , h � 0 and � is exact.

Recall that the Laplacian of g is the map �g W C1.M;R/ ! C1.M;R/, defined by �g.h/ D
div.grad h/. Alternatively, in local coordinates,

�g.h/ D
1p

det gij
@i

�p
det gij @ih

�
; @ih WD gij @jh:

We say that a metric g has simple length spectrum if all the closed geodesics are nondegenerate and no two
have the same length, where by nondegenerate we mean the following: if E is the energy functional given
by

E.
/ WD
1

2

Z 1

0

j P
.t/j2 dt;

then the geodesics are precisely the critical points of E, and we say a geodesic is nondegenerate if it is
nondegenerate in the sense of Morse theory as a critical point of E. It can be shown that the property of a
metric having simple length spectrum is generic [Abr70, Ano82]. Let us denote by Spec.�g/ the spectrum
of the Laplacian, that is, the sequence .�i / � R of real numbers (counted with multiplicites) such that there
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exists 0 ¤ hi 2 C
1.M;R/ with �g.hi / D �ihi . The following result is due to Guillemin [Gui78] and

Duistermaat and Guillemin [DG75], and concerns the so-called Schrödinger operators

h 2 C1.M;R/ 7! �g.h/C qh 2 C
1.M;R/;

where q 2 C1.M;R/ is a fixed smooth function.

THEOREM 1.10. Let .M; g/ be a closed manifold such that g has simple length spectrum. Suppose
q1; q2 2 C

1.M;R/. Then if Spec.�g C q1/ D Spec.�g C q2/ it holds that I Œq1� D I Œq2�.

In fact, as pointed out by Guillemin and Kazhdan [GK80], in the case of negatively curved surfaces
by combining Theorem 1.6 and Theorem 1.9 we can say more. Namely, we have the following spectral
rigidity result:

COROLLARY 1.11. Let .M; g/ be a closed negatively curved surface with simple length spectrum.
Suppose q1; q2 2 C1.M;R/. Then:

Spec.�g C q1/ D Spec.�g C q2/ ) q1 D q2:

We shall come back to the issue of spectral rigidity in Chapter 12 (see Section 12.2).

It is not true in general that I acting on functions has zero kernel. Consider the case of S2, with the
usual metric of constant curvature 1. Here geodesics are great circles, and they are all closed with period
2� (we call manifolds all of whose geodesics are closed Zoll manifolds). A great circle can be identified
with a point on S2: the correspondence associates the geodesic traveling counter-clockwise through the
equator with the north pole N D .0; 0; 1/. Thus we may identify G.S2/ with S2 and consider I as a map
C1.S2/! C1.S2/, defined by

I Œh� .x/ D

Z 2�

0

h.
.t//dt; x $ 
:

EXERCISE 1.12. Show that if h is an odd function then I Œh� D 0.

We have a decomposition
C1.S2/ D C1odd.S

2/˚ C1even.S
2/;

and the exercise asserts that C1odd.S
2/ � ker I . In fact, the following theorem holds.

THEOREM 1.13. The kernel of the X-ray transform I on S2 with its standard metric of constant cur-
vature 1 is precisely the odd functions on S2:

ker I D C1odd.S
2/:

Moreover I W C1even.S
2/! C1even.S

2/ is bijective.

We conclude this opening section by presenting a proof of this theorem, following [Gui76, Appendix
A]. The proof will use some representation theory and Fourier analysis. These methods will not reappear
in the rest of the book (although we do some Fourier analysis in Chapter 13); the reader who wishes to get
to the core of the material quicker is invited to skip ahead to the next section.

We will need the following standard formula for the Laplacian �Sn�1 acting on functions on Sn�1.
Given f 2 C1.Rn/, let Nf denote f jSn�1 . We first quote the following result relating �Rn and �Sn�1 ; its
proof can be found in [GHL04, Proposition 4.48]:

(1.2.2) �Rn.f / D �Sn�1.
Nf /C

@2f

@r2
C .n � 1/

@f

@r
;

where r is the radial coordinate.
Let

Pnk WD fhomogeneous polynomials of degree k on Rng

and
Hn
k WD

˚
P 2 Pnk W �Rn.P / D 0

	
� Pnk

denote the harmonic homogeneous polynomials of degree k on Rn.
We write P 2 Pn

k
as

P D rk NP ;
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and hence for P 2 Pn
k

, (1.2.2) reduces to

�Rn.P / D �Sn�1. NP /C k.k C n � 2/ NP ;

and so if P 2 Hn
k

then
�Sn�1. NP / D �k.k C n � 2/ NP ;

so that NP is an eigenfunction of �Sn�1 with eigenvalue �k.k C n � 2/. Write Pnk WD
˚
NP W P 2 Pn

k

	
and

similarly define Hn

k WD
˚
NP W P 2 Hn

k

	
.

We briefly describe the representation theory we need on SO.n/. We define an action of O.n/ on Pnk
by setting

.g � NP /.x/ WD NP .g�1x/

for P 2 Pnk and g 2 O.n/.

EXERCISE 1.14. Show that the Laplacian commutes with this action, that is,

�.g � P / D g ��.P /;

and hence this action descends to give an action on Hn

k .

The following theorem is standard (see for instance, [Sep07, Theorem 2.33]).

THEOREM 1.15. Hn

k is an irreducible O.n/-module and for n � 3 is also an irreducible SO.n/-
module.

Moreover L2.Sn/ decomposes as the Hilbert space direct sum

L2.Sn/ D

1M
kD0

Hn

k :

We now restrict to the case n D 3, and write Pk for P3
k

etc. The key observation we need is that the
X-ray transform I commutes with the action of SO.3/ on S2. It then follows immediately from Schur’s
Lemma (see [Sep07, Theorem 2.12]) that I maps Hk into itself and there exist constants fckg � R such
that

I jHk D ck � Id:

As we observed earlier, clearly c2kC1 D 0 for all k 2 N, since H2kC1 � C
1
odd.S

2/.

PROPOSITION 1.16. For k 2 N,

c2k D .�1/2k
Z 2�

0

.cos �/2kd�(1.2.3)

D 2�.�1/k
1 � 3 � 5 � � � .2k � 1/

2 � 4 � 6 � � � 2k
:(1.2.4)

PROOF. We take advantage of the fact that we need only check the result on a fixed P 2 H2k of our
choice and a fixed point in S2.

Consider

P.x; y; z/ WD

2kX
iD0

aix
2k�izi ;

for some constants ai 2 R. Of course the ai cannot be arbitrary; the assumption P is harmonic implies

0 D �Rn.P /

D

2k�2X
iD0

ai .2k � i/.2k � i � 1/x
2k�i�2zi C

2kX
iD2

ai i.i � 1/x
2k�izi�2

D

2k�2X
iD2

fai�2.2k � i C 2/.2k � i C 1/C ai i.i � 1/g x
2k�izi�2;

and hence
ai

ai�2
D �

.2k � i C 2/.2k � i C 1/

i.i � 1/
;
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and so

(1.2.5)
a2k

a0
D .�1/k

2k.2k � 1/ � � � 2 � 1

1 � 2 � 3 � � � .2k � 1/2k
D .�1/k :

Then if 
 W Œ0; 2��! S2 denotes the geodesic that goes once round the equator of S2, so 
 corresponds
to the North pole N D .1; 0; 0/ on S2 then

I Œ NP �.N / D

Z 2�

0

P.
.t//dt

D

Z 2�

0

P.cos t; sin t; 0/dt

D a0

Z 2�

0

.cos t /2kdt:

But also by assumption

I Œ NP �.N / D c2kP.N/

D c2ka2k :

Thus we conclude that

c2k D
a0

a2k

Z 2�

0

.cos t /2kdt;

and thus by (1.2.5), we obtain

c2k D .�1/
k

Z 2�

0

.cos t /2kdt:

We leave the verification that the integral (1.2.3) does indeed give the product (1.2.4) as stated as an exercise
for the reader. �

This immediately proves that the kernel of I is precisely the odd functions; namely if I Œf � D 0 then
expanding f into harmonic polynomials and using the fact that c2k ¤ 0 for all k shows f 2 C1odd.S

2/, that
is, ker I � C1odd.S

2/, and we have already observed the reverse inclusion trivially holds. It will take a bit
more work however to prove the second assertion of Theorem 1.13. We shall really only sketch the ideas
involved.

Let

h.s/ WD

Z 2�

0

.cos t /s=2dt;

so that
c2k D .�1/

kh.2k/:

The essence of the proof is to show that I is a smoothing operator of order �1
2

. More precisely, we
will show that I maps the Sobolev space H s

even.S
2/ into H sC1=2

even .S2/. There are various ways to define the
space H s.S2/; informally one thinks of a function f W S2 ! R lying in H s.S2/ for s 2 N if it has s
derivatives in L2 (see for instance [Wel08, Chapter IV, Section 1] for more information) . For our purposes
it suffices to observe that

Hk � H
s.S2/ for all s 2 R; k 2 N

and we may define the H s norm k�ks on Hk by

 NP 


s
WD ks



 NP 


L2

for P 2 Hk :

PROOF. (of Theorem 1.13)
We now undertake an analysis of the asymptotic behavior of h.s/; using the product expansion (1.2.4)

together with Wallis’s formula
p
� D lim

k!1

1
p
k
�

2 � 4 � 6 � � � 2k

1 � 3 � 5 � � � .2k � 1/

we discover

c2k ∼ .�1/k

r
4�

k
;

and hence for s 2 N large,
h.s/ D

p
2� � s�

1=2
CO.s�

1=2/:
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It follows that we may choose a constant C independent of s such that if f 2
L1
kD0 H2k then

C�1 kf ks � kI Œf �ksC1=2 � C kf ks ;

and hence I maps the Sobolev space H s
even.S

2/ bijectively onto H sC1=2
even .S2/.

Since s was arbitrary, it follows that I is bijective on C1even.S
2/ and this completes the proof. �

EXERCISE 1.17. Consider the X -ray transform I W �1.S2/ ! C1.S2/ on 1-forms on S2 and let
� W S2 ! S2 be the antipodal map. A 1-form � is said to be odd if ��� D �� and even if ��� D � . Show
that any odd form is in the kernel of I . Moreover, show that an even form is in the kernel of I if and only
if it is exact (see [Mic78, Section 8] if you get stuck).

1.3. A very brief introduction to contact and symplectic geometry

In this section we will give a very brief introduction to contact and symplectic geometry; in particular
we will show that SM admits the structure of a contact manifold, whose Reeb vector field is precisely the
geodesic vector field. Two references for this section are [Gei08, Section 1.5], and [Pat99, Chapter 1],
where most of this material has come from.

DEFINITION 1.18. Let M n be a smooth manifold, and let � W T �M ! M be the footpoint map.
Define a differential 1-form � on T �M , called the Liouville form by

�.x;p/.�/ WD p.d.x;p/�.�//; .x; p/ 2 T �M; � 2 T.x;p/T
�M:

If
�
x1; : : : ; xn; p1; : : : ; pn

�
are local coordinates on T �M we claim

� D pidx
i :

Denote the induced fibre coordinates on T T �M by
�
Pxi ; Ppi

�
, so that elements of T T �M are locally written

as � D Pxi @

@xi
C Ppi

@
@pi

. Then we have

�.�/ D �

�
Pxi
@

@xi
C Ppi

@

@pi

�
D pjdx

j

�
d�

�
Pxi
@

@xi
C Ppi

@

@pi

��
D pjdx

j

�
Pxi
@

@xi

�
D pi Px

i

D pjdx
j

�
Pxi
@

@xi
C Ppi

@

@pi

�
D pidx

i .�/:

DEFINITION 1.19. A symplectic form on a smooth manifold N 2n is a differential 2-form ! that is
closed and nondegenerate, that is, !n is a nowhere vanishing 2n-form. The pair .N; !/ is then called a
symplectic manifold.

Going back to the situation above, the 2-form ! D �d� D dxi ^ dpi is clearly closed, and since

.�1/n�1

nŠ
!n D dx1 ^ � � � ^ dxn ^ dp1 ^ � � � ^ dpn ¤ 0;

we see that .T �M;!/ is a symplectic manifold. We call ! the canonical symplectic form on T �M .

DEFINITION 1.20. A contact manifold .N; ˛/ is a smooth manifold N 2n�1 equipped with a contact
form ˛, that is, a 1-form ˛ such that ˛ ^ .d˛/n�1 is a volume form on N . Associated to a contact form ˛

is a unique Reeb vector field R defined by

˛.R/ D 1; iRd˛ D 0:

Indeed, for each point x 2 N , d˛x is a skew-symmetric 2-form of maximal rank 2n � 2, and hence has
a 1-dimensional kernel, which then defines R.x/ up to a scalar, that is, this defines an oriented line field
RR � TN . The contact condition implies ˛ is non-trivial on this line field, and hence there exists a unique
smooth non-vanishing section satisfying the normalization condition ˛.R/ D 1. Strictly speaking, what we
have just defined is a coorientable contact manifold. The word ‘coorientable’ refers to the fact that RR is
an oriented line field.
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The aim of the rest of this section is to introduce a 1-form ˛ on SM such that ˛ is a contact form,
and such that the associated Reeb vector field of ˛ is precisely the geodesic vector field X . We will take
a somewhat long winded approach to this, by first using the Liouville form to make S�M into a contact
manifold, and then using the musical isomorphism to transfer this contact structure to SM .

DEFINITION 1.21. Let .N 2n; !/ be a symplectic manifold. A Liouville vector field Y on N is a vector
field satisfying

LY! D !:

EXERCISE 1.22. Show that if Y is a Liouville vector field then the 1-form ˛ WD iY! is a contact form
on any hypersurface on N transverse to Y .

Let us go back to the case of .T �M;!/ where ! is the canonical symplectic form. We can define a
unique vector field Y on T �M by iY! D ��. Then since d.iY!/ D �d� D !, Y is a Liouville vector
field. Then we claim that Y is transverse to S�M . Indeed, the integral curves of Y through .x; p/ 2 T �M
can be written as 
.t/ D .x; etp/ and hence for p ¤ 0, we have

d

dt
h
.t/; 
.t/i D

d

dt
e2t hp; pi > 0;

where here h�; �i denotes the induced metric on T �M . Hence by Exercise 1.22 we conclude that � D �iY!
induces a contact form on S�M .

We wish to compute the Reeb vector field R of �. In fact, we prove that R D OgX where X is the
geodesic vector field, and Og W TM ! T �M is the so-called ‘musical isomorphism’ determined by the
Riemannian metric (see [Pat99, Definition 1.36]). In coordinates .xi / on M ,

Og W vi
@

@xi
7! gij v

idxj

with inverse

Og�1 W pjdx
j
7! gijpj

@

@xi
:

If the .xi / are normal coordinates at x then gij .x/ D ıij and @kgij .x/ D 0, and hence the musical
isomorphism Og is the ‘identity’ at x, i.e.

gij v
i
D vj :

Let the corresponding local coordinates on TM and T �M be denoted by
.x1; : : : ; xn; v1; : : : ; vn/ and .x1; : : : ; xn; p1; : : : ; pn/ respectively. Moreover if . Pxi ; Pvi / and . Pxi ; Ppi / de-
note the induced fibre coordinates on T TM and T T �M then the map d Og is also the identity on the fibres
over x.

In normal coordinates .xi / at x 2 M the local coordinate description . Pxi ; Pvi / of the integral curves of
X running through .x; v/ 2 SM is

t 7! .tvi ; vi /:

Hence if v D vi @

@xi
jx 2 TxM then

X.x; v/ D vi
@

@xi

ˇ̌
.x;v/
C0 �

@

@vi

ˇ̌
.x;v/

:

Since d Og is the identity map on the fibres over x, we have

. OgX/.x; v/ D vi
@

@xi

ˇ̌
.x; Ogv/

C0 �
@

@pi

ˇ̌
.x; Ogv/

:

Thus if .x; v/ 2 SM ,

�.x; Ogv/.. OgX/.x; v// D vidxi jx

�
vi

@

@xi

ˇ̌
x

�
D

X
i

.vi /2

D 1:
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Moreover

d�.x; Ogv/.. OgX/.x; v/; �/ D dpi ^ dx
i .. OgX/.x; v/; �/

D �vidpi j.x; Ogv/.�/:

D 0;

since
P
i pidpi D 0 on T.x;p/S�M , which follows by differentiating gijpipj D 1 and using the fact that

gij .x/ D ıij and @kgij .x/ D 0.
Thus we have proved that the Reeb vector field R of � is OgX .

DEFINITION 1.23. We can now give SM the structure of a contact manifold. Consider the 1-form
˛ D Og�� on TM . Let .x; v/ 2 SM . Then

˛.x;v/.�/ D �.x; Ogv/.d Og.�//

D . Ogv/.d.x; Ogv/� ı d Og.�//

D . Ogv/.d.x; Ogv/.� ı Og/.�//

D . Ogv/.d�.�//

D hv; d�.�/i :

Since � is a contact form on S�M , it follows ˛ is a contact form on SM . Moreover the Reeb vector field
of ˛ is just X , since we showed OgX D R. In fact there is another way to relate ˛ and X ; in Chapter 4 we
will introduce a metric hh�; �ii on TM called the Sasaki metric (see 4.2) . Under this metric ˛ and X will be
dual to each other, that is,

˛.�/ D hhX; �ii :

The final result we need (we will use this in Chapter 7) is the following.
Let H W TM ! R denote the ‘kinetic energy’ Hamiltonian defined by

H.x; v/ D
1

2
jvj2 :

Then on the entire tangent bundle TM ,
iXd˛ D �dH:

Note that this is in agreement with what we have already shown, since on SM , dH D 0 as H is
constant on SM .

EXERCISE 1.24. Prove the lemma (the reader may find a proof using local coordinates in [GHL04,
Theorem 2.124], or an intrinsic proof is given in [Pat99, Proposition 1.21], which makes use of the result
of Exercise 4.3 below).



CHAPTER 2

The boundary rigidity problem

In this chapter we will survey in some depth what at first sight is a seemingly unrelated problem; that of
boundary rigidity. We shall see however that the infinitesimal version of the boundary rigidity problem can
be solved in certain special cases by studying the kernel of the relevant X-ray transform. In the penultimate
chapter of this book we will return to this circle of ideas.

2.1. Introduction to the problem

Let .M; @M; g/ be a compact Riemannian manifold with boundary. The boundary rigidity problem is
the following: recall we define the geodesic distance function on M to be

(2.1.1) dg WM �M ! R; dg.x; y/ WD inf

2�x;y

`g.
/;

where �x;y denotes the set of smooth curves 
 W Œ0; 1�!M such that 
.0/ D x and 
.1/ D y, and

`g.
/ WD

Z 1

0

j P
.t/j dt:

Suppose that the following is known:

dg.x; y/; 8x; y 2 @M:

Can we reconstruct g on the interior of M from this information?

Here is the motivation for this problem. Suppose M is a ball
˚
x 2 R3 W jxj � R

	
(and so @M is the

sphere
˚
x 2 R3 W jxj D R

	
) equipped with a metric ds2 D f .r/

P3
iD1.dx

i /2 where r D jxj and f .r/ is
a positive function of the radius (so the metric is conformal to the standard one). Physically, this is meant
to represent a spherically symmetric model of the Earth with an index of refraction depending only on the
radius. The boundary distance function corresponds to the travel times of e.g. seismic waves going through
the Earth and measured at the surface. The problem goes back to Herglotz [Her05] and Wiechert and Zoep-
pritz [WZ07], who in the early part of the 20th century found a way to determine f .r/ from the restriction
of dg to @M � @M .

In this generality the answer is easily seen to be no: if  W M ! M is a diffeomorphism such that
 j@M D Id, then if g0 WD  �g we clearly have dg D dg0 on @M �@M , since if 
 2 �x;y then ı
 2 �x;y
and ` �g.
/ D `g.
/, but of course there is no reason for g to equal g0 on the interior of M . Thus it is
only sensible to frame the question as to whether knowledge of dg j@M�@M allows us to determine g on the
interior of M up to such a diffeomorphism. We will say that g is boundary rigid if dg j@M�@M determines
g up to such a diffeomorphism  .

Regrettably however the answer is still easily seen to be negative. Suppose M contains an open set U
on which g is very large. Then all length minimizing curves will avoid U , and thus dg will not carry any
information about gjU . Thus we can alter g on U (but keeping it large) and not affect dg on @M � @M .
Here is an example: take M to be the upper hemisphere of S2, and let g0 denote the natural metric on M .
Note that dg0.x; y/ for any two boundary points is realized as the length of the shortest arc on @M connect-
ing x and y. Now take a non-negative function f supported on U � M and let g1 D .1 C f /g0. Then
dg0 D dg1 on @M � @M , but .M; g0/ and .M; g1/ are not isometric as since Vol.M; g1/ > Vol.M; g0/.

We need to impose further conditions on .M; @M; g/ in order to have a chance of making progress.
Consider the boundary @M of a Riemannian manifold M . Then for x 2 @M ,

T ?x @M WD fv 2 TxM W hv;wi D 0 for all w 2 Tx@M g

15
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is a 1-dimensional vector space, and thus there exist precisely two unit vectors in T ?x @M . We say that a
vector v 2 TxM is called an unit inward pointing normal to @M at x if v 2 T ?x @M , jvj D 1 and choosing
orientation-compatible local coordinates .xi / at x such that @M D fxn D 0g then writing v D vi@i we
have vn > 0. Similarly v is an unit outward pointing normal if �v is an unit inward pointing normal. There
exists a unique unit inward pointing normal vector field along @M , that is, a map � W @M ! T@MM such
that �.x/ is the unit inward pointing normal at x.

We define the second fundamental form Sx of M at x 2 @M by

Sx W Tx@M � Tx@M ! R; Sx.u;w/ WD � hru�;wi :

We say that @M is strictly convex if Sx is positive definite for all x 2 @M . Here is the crucial condition that
we will impose.

DEFINITION 2.1. Let .M; @M; g/ be a compact manifold with boundary. We say that .M; @M; g/ is
simple if @M is strictly convex and for all x 2M ,

expx W exp�1x .M/ � TxM !M

is a diffeomorphism. These two conditions imply that any two points in M are joined by a unique geodesic
which depends smoothly on the endpoints, and that if x; y 2 M and 
 is the unique geodesic from x to y
then 
�1.@M/ � fx; yg \ @M , that is, the interior of 
 does not intersect @M .

EXERCISE 2.2. Show that any simple manifold is diffeomorphic to a ball in Rn (a proof may be found
in [Sha94]). Show that the condition of being simple is C 2-open in the metric g.

CONJECTURE 2.3. ([Mic81]) Simple manifolds are boundary rigid within the class of simple metrics.

This is known to be true generically, and has been proved completely by Pestov and Uhlmann in
dimension two - see [PU05].

2.2. Deformation boundary rigidity

Let us consider the linearization of the boundary rigidity problem, which is sometimes easier to solve.
We refer the reader to [Sha94, Chapter 1], for a more thorough discussion of the differences between the
two problems.

Let fgs W s 2 .��; �/g be a family of metrics such that .M; @M; gs/ is simple for all s. Suppose that
ds WD dgs satisfies ds D d0 on @M �@M for all s 2 .��; �/. We say the family fgsg is trivial if there exists
a smooth family f sg of diffeomorphisms such that  0 D Id and  sj@M D Id and gs D  �s g0. We say
.M; @M; g/ is deformation boundary rigid if any such family fgsg with g0 D g is trivial.

Take x; y 2 @M . Let 
s denote the unique geodesic from x to y under gs (
s exists and is unique since
.M; @M; gs/ is simple), parametrized with speed 1. Since ds D d0 on @M � @M , if T WD d0.x; y/ then all
the 
s are defined on Œ0; T �. Consider the energy functional

Es.
/ WD

Z b

a

j P
.t/j2s dt for 
 W Œa; b�!M:

Note that Es.
s/ � T . We simplify the problem by linearizing. Namely, compute:

(2.2.1) 0 D
d

ds

ˇ̌̌
sD0

T D
d

ds

ˇ̌̌
sD0

Es.
s/ D

Z T

0

@gs

@s

ˇ̌̌
sD0

. P
0.t/; P
0.t//dt C
d

ds

ˇ̌̌
sD0

E0.
s/:

Now we can consider 
s as a variation of 
0, and since 
0 is a critical point ofE0, we have d
ds

ˇ̌̌
sD0

E0.
s/ D

0, and thus writing

(2.2.2) ˇ WD
@gs

@s

ˇ̌̌
sD0

;

ˇ is a symmetric 2-tensor and (2.2.1) reduces to

Ig0 Œˇ�.
0/ D

Z T

0

ˇ
0.t/. P
0.t/; P
0.t//dt D 0:

But x and y were arbitrary, and since every geodesic begins and ends on @M , we conclude that

Ig0 Œˇ� D 0;



2.2. DEFORMATION BOUNDARY RIGIDITY 17

where here Ig0 is the X-ray transform defined on 2-tensors with respect to the metric g0. In other words,
we have proved:

LEMMA 2.4. Let .M; @M/ be a compact manifold with boundary and fgsg a family of simple metrics
on M such that ds D d0 on @M � @M for all s. Define the symmetric 2-tensor ˇ by (2.2.2). Then ˇ is in
the kernel of the X-ray transform with respect to g0.

DEFINITION 2.5. A symmetric 2-tensor ˇ is called a potential 2-tensor if there exists a smooth vector
field Z on M such that

ˇx.v; w/ D hrvZ.x/; wi C hv;rwZ.x/i

for all x 2M and Zj@M D 0.

Now let .M; @M/ be a compact manifold with boundary and fgsg a trivial family of simple metrics on
M , with associated family f sg of diffeomorphisms. Let Z denote the vector field defined by

Z D
d

ds

ˇ̌̌
sD0

 s :

Note that Zj@M D 0.
Then with ˇ defined as in (2.2.2),

(2.2.3) ˇ.v;w/ D
@

@s

ˇ̌̌
sD0

g0.d s.v/; d s.w//:

Let r D r0 denote the Levi-Civita connection of g0. Thus if we take smooth curves a W .�ı; ı/ ! M

adapted to .x; v/ and b W .�ı0; ı0/!M adapted to .x; w/ we obtain

ˇx.v; w/ D
@

@s

ˇ̌̌
sD0

g0.d s.v/; d s.w//

D
@

@s

ˇ̌̌
sD0

g0

�
@

@t

ˇ̌̌
tD0
 s ı a.t/;

@

@t

ˇ̌̌
tD0
 s ı b.t/

�
.�/
D

�
r @
@s

@

@t
 s ı a.t/; w

�
C

�
v;r @

@s

@

@t
 s ı b.t/

� ˇ̌̌
sDtD0

.��/
D

�
r @
@t

@

@s
 s ı a.t/; w

�
C

�
v;r @

@t

@

@s
 s ı b.t/

� ˇ̌̌
sDtD0

D hrvZ.x/; wi C hv;rwZ.x/i ;

where .�/ is the statement that r is compatible with the metric and .��/ is the statement that r is symmet-
ric. Thus we have proved that if fgsg is trivial then ˇ is a potential tensor with Zj@M D 0. Conversely we
may repeat this argument backwards, by integrating the equations:

@ s

@s
D Zs ı  s;  0 D Id;

to obtain the following:

PROPOSITION 2.6. Let .M; @M/ be a compact manifold with boundary and fgsg a family of simple
metrics on M such that ds D d0 on @M � @M for all s. Define a family of symmetric 2-tensors fˇsg by

ˇs.v; w/ D
@gs

@s
.v; w/:

Then fgsg is a trivial family if and only if fˇsg is a family of potential 2-tensors with the corresponding
vector fields Zs depending smoothly on s.

EXERCISE 2.7. Complete the details for the converse direction in the proposition above.

In the Chapter 12 we will prove the following two-dimensional result (see Theorem 12.5).

THEOREM 2.8. Let .M; @M; g/ be a simple compact surface with negative curvature. Let ˇ be a
symmetric 2-tensor. If I Œˇ� D 0, then ˇ is a potential 2-tensor.

Combining this result with Lemma 2.4 and Proposition 2.6 we obtain immediately the following result.

COROLLARY 2.9. Compact simple negatively curved Riemannian surfaces are deformation boundary
rigid.

In fact, the curvature assumption is not needed as has recently been proved by Sharafutdinov [Sha07].
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2.3. Lens rigidity

DEFINITION 2.10. Let .M; @M; g/ be a simple manifold, and let x 2 @M . Let �.x/ denote the unit
inward pointing normal. Set

@C.SM/ WD f.x; v/ 2 SM W x 2 @M; hv; �.x/i � 0g;

@�.SM/ WD f.x; v/ 2 SM W x 2 @M hv; �.x/i � 0g:

Then we have
@C.SM/ [ @�.SM/ D @.SM/;

@C.SM/ \ @�.SM/ D S.@M/:

Let also
TM0 WD f.x; v/ 2 TM W v ¤ 0g :

Given .x; v/ 2 TM0, there exists a unique geodesic 
.x;v/ adapted to .x; v/; moreover 
.x;v/ is maximally
defined on a finite interval Œ��.x; v/; �C.x; v/�, with


.x;v/.��.x; v// 2 @M; 
.x;v/.�C.x; v// 2 @M:

This defines two functions �˙ W TM0 ! R which plainly satisfy

��.x; v/ � 0; �C.x; v/ � 0;

�C.x; v/ D ���.x;�v/;

��j@C.SM/ D �Cj@�.SM/ D 0;

(2.3.1) ��.�t .x; v// D ��.x; v/ � t; �C.�t .x; v// D �C.x; v/C t

and for t > 0,

�˙.x; tv/ D
1

t
�˙.x; v/:

Using the implicit function theorem, we see that the functions �˙ are smooth near points .x; v/ such that

.x;v/.t/ intersects @M transversely for t D �˙.x; v/. Since @M is strictly convex, this holds everywhere
apart from TM0\T .@M/, and thus we conclude that the functions �˙ are smooth away from TM0\T .@M/.
One can however show (see [Sha94, Lemma 4.1.1]) that the functions

�Cj@C.SM/ W @C.SM/! R; ��j@�.SM/ W @�.SM/! R

are smooth.

DEFINITION 2.11. The scattering relation is the map defined by

# W @C.SM/! @�.SM/I

#.x; v/ WD ��C.x;v/.x; v/:

Suppose g and g0 are two simple metrics on .M; @M/ such that d D d 0 on @M � @M (where d D dg
and d 0 D dg0 etc.). We will show in Proposition 2.13 below that, modifying g0 by a diffeomorphism which
is the identity on the boundary if necessary, we have

@˙.SM/ D @˙.S
0M/

and thus the following definition makes sense:

DEFINITION 2.12. Let .M; @M/ be a compact manifold and g; g0 two simple metrics onM . We say g
and g0 are lens equivalent if �Cj@C.SM/ D �

0
Cj@C.S 0M/ and # D # 0. The lens rigidity problem asks whether

lens rigidity determines the metric (up to a diffeomorphism which is the identity on the boundary).

PROPOSITION 2.13. Let g and g0 be two simple metrics on the compact manifold with boundary M
such that d D d 0 on @M � @M . Then there exists a diffeomorphism  W M ! M such that  j@M D Id
and such that if g00 WD  �g0 then g D g00 on T@MM � T@MM .
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PROOF. Let .x; v/ 2 T .@M/ and take a curve 
 W .��; �/ ! @M adapted to .x; v/. Since 
 takes
values in @M , for all s 2 .��; �/ we have

d.x; 
.s// D d 0.x; 
.s//:

It follows that

jvj D lim
s#0

d.x; 
.s//

s
D lim

s#0

d 0.x; 
.s//

s
D jvj0 :

Thus by the polarization identity we see that already we have g D g0 on T .@M/ � T .@M/. This is not
good enough though; in general we will need to modify g0 before we obtain the stronger statement of the
proposition.

Let �.x/ denote the unit inward pointing normal with respect to g, and define the boundary exponential
map

exp@M W @M � ft � 0g !M; .x; t/ 7! expx.t�.x//;
which maps a neighborhood of @M � f0g diffeomorphically onto a neighborhood of @M . Now define

(2.3.2)  WD exp0@M ı.exp@M /
�1

(where the superscripts denote which metric they belong to). Then on some collar neighborhood U of @M ,
 is a diffeomorphism. It can be shown (although this requires a bit of effort) that it is possible to extend
 smoothly across all of M . Assume this is done. Then we claim  W M ! M satisfies the requirements
of the proposition. Indeed,  j@M D Id, and moreover given x 2 @M , if 
 is the unique g-geodesic adapted
to .x; �.x// and similarly 
 0 is the unique g0-geodesic adapted to .x; �0.x// then

 .
.t// D 
 0.t/:

Hence by differentiating we have
dx .�.x// D �

0.x/:

Now define g00 WD  �g0. Then observe if x 2 @M and v 2 Tx@M then

g00.v; �.x// D g0.dx .v/; dx .�.x///

D g0.v; �0.x//

D 0;

since dx jTx@M D Id, and thus g00 has unit inward normal vector field equal to �. Next, for x 2 @M we
have the decomposition

TxM D Tx@M ˚ R�.x/;

since Tx@M is a codimension 1 vector subspace of TxM and 0 ¤ �.x/ … Tx@M . Finally, since g0 (and
hence g00, since dx is the identity on Tx@M ) and g agree on T @M � T @M , it follows that

g D g00 on T@MM � T@MM;

as we wanted to show. �

The following result shows that lens rigidity is weaker than boundary rigidity.

PROPOSITION 2.14. Let g and g0 be two simple metrics on the compact manifold with boundary M ,
such that d D d 0 on @M � @M . Then after modifying g0 by a diffeomorphism if necessary, the scattering
relations coincide: # � # 0.

PROOF. Let .x; v/ 2 @C.SM/ D @C.S
0M/. Suppose #.x; v/ D .y; w/ 2 @�.SM/. Let 
x;y

denote the unique g-geodesic that starts at x and ends at y. Then we necessarily have P
x;y.0/ D v and
P
x;y.�C.x; v// D w. Similarly let 
 0x;y denote the unique g0-geodesic that starts at x and ends at y. Let

v0 WD P
 0x:y.0/; w0 WD P
 0x;y.�
0
C.x; v

0//:

To complete the proof we will show that

v D v0; w D w0:

Indeed, we will then have # 0.x; v/ D .y; w/ D #.x; v/. We begin by showing that w D w0.
Define the distance function r W M ! R by r.p/ D d.x; p/ and similarly r 0.p/ D d 0.x; p/ . Then

we claim that rr.y/ D w. Indeed, the Gauss Lemma shows that w is g-orthogonal with respect to the
g-geodesic spheres r D const. But rr.y/ has the same property, and thus w and rr.y/ are parallel. Since
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both are unit vectors with outward pointing normal component, we must have rr.y/ D w as claimed.
Similarly rr 0.y/ D w0.

Now let h D r j@M . Then rh.y/ is the orthogonal projection of the vector rr.y/ in the ‘hemisphere’
@�.SyM/ onto the ‘equator’ Ty@M ; in particular rh.y/ uniquely determines rr.y/. But by assumption,
h D h0, and thus rh.y/ D rh0.y/; and hence

w D rr.y/ D rr 0.y/ D w0:

Now we show that v D v0. For this we simply repeat the same argument as above, only starting at y
and running the two geodesics back towards x, using the fact that the unique geodesic (in either metric)
from y to x is just the geodesic from x to y traversed backwards. This completes the proof. �

In fact, for simple metrics the boundary rigidity problem and the lens rigidity problem are equivalent.
Indeed, it follows readily from the definitions that if �C D � 0C on @C.SM/ D @C.S

0M/ and � ı# D � ı# 0,
then d D d 0 on @M � @M .

2.4. Equivalence of C1 jets

The following result is the main one of this chapter, and was proved by Lassas, Sharafutdinov and
Uhlmann in [LSU03, Theorem 2.1]. The history of the result goes back earlier though; Michel proved the
2-dimensional case in [Mic81] and then later a C 2 jet version [Mic94] (as opposed to the C1 jet statement
below).

THEOREM 2.15. (Lassas, Sharafutdinov, Uhlmann [LSU03])
Let g and g0 be two simple metrics on M n such that d D d 0 on @M � @M . Then after modifying g0

by a diffeomorphism which is the identity on the boundary if necessary, g and g0 have the same C1-jet on
@M .

PROOF. By Proposition 2.8 we may assume g D g0 on T@MM � T@MM . Set f WD g � g0. First
observe that if I denotes the X-ray transform then

(2.4.1) I Œf �.
/ � 0

for all geodesics 
 on .M; g/ connecting boundary points. Indeed, if 
 is a g-geodesic, we may assume 

is defined on Œ0; 1� and compute

I Œf �.
/ D

Z 1

0

f
.t/. P
.t/; P
.t//dt

D

Z 1

0

g
.t/. P
.t/; P
.t//dt �

Z 1

0

g0
.t/. P
.t/; P
.t//dt

� d.x; y/2 � d 0.x; y/2

D 0:

Fix a point p 2 @M and take boundary normal coordinates .u1; : : : ; un�1; z/ on a neighborhood U of p.
By definition these are coordinates such that z � 0 on U and @M \ U D fz D 0g, and that the length
element ds2 of the metric g is given by

ds2 D g˛ˇdu
˛duˇ C dz2; ˛; ˇ 2 f1; : : : ; n � 1g;

(the Gauss Lemma shows that such coordinates always exist). Now the coordinate lines u D const are
geodesics of the metric g orthogonal to the boundary; since g D g0 on T@MM � T@MM it follows that the
same coordinates are also boundary normal coordinates for g0; in particular

ds02 D g0˛ˇdu
˛duˇ C dz2; ˛; ˇ 2 f1; : : : ; n � 1g:

Since p was arbitrary, to complete the proof it suffices to show that for all x 2 U \ @M , k 2 N [ f0g and
1 � ˛; ˇ � n � 1 we have

(2.4.2)
@f˛ˇ

@zk
.x/ D 0;

where f˛ˇ D g˛ˇ � g
0
˛ˇ

. The case k D 0 is precisely the assertion that g D g0 on T@MM � T@MM , and
so this gives the base step for an inductive proof. Suppose that (2.4.2) holds for 0 � k < ` but fails for `.
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This implies the existence of x0 2 @M \ U and v0 2 Sx@M such that

@`f˛ˇ

@z`
.x0/v

˛
0v
ˇ
0 ¤ 0:

Without loss of generality we may assume

@`f˛ˇ

@z`
.x0/v

˛
0v
ˇ
0 > 0:

By continuity of f , there exists a neighborhood O � SM of .x0; v0/ such that for all .x; v/ 2 O,

(2.4.3)
@`f˛ˇ

@z`
.x/v˛vˇ > 0:

Since (2.4.3) is a homogeneous polynomial of degree 2, we may assume that if

CO WD

�
.x; v/ 2 TM W v ¤ 0;

�
x;

v

jvj

�
2 O

�
then (2.4.3) holds for all .x; v/ 2 CO.

Now we develop f˛ˇ in a Taylor series; using the inductive hypotheses we may write

f˛ˇ .u; z/ D
1

`Š

@`f˛ˇ

@z`
.u; 0/z` C o.jzj`/;

and hence shrinking O if necessary we may assume that for all .x; v/ 2 CO we actually have

(2.4.4) f˛ˇ .x/v
˛vˇ > 0:

Now let ı W .��; �/! M be a curve adapted to .x0; v0/, and let 
� W Œ0; 1�! M be the shortest geodesic
of g joining x0 and ı.�/. Then�


� .t/;
P
� .t/

j P
� .t/j

�
! .x0; v0/ uniformly in t 2 Œ0; 1� as � ! 0:

Thus for sufficiently small � > 0, we have .
� .t/; P
� .t// 2 CO for all t 2 Œ0; 1�, and thus for � sufficiently
small we have

I Œf �.
� / > 0;

contradicting (2.4.1). This completes the proof. �

2.5. Solving the problem in the real analytic case

As a corollary we present the following result, also due to Lassas, Sharafutdinov and Uhlmann ([LSU03,
Theorem 2.2]) that solves the boundary rigidity conjecture in the real analytic case.

THEOREM 2.16. Let M be a compact real analytic manifold with real analytic boundary @M . Let g
and g0 be two simple real analytic Riemannian metrics on M such that d D d 0 on @M � @M . Then there
exists a real analytic diffeomorphism  WM !M with  j@M D Id and g0 D  �g.

PROOF. As in (2.3.2) there exists a collar neighborhood U of @M such that  WD exp0
@M
ı.exp@M /

�1

is an injective local diffeomorphism, which is obviously real analytic for real analytic metrics. As shown
in the proof of Theorem 2.15, g and  �g0 have the same C1-jet on @M . Thus by analyticity, g and  �g0

coincide in some connected neighborhood of @M , and  is a real analytic isometry of the real analytic
manifold .U; g/ onto the real analytic manifold .U; g0/ which is the identity when restricted to @M .

To complete the proof we need to show that  extends to a real analytic isometry b of .M; g/ onto
.M; g0/. The argument is somewhat intricate and beyond the scope of these notes; we refer the reader to
[LU89, Theorem C(a)]. �
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2.6. Gluing

We conclude this chapter by discussing an application due to Croke [Cro04] of the previous result.

EXAMPLE 2.17. Let .N; g/ be a closed manifold, and suppose .M; @M/ is an embedded submanifold
ofN . Then the metric g restricts toM to give a metric (still denoted by) g onM . Suppose we have another
metric g0 on M , and suppose both g and g0 are simple and such that d D d 0 on @M � @M . Then Theorem
2.15 tells us that, after modifying g0 by a diffeomorphism if necessary, we may glue .M; @M; g0/ into N to
get a new Riemannian manifold .N; g0/. More precisely, we can define a new Riemannian metric g0 on N
by

g0 D

(
g0 M

g NnM:

DEFINITION 2.18. Suppose N and N 0 are smooth manifolds with flows �t and ft respectively. A
diffeomorphism of class C r ,  W N ! N 0 is called a C r -time preserving conjugacy if  intertwines the
flows, that is,

ft ı  D  ı �t :

If such a map  exists we say that �t and ft are C r -conjugate. A related concept is a non time preserving
conjugacy, called an orbit equivalence, which is a diffeomorphism  W N ! N 0 that takes the orbits of �t
into the orbits of ft . Occasionally we will want to consider merely continuous conjugacies.

LEMMA 2.19. In the situation described in Example 2.17, the geodesic flows of .N; g/ and .N; g0/ are
C1-conjugate.

PROOF. Let SN and S 0N denote the unit sphere bundles of N with respect to g and g0 respectively,
and similarly for SM and S 0M . Let �t and ft denote the corresponding geodesic flows on N . Suppose
.x; v/ 2 SM . Define  W SM ! S 0M by

 .x; v/ D f���.x;v/ ı ���.x;v/.x; v/;

where ��.x; v/ is the function defined in Section 2.10, with respect to g.
We claim  j@.SM/ D Id. Indeed, since ��j@C.SM/ D 0, we certainly have  j@C.SM/ D Id, and

since the scattering relations of .M; @M; g/ and .M; @M; g0/ coincide by Proposition 2.14 we also have
f���.x;v/ ı ���.x;v/ D Id for .x; v/ 2 @�.SM/. Let us extend  to a homeomorphism SN ! S 0N by
letting it be the identity outside of SM . To see that  is smooth we proceed as follows. Let U be any open
neighborhood of M in N such that any g-geodesic 
.x;v/ with .x; v/ 2 SU intersects @ NU transversally.
Then we have a length � NU� which is smooth on SU . Since the map f

�� NU� .x;v/
ı �

� NU� .x;v/
defined on SU is

smooth and coincides with  on SU ,  is also smooth.
Now it remains only to check that  is actually a time preserving conjugacy, and for this it is enough

to check on SM . Given .x; v/ 2 SM and t 2 R, observe firstly that by (2.3.1),

��.�t .x; v// D ��.x; v/ � t;

and thus

 .�t .x; v// D f���.�t .x;v// ı ���.�t .x;v//.�t .x; v//;

D ft���.x;v/ ı ���.x;v/�t ı �t .x; v/

D ft ı
˚
f���.x;v/ ı ���.x;v/.x; v/

	
D ft . .x; v//:

�

This lemma will give us a way of showing that certain manifolds with boundary are boundary rigid by
using rigidity results for geodesic flows on closed manifolds. We will return to this later on, but we finish
this chapter by showing that the existence of a C 1-conjugacy implies equality of volumes. We first prove
the following technical lemma, due originally to Croke and Kleiner ([CK94, Lemma 2.1]).

LEMMA 2.20. Let P be a compact .2n � 1/-manifold either with or without boundary, and �0; �1
1-forms on P and X a vector field on P . Suppose that

�0.X/ D �1.X/ D 1;

iXd�0 D iXd�1 D 0;
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and if @P ¤ ; then �0j@P D �1j@P (if @P D ; then this condition is vacuous).
Then

(2.6.1)
Z
P

�0 ^ .d�0/
n�1
D

Z
P

�1 ^ .d�1/
n�1:

PROOF. Let �t WD t�1 C .1 � t /�0. Then clearly �t .X/ D 1 and iXd�t D 0 for all t , and letting P�t
denote @

@t
�t we have P�t D �1 � �0; in particular P�t j@P D 0 if @P ¤ ;. We will show that

d

dt

Z
P

�t ^ .d�t /
n�1
D 0;

whence the result follows. Indeed,

(2.6.2)
d

dt

Z
P

�t ^ .d�t /
n�1
D

Z
P

P�t ^ .d�t /
n�1
C .n � 1/

Z
P

�t ^ d P�t ^ .d�t /
n�2:

But now since iX . P�t ^ .d�t /n�1/ D 0, as P�t ^ .d�t /n�1 is a top dimensional form this implies P�t ^
.d�t /

n�1 D 0. Next, we note that

d
�
�t ^ P�t ^ .d�t /

n�2
�
D P�t ^ .d�t /

n�1
� �t ^ d P�t ^ .d�t /

n�2
C �t ^ P�t ^ d.d�t /

n�2

D ��t ^ d P�t ^ .d�t /
n�2:

This shows that the first integral in (2.6.2) is zero, and the second is the integral of an exact form, and thus
by Stokes’ Theorem is equal to

�.n � 1/

Z
@P

�t ^ P�t ^ .d�t /
n�2;

which is certainly zero if @P D ;, and if @P ¤ ; it is also zero since P�t j@P D 0. �

The following result is from [CK94, Proposition 1.2]

PROPOSITION 2.21. Let N be a closed manifold and g; g0 two metrics on N such that the geodesic
flows of .N; g/ and .N; g0/ are smoothly conjugate. Then Vol.N; g/ D Vol.N; g0/.

PROOF. Let  W SN ! S 0N denote the conjugacy, and let �t and ft denote the corresponding
geodesic flows, with infinitesimal generators X and X 0. Let ˛ and ˛0 denote the respective contact forms.
Now let �0 D ˛ and �1 D  �˛0.

Then

�1.X/ D  �˛0.X/

D ˛0.d .X//

.�/
D ˛0.X 0/

D 1;

where .�/ follows by differentiating ft ı  D  ı �t . Similarly, it is easy to check that iXd�1 D 0 and
hence Lemma 2.20 impliesZ

SN

˛ ^ .d˛/n�1 D

Z
SN

 �˛0 ^ .d. �˛0//n�1

D

Z
SN

 �.˛0 ^ .d˛0/n�1/

D

Z
S 0N

˛0 ^ .d˛0/n�1:

To complete the proof we quuote the following fact, which we shall need at several points in the course
(here ground denotes the canonical round metric on Sn�1):

(2.6.3) Vol.N; g/ D
.�1/n�1

.n � 1/ŠVol.Sn�1; ground/

Z
SN

˛ ^ .d˛/n�1:

A reference for this formula is [Cha06, Theorem VII.1.3]. Here we are using the convention that if
dim N D n then .�1/n�1˛ ^ .d˛/n�1 is a positively oriented volume form on SN , which is consistent
with the conventions made in the rest of these notes. �
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In fact, one only needs the conjugacy to be of class C 1 to obtain equality of volume; the proof above
easily extends, see [CK94].

Finally, an immediate corollary of Lemma 2.20 and Proposition 2.21 is the following.

COROLLARY 2.22. In the situation described in Example 2.17 we have Vol.N; g/ D Vol.N; g0/.

EXERCISE 2.23. Using the same ideas as above show that two simple manifolds with the same bound-
ary distance function must have the same volume.



CHAPTER 3

Anosov flows

This chapter surveys some general results about Anosov flows. In the first section we consider Anosov
diffeomorphisms and give a few examples. We then move on to discussing the Anosov property in general,
and conclude with a relevent theorem due to Ghys.

3.1. Anosov diffeomorphisms

To begin with we wish to give a few examples of the Anosov condition. We will describe the related
concept of an Anosov diffeomorphism; essentially the discrete-time analogue of the above. Any Anosov
diffeomorphism induces an Anosov flow on its suspension.

DEFINITION 3.1. Contrast this definition with the definition of an Anosov flow in Section 1.2. Given a
smooth manifoldM and U �M open, and  W U !M a C 1 diffeomorphism onto its image, andƒ � U
a compact  -invariant set, we say thatƒ is a hyperbolic set for  if there exists a metric (called a Lyapunov
metric) on an open neighborhood V of ƒ and � < 1 < � such that for any x 2 ƒ and any n 2 Z, the
differential

d n.x/ W T nxM ! T nC1xM

induces a splitting
T n.x/M D E

s. nx/˚Eu. nx/;

such that
d nx .E

s. nx// � Es. nC1x/;

d nx .E
u. nx// � Eu. nC1x//;

and such that 

d nx jEs. nx/

 � ��n;

d nx jEu. nx/

 � �n:
If  W M ! M is a smooth map of the compact manifold M we say that  is an Anosov diffeomorphism
if M is itself a hyperbolic set for  .

EXAMPLE 3.2. Let A W T2 D R2=Z! T2 be given by the matrix

A D

�
2 1

1 1

�
:

Then A is an Anosov diffeomorphism. Indeed, taking the standard Euclidean metric on T2, since the
eigenvalues of A are

� D
3 �
p
5

2
; � D

3C
p
5

2
;

and we obtain a hyperbolic splitting of TAnxT2 given by the eigenspaces of A.

DEFINITION 3.3. Let  W M ! M be a diffeomorphism. We can construct a suspension flow on the
suspension manifold M as follows.

Let M denote the quotient space of M � R obtained by identifying

.x; t/ � . x; t C 1/:

Define �t WM �R!M �R by �t .x; s/ D .x; sC t /. Then �t induces a flow �
 
t on the quotient manifold

M .

EXERCISE 3.4. Show that if  is an Anosov diffeomorphism on N , then � t is an Anosov flow onM .

Hence the 3-manifold MA where A is as in the previous example carries an Anosov flow �At .

25
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EXAMPLE 3.5. Let � be a discrete subgroup of PSL.2;R/, such thatN WD � nPSL.2;R/ is compact
(� is called a cocompact lattice or a uniform lattice).

The Lie algebra of PSL.2;R/ is sl.2;R/, and we may take as a basis of sl.2;R/ the set fX;H; V g
where

(3.1.1) X WD

�
1
2

0

0 �
1
2

�
; H WD

�
0 �

1
2

�
1
2

0

�
; V WD

�
0 1

2

�
1
2

0

�
:

Note that we have the structural equations

ŒV; X� D H

ŒH; V � D X(3.1.2)
ŒX;H� D �V

Given anyA 2 sl.2;R/, we may writeA D xXCyHCzV . We define a map sendingA D xXCyHCzV
to a D x2 C y2 � z2, and then we consider the cone in R3 determined by

˚
x2 C y2 � z2 D 0

	
. Given

A 2 sl.2;R/, we say that A is hyperbolic if a lies outside the cone, that is, a > 0, we say A is elliptic if a
lies inside the cone, that is, a < 0 and we say A is parabolic if a lies on the cone, that is, a D 0. Thus X
and H are hyperbolic, V is elliptic and H C V and H � V are parabolic.

We can define a map �t W N ! N by �t .�g/ D �.g � exp.tX//, where g 2 PSL.2;R/ and �g
denotes the orbit of g under � .

LEMMA 3.6. The flow �t is Anosov.

PROOF. Since ŒX;H C V � D �.H C V / and ŒX;H � V � D H � V and fX;H C V;H � V g is a
basis of sl.2;R/, we obtain a splitting of T�gN as

T�.g/N D RX.�g/˚Es.�g/˚Eu.�g/;

where

Es.�g/ D span
�
d

dt

ˇ̌̌
tD0
at .�g/

�
;

Eu.�g/ D span
�
d

dt

ˇ̌̌
tD0
bt .�g/

�
;

with
at W �g 7! �.g � exp.t.H � V ///

and
bt W �g 7! �.g � exp.t.H C V ///:

Since for t � 0,
�t ı as D ase�t ı �t ;

and
�t ı bs D bset ı �t ;

we see that Es and Eu are d�t -invariant and for all t 2 R,

kd�t jEsk D e
�t ;

kd�t jEuk D e
t ;

where the norms is defined by declaring that X;H; V is an orthonormal basis.
�

REMARK 3.7. We can use this to prove a special case of Theorem 1.6. LetM be a complete Riemann-
ian surface of constant curvature �1 with finite area. Then the universal cover of M is H2, the hyperbolic
plane. The fundamental group of M acts on H2 by a discrete group � � PSL.2;R/ of hyperbolic isome-
tries, and M Š � n H2. The unit sphere bundle of H2 is isomorphic to PSL.2;R/, and hence the unit
sphere bundle SM is � n PSL.2;R/.

Now if �t W SM ! SM denotes the geodesic flow of M , then it can be shown that

�t .�g/ D �.g � exp.tX//:

Hence the previous lemma shows that �t is indeed Anosov.
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3.2. General theory

In this subsection we shall collect together various facts (some without proof) about Anosov flows that
we will need in the sequel.

DEFINITION 3.8. Let N be a closed manifold and �t W N ! N an Anosov flow. Define the stable
manifold of �t at x and the unstable manifold of �t at x to be the sets

W s.x/ D fy 2 N W d.�tx; �ty/! 0 as t !1g ;

W u.x/ D fy 2 N W d.�tx; �ty/! 0 as t ! �1g :
In fact, in both cases we could instead require the convergence to be exponentially fast, that is, d.�tx; �ty/ �
Ce��t say, for y 2 W s.x/.

Let �t W N ! N be an Anosov flow on a closed manifold N , and let x 2 N and U � N a neighbor-
hood of x. We define the local stable manifold of �t at x with respect to U and the local unstable manifold
of �t at x with respect to U to be

W s
loc.x; U / WD fy 2 N W �ty 2 U for all t � 0; d.�tx; �ty/! 0 as t !1g ;

W u
loc.x; U / WD fy 2 N W �ty 2 U for all t � 0; d.�tx; �ty/! 0 as t ! �1g :

The next theorem is an important result called the Local stable manifold theorem, for which we refer
the reader to [KH95, Theorem 17.43] for a proof. In particular this next theorem justifies the use of the
word ‘manifold’ above.

THEOREM 3.9. Let �t W N ! N be an Anosov flow on a closed manifold N . Then there exists " > 0

such that for each x 2 N the local (un)stable manifolds

W s
loc.x/ WD W

s
loc.x; B.x; "//; W u

loc.x/ WD W
u

loc.x; B.x; "//

are embedded discs such that

TxW
s

loc.x/ D E
s.x/; TxW

u
loc.x/ D E

u.x/

for all x 2 N , and such that

�t .W
s

loc.x// � W
s

loc.�tx/; �t .W
u

loc.x// � W
u

loc.�tx/

for all t > 0.

In the sequel (principally Chapter 6) when we refer to W s
loc.x/ and W u

loc.x/, we will always mean this
as shorthand for W s

loc.x; B.x; "// and W u
loc.x; B.x; "//, where " > 0 is chosen to satisfy the conditions of

Theorem 3.9.

It is easy to see that for any neighborhood U.t/ of �tx,

(3.2.1) W s.x/ D
[
t>0

��t .W
s

loc.�tx; U.t///;

(3.2.2) W u.x/ D
[
t>0

�t .W
u

loc.��tx; U.t///;

and thus in particular the right-hand sides of (3.2.1) and (3.2.2) are independent of the choice of neighbor-
hood U . This gives us:

COROLLARY 3.10. Let �t W N ! N by an Anosov flow on a closed manifoldN . Then for each x 2 N
the (un)stable manifolds W s.x/;W u.x/ are injectively immersed submanifolds such that

TxW
s.x/ D Es.x/; TxW

u.x/ D Eu.x/:

In general the stable and unstable bundlesEs andEu of TN are only HRolder continuous for an Anosov
flow �t W N ! N (see Chapter 11). However we have just shown that they are always integrable.

DEFINITION 3.11. Let N be a closed manifold and �t a flow on N . We define the non-wandering set
� of �t to be the set

� WD fx 2 N W for any open U 3 x; there exists T � 1=2 such that �T .U / \ U ¤ ;g :

Clearly � is �t -invariant.
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We will not try and prove the following theorem; for a proof see [KH95, Section 6.4, Section 18.3].

THEOREM 3.12. Let �t W N ! N be an Anosov flow on a closed manifold N . Then � D N if and
only if �t is transitive. Moreover, the periodic orbits of �t are dense in �.

In general, transitivity trivially implies that � D N ; the converse however requires the Anosov condi-
tion and is much harder to prove.

LEMMA 3.13. Let �t W N ! N be a flow on a closed manifold N . Suppose �t preserves a probability
measure � on N which is positive on open sets. Then � D N .

PROOF. Suppose to the contrary. Then there exists x 2 N and an open set U containing x such that
the sets fU; �1.U /; �2.U /; : : : g are all pairwise disjoint. Hence if �.U / D �.�n.U // D c > 0 then

�

 
1a
nD0

�n.U /

!
D

1X
nD0

c D1;

which is absurd, since � is a probability measure. �

COROLLARY 3.14. IfM has finite volume then the set� � SM of non-wandering points with respect
to the geodesic flow �t is all of SM .

PROOF. Recall that the contact form ˛ on SM gives a volume form ˛ ^ .d˛/n�1 which if M has
finite volume gives SM finite volume by (2.6.3). Thus ˛ defines a finite measure � called the Liouville
measure on SM , which clearly is positive on open sets. The result follows from the previous lemma, since
the geodesic flow �t preserves the contact form ˛ and hence the measure � (this is proved explicitly for
surfaces in Lemma 9.2). �

REMARK 3.15. In the proof above we defined a finite measure � on SM called the Liouville measure,
given explicitly by Z

SM

fd� D

Z
SM

.�1/n�1f ˛ ^ .d˛/n�1 f 2 C 0.SM;R/:

Using equation (2.6.3), we see that

�.SM/ D .n � 1/ŠVol.M; g/Vol.Sn�1; ground/:

It is often convenient to normalize � to form the normalized Liouville measure �0 WD �=�.SM/. The
normalized Liouville measure �0 is therefore a probability measure. Throughout the text however we will
not distinguish between � and �0, referring to them both as ‘the’ Liouville measure, and denoted both by
�. It should be clear from the context whether we are normalizing or not.

Since ��t ˛ D ˛, the Liouville measure is invariant under the geodesic flow, that is,

�.B/ D �.�t .B//

for any Borel measurable set B � SM . In fact, if �t is Anosov then � is the unique smooth finite measure
on SM that is �t -invariant. In Chapter 10 we shall see further evidence of the importance of �; see for
instance Corollary ?? and Theorem 10.55.

3.3. A classification result

DEFINITION 3.16. Let N be a closed 3-manifold. We say that N is a circle bundle if there exists a
fibration � W N ! M where M is a closed surface, such that ��1.x/ Š S1 for all x 2 M . One obvious
example is when N D SM .

We will use the following classification theorem several times throughout these notes. This was proved
by Ghys in 1984 (see [Ghy84]) and similar ideas appear also in [Gro00].

THEOREM 3.17. Let N be a closed 3-manifold that is a circle bundle. Suppose �t W N ! N is an
Anosov flow. Then there exists a closed surface M of genus g � 2 such that N is a finite cover of SM , and
�t is continuously orbit equivalent to the lift to N of the geodesic flow on SM corresponding to a metric
g0 of constant negative curvature �1.

In order to prove Theorem 3.17 we will need to introduce several new concepts. To begin with, let
.M; g0/ denote an n-dimensional Riemannian manifold, where g0 is a metric of constant negative curvature
on M . Let QM denote the universal cover of M .
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DEFINITION 3.18. The ideal boundary QM.1/ of . QM; Qg0/ is given by QM.1/ WD G. QM; Qg0/= �, where
G. QM; Qg0/ denotes the set of Qg0-geodesics 
 W R! QM of QM , and 
1 � 
2 if and only if

lim
t!1

d Qg0.
1.t/; 
2.t// remains bounded.

Given x 2 QM and v 2 Tx QM , let 
.x;v/ W R! QM denote the unique g0-geodesic adapted to .x; v/, and
let 
.x;v/.1/ 2 QM.1/ denote the corresponding element of QM.1/. If 
�1

.x;v/
D 
.x;�v/ is the geodesic

obtained by going along 
.x;v/ backwards, let 
.x;v/.�1/ denote the element of QM.1/ corresponding to

�1
.x;v/

.
Fix a point x 2 QM , and consider the map sx W Sx QM ! QM.1/ sending v 7! 
v.1/. Then sx is a

bijection, and we define a topology on QM.1/ so that sx becomes a homeomorphism; thus S QM Š QM �
QM.1/ and QM.1/ Š Sn�1. This topology is independent of the choice of x, since syıs�1x W Sx QM ! Sy QM

is a homeomorphism.
If we regard �1.M/ as a subgroup of Isom. QM; Qg0/, then we obtain a natural action of �1.M/ on QM.1/

as follows. If � 2 QM.1/, choose x 2 QM and v 2 Tx QM such that � D 
.x;v/.1/. Given ' 2 �1.M/,
define ' � � to be the element of QM.1/ defined by the curve ' ı 
.x;v/.

The next exercise relates the action of �1.M/ on QM.1/ with SM .

EXERCISE 3.19. Show that

SM Š QM � QM.1/=.x; �/ � .'.x/; ' � �/:

REMARK 3.20. We will actually only be interested in the case where M is a closed surface of genus
g � 2. In this case, the universal cover QM is the Poincaré disk .B2; ghyp/, where here ghyp denotes the
hyperbolic metric

ghyp D
4geucl

.1 � r2/2
;

where r denotes the Euclidean distance to the origin, and the ideal boundary QM.1/ is precisely the bound-
ary circle S1 D @B2.

The next thing we require is the concept of a quasi-geodesic.

DEFINITION 3.21. A curve 
 W Œa; b�! QM is a Qg0-quasi-geodesic of . QM; Qg0/ if there existP;Q 2 RC

such that
1

P
js � t j �Q � dist Qg0.
.s/; 
.t// � P js � t j CQ

for all s; t 2 Œa; b�. If we need to be explicit about the constants P;Q, we call such a quasi-geodesic a
.P;Q/- Qg0-quasi-geodesic.

We can build the quasi-ideal boundary QM �.1/ in much the same way using quasi-geodesics. If

 W R! QM is a Qg0-quasi-geodesic, we write 
�.1/ to denote the corresponding element of QM �.1/. Note
that any geodesic is automatically a quasi-geodesic, and thus we have a natural map QM.1/ ,! QM �.1/

carrying an equivalence class of geodesics to the corresponding equivalence class of quasi-geodesics. The
following theorem is essentially originally due to Morse [Mor24], and is often known as the Morse lemma.
A proof may be found in [Kni02, Theorem 2.2].

THEOREM 3.22. The inclusion QM.1/ ,! QM �.1/ is a bijection.

We will next need to recall the definition and some of the basic theory of foliations. A good reference
on the subject is [CN85], to which we refer the reader for more information. Another nice reference is
[Cal07], which concentrates on the case we are interested in here: 3-manifolds.

DEFINITION 3.23. Let N be a smooth closed n-dimensional manifold. Let Bk denote the open unit
ball in Rk . A partition F of N into connected k-dimensional C 1-submanifolds fF.x/ W x 2 N g is called
a k-dimensional foliation if for every x 2 N there exists a neighborhood U.x/ of x and a diffeomorphism
' W U.x/! Bk � Bn�k such that '.x/ D .0; 0/ and:

(1) For each p 2 Bn�k , the set '.Bk � fpg/ is precisely the connected component of F.'.0; p// \
U.x/ containing '.0; p/.

(2) For each p 2 Bn�k , the map '.�; p/ W Bk ! F.'.0; p// \ U.x/ is a C 1-diffeomorphism which
depends continuously on p 2 Bn�k in the C 1-topology.
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Strictly speaking, we just defined a k-dimensional C 1-foliation. The sets F.x/ are called the leaves of F.

The main examples we have in mind are the (un)stable foliations defined by an Anosov flow. More
precisely, suppose �t W N ! N is an Anosov flow. Recall from the start of this chapter that �t determines
two partitions Ws D fW s.x/ W x 2 N g and Wu D fW u.x/ W x 2 N g. These partitions are easily seen to
define foliations, and they are known as the stable and unstable foliations defined by �t .

We can also define two more foliations W� and WC associated to the Anosov flow �t , known as the
weak stable and weak unstable foliations. Given x 2 N , define

W �.x/ WD
[
t2R

�t .W
s.x// D

[
t2R

W s.�tx/

and
W C.x/ WD

[
t2R

�t .W
u.x// D

[
t2R

W u.�tx/:

We call W �.x/ and W C.x/ the weak stable manifold and the weak unstable manifold at x. The foliations
W� and WC are generated by these partitions.

EXERCISE 3.24. Define the weak stable and weak unstable subbundles E�.x/ � TxN and EC.x/ �
TxN by

E�.x/ WD Es.x/˚ RX.x/;

EC.x/ WD Eu.x/˚ RX.x/:

Use Corollary 3.10 to prove that

TxW
�.x/ D E�.x/; TxW

C.x/ D EC.x/:

The proof of Theorem 3.17 will require the following theorem of Hirsch, Pugh and Shub [HPS77],
which we will also need in Chapter 11.

THEOREM 3.25. Let �t W N ! N be an Anosov flow on a closed 3-manifold N . Then the weak
bundles E˙ are of class C 1.

We will be most interested in foliations satisfying an additional property.

DEFINITION 3.26. Let N denote a closed 3-manifold which is a circle bundle with fibration � W N !
M , and let F denote a foliation on N . We say that � is transverse to F if for all x 2 N it holds that

TxN D TxF.x/˚ Tx�
�1.x/:

The following theorem is due to Ehresmann; the reader may find a proof in [CN85, Proposition V.2.1].
In fact, this result holds in a much more general context than is stated below (namely, for foliated bundles)
but for simplicity we restrict to the case we are interested in.

THEOREM 3.27. LetN denote a closed 3-manifold which is a circle bundle with fibration � W N !M ,
and let F denote a foliation transverse to � . Then for each leaf F.x/ 2 F, the map �jF.x/ W F.x/!M is
a covering map.

We now define the holonomy of a foliated circle bundle.

DEFINITION 3.28. Let N denote a closed 3-manifold which is a circle bundle with fibration � W N !
M , and let F denote a foliation transverse to � .

Fix a loop f W S1 ! M with f .0/ D f .1/ D x. Suppose z 2 ��1.x/. Since �jF.z/ is a covering,
there exists a unique path Qfz W Œ0; 1�! F.z/ such that Qfz.0/ D z and �ı Qfz D Qf �1, where Qf �1 denotes the
path obtained from f by going backwards. Identifying ��1.x/ Š S1, this defines a map �.f / W S1 ! S1

by
�.f /.z/ D Qfz.1/:

It is easy to check that �.f / depends only on the homotopy class of f , and �.f � g/ D �.f / ı �.g/, and
hence � descends to define a representation � W �1.M; x/ ! Diff.S1/. This representation � is called the
holonomy of .N;M; �;F/.

In fact, we can build a foliation up from a representation.
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DEFINITION 3.29. Let M be a closed surface, and let � W �1.M/ ! Diff.S1/ be1 a representation.
Let QM denote the universal cover of M , and define and action of �1.M/ on QM � S1 by

'.x; �/ WD .'.x/; �.'/�/; ' 2 �1.M/:

Note that QM � S1 admits the trivial product foliation QF D f QM � f�g W � 2 S1g. Consider the quotient
N WD QM � S1=�1.M/. The map � D pr1 W N ! M makes N into circle bundle. Moreover the action of
�1.M/ obviously preserves the foliation QF of QM � S1, and thus descends to define a foliation F on N . We
refer to the pair .N;F/ as a foliated circle bundle.

The following result is proved in [Cal07, Example 4.2], and shows that foliated circle bundles are
essentially the same thing as transverse foliations.

PROPOSITION 3.30. Let M be a closed surface and � W �1.M/ ! Diff.S1/ a representation. Then
there exists a closed 3-manifold N and a fibration � W N ! M with fibre S1, and a foliation F of N that
is transverse to � , and whose holonomy is precisely �. The pair .N;F/ is unique up to diffeomorphism.
Moreover there is a bijection between isomorphism classes of circle bundles overM and conjugacy classes
of representations �1.M/! Diff.S1/.

We can now prove Theorem 3.17.

PROOF. (of Theorem 3.17)
The first step in the proof is to show that there exists a closed surfaceM of genus g � 2 and a fibration

� W N ! M such that the weak stable foliation WC of �t is transverse to � . This is not easy, and we
will omit it. The reader is referred to the original argument of Ghys [Ghy84, Proposition 2.1]. We remark
however that if the foliation WC was of class C 2, this result would be an immediate consequence of the
main theorem of Thurston’s PhD thesis [Thu72]. Ghys’ proof however does heavily depend on the fact that
WC is at least of class C 1 (Theorem 3.25). This is not necessarily true in higher dimensions; the proof of
Theorem 3.25 hinges on the fact that the foliations W˙ are of codimension one when N is a 3-manifold.
The fact that M necessarily has genus g � 2 follows from a theorem due to Plante and Thurston [PT72].
Indeed, the fundamental group of a circle bundle N over the sphere or torus has polynomial growth, and
the result of Plante and Thurston alluded to above states that if N carries an Anosov flow its fundamental
group must grow exponentially.

So let us assume that there exists a closed surface M of genus g � 2 and a fibration � W N !M such
that WC is transverse to � . Let g0 denote a metric on M of constant negative curvature �1. Then if … W
QM !M is the universal cover of M , we have that QM Š B2, QM.1/ Š S1 and … W . QM;ghyp/! .M; g0/

is a Riemannian submersion. By Proposition 3.30 we may assume that

N D QM � S1=.x; �/ � .'.x/; �.'/�/;

where � W �1.M/! Diff.S1/ is the holonomy of the foliation WC.
Consider the short exact sequence

0! �1.S
1/! �1.N /! �1.M/! 0

defined by the fibration S1 ! N
�
! M . Let � denote the image of �1.S1/ in �1.N /, and let bN be the

covering of N corresponding to � , i.e. bN=� D N . Then the covering bN is diffeomorphic to QM � S1. Letb�t denote the lift of �t to a flow on bN D QM � S1. Let p W QM � S1 ! QM denote the projection.

EXERCISE 3.31. Show that there exists a constant P > 0 such that for each .x; �/ 2 QM � S1, the
curve 
.x;�/.t/ WD p ıb�t .x; �/ is a .P; 0/-ghyp-quasi-geodesic (see [Ghy84, Lemma 3.1] if you get stuck).

Let SM denote the g0-unit circle bundle of .M; g0/, and let  t W SM ! SM denote the geodesic
flow. Let Q t W S QM ! S QM denote the lift of  t to S QM Š QM � QM.1/, so that Q t is the geodesic flow of
. QM;ghyp/.

Given a pair .x; �/ 2 QM � S1, the curve 
.x;�/ defined above determines an element 
�
.x;v/

.1/ 2

QM �.1/ by Exercise 3.31, and thus by Theorem 3.22 a unique element �� 2 QM.1/. Let ��1
�
2 QM.1/

denote the element corresponding to 
�
.x;�/

.�1/ 2 QM �.1/. As the notation implies, the element ��
depends only on � , not x.

1Here Diff.S1/ denotes the diffeormorphims of the circle that are of class C1.
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Suppose �; � 2 QM.1/. Then there exists a unique ghyp-geodesic 
 such that 
.1/ D � and 
.�1/ D
� . Let P.
/ W QM ! QM denote orthogonal projection onto 
 , and use this to define a map P.�; �/ W QM !

S QM Š QM � QM.1/ byP

P.�; �/.x/ D .
.t/; P
.t// where P.
/.x/ D 
.t/:

Now define G0 W QM � S1 ! QM � QM.1/ by setting

G0.x; �/ WD P.�� ; �
�1
� /.p.x; �//;

Then G0 is continuous and surjective but in general not injective: there may exist two points .x; �/; .x0; � 0/
on the same orbit of b�t that have the same orthogonal projection onto the ghyp-geodesic 
 determined by
�� D �� 0 and ��1

�
D ��1

� 0
. In order to achieve local injectivity we ‘average’ G0. For this look at the map

h W R � QM � S1 ! QM � S1 defined by

G0.b�t .x; �// D Q h.t;.x;�//.G0.x; �//:
Then h satisfies the cocycle property, that is,

h.t C t 0; .x; �// D h.t;b�t .x; �//C h.t 0; .x; �//;
as is easily checked. Now choose � 2 RC such that h.�; .x; �// > 0 for all .x; �/ 2 QM � S1, and then let
r.x; �/ denote the average

r.x; �/ WD
1

�

Z �

0

h.t; .x; �//dt:

Next define G� W QM � S1 ! QM � S1 by

G� .x; �/ D Q r.x;�/.G0.x; �//:

We claim that G� is injective on orbits ofb�t . For this observe that if

f .t/ WD r.b�t .x; �//C h.t; .x; �//
then f is monotone increasing. Indeed,

f 0.t/ D
1

�

Z �

0

h0.uC t; .x; �//du

D
1

�
.h.� C t; .x; �// � h.t; .x; �///

D
1

�
h.�;b�t .x; �// > 0:

The claim then follows from the computation

G� .b�t .x; �// D Q r. Q t .x;�//.G0.
b�t .x; �///

D Q r. Q t .x;�//Ch.t;.x;�//.G0.x; �//

D Q f .t/.G0.x; �//:

Thus G� is a covering map that intertwines b�t and Q t . Finally, in order to deduce the stronger statement
that �t and some finite covering of  t are also topologically conjugate, one applies the following exercise.

EXERCISE 3.32. By Exercise 3.19 we have

SM Š QM � S1=.x; �/ � .'.x/; ' � �/:

Similarly we have
N Š QM � S1=.x; �/ � .'.x/; �.'/�/:

Show that G� is equivariant under these two actions of �1.M/, and thus G� descends to define a finite
covering map G0� that intertwines �t and  t . Complete the details of the proof above by showing that G0 is
surjective and by studying in detail where the injectivity fails.

This completes the proof. �

Here is a easy corollary of Theorem 3.17.

COROLLARY 3.33. Let N be a closed 3-manifold which is a circle bundle. Suppose �t W N ! N is
an Anosov flow. Then �t is transitive, and the non-wandering set � is equal to all of N .
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PROOF. The geodesic flow is transitive by Corollary 3.14 and 3.12. Since orbit equivalence clearly
preserves transitivity, Theorem 3.17 completes the proof. �

REMARK 3.34. In order to show why this theorem is useful, let us remark that there exist so-called
‘anomalous Anosov flows’ constructed by Franks and Williams [FW80] on closed 3-manifolds whose non-
wandering set is not the entire manifold. Combining Theorem 3.17 with Corollary 3.14 we see that such a
manifold cannot be a circle bundle.



CHAPTER 4

Surface theory

In this chapter we specialize to the case that we are most interested in: the case of a closed surface, that
is, a closed 2-dimensional Riemannian manifold. In the first section we present a few standard results in
two-dimensional Riemannian geometry on the structure of the unit sphere bundle of a surface. In particular
we construct a moving frame fX;H; V g of SM and derive Cartan’s structural equations. Then in the second
section of the chapter we derive the Jacobi equations of the geodesic flow.

4.1. The structure of the tangent bundle of a closed surface

Let .M; g/ be a closed Riemannian surface with geodesic flow �t W SM ! SM . Let � W TM ! M

denote the footprint map (we shall often consider � as a map SM !M ) and r the Levi-Civita connection
on M .

DEFINITION 4.1. Let K W T .TM/ ! TM denote the connection map of r, defined as follows. If
� 2 T.x;v/TM , let c W .��; �/! TM denote a curve adapted to �. Write

c.t/ D .
.t/; Z.t//;

so Z.t/ is a vector field along 
.t/, and define

K.x;v/.�/ WD
DZ

dt
.0/ 2 TxM;

where D
dt

is the covariant derivative of r.

We can define a complementary map L W TM ! T .TM/ as follows. Given .x; v/ 2 TM and
w 2 TxM , let 
 W .��; �/!M denote a curve adapted to .x; w/ and let Z.t/ denote the parallel transport
of v along 
 . Then we can consider the curve

c.t/ WD .
.t/; Z.t// W .��; �/! TM:

Define
L.x;v/.w/ WD Pc.0/ 2 T.x;v/TM:

Then one easily checks
K ı L D 0;

d� ı L D Id;

and hence we obtain a splitting
T.x;v/TM D H.x; v/˚ QV.x; v/;

where

H.x; v/ WD ker
˚
K.x;v/ W T.x;v/TM ! TxM

	
;

and
QV.x; v/ WD ker

˚
d.x;v/� W T.x;v/TM ! TxM

	
;

with d� W H.x; v/! TxM and K W QV.x; v/! TxM linear isomorphisms.
Restricting to SM we obtain a similar splitting

(4.1.1) T.x;v/SM D H.x; v/˚ V.x; v/;

where now
V.x; v/ WD ker

˚
d.x;v/�.x; v/ W T.x;v/SM ! TxM

	
:

34
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DEFINITION 4.2. This decomposition allows us to define the Sasaki metric hh�; �ii on TM by setting

hh�; �ii WD hK.�/;K.�/i C hd�.�/; d�.�/i I

note that this makes the decomposition (4.1.1) an orthogonal one. We will generally use the restriction of
the Sasaki metric to SM , and will use this metric on SM without further comment.

LEMMA 4.3. The 2-form d˛ 2 �2.TM/ can alternatively be defined by

d˛.�; �/ D hK.�/; d�.�/i � hK.�/; d�.�/i :

PROOF. Let C W .�"; "/ � .�"; "/ ! TM denote a smooth map such that C.0; 0/ D .x; v/ and such
that

@

@s

ˇ̌̌
sD0

C.s; 0/ D �;
@

@t

ˇ̌̌
tD0
C.0; t/ D �;

where �; � 2 T.x;v/TM .
Then

d˛.x;v/.�; �/ D
@

@s

ˇ̌̌
sD0

˛

�
@

@t

ˇ̌̌
tD0
C.s; t/

�
�
@

@t

ˇ̌̌
tD0
˛

�
@

@s

ˇ̌̌
sD0

C.s; t/

�
D

@

@s

ˇ̌̌
sD0

�
C.s; 0/;

@

@t

ˇ̌̌
tD0
� ı C.s; t/

�
�
@

@t

ˇ̌̌
tD0

�
C.0; t/;

@

@s

ˇ̌̌
sD0

� ı C.s; t/

�
.�/
D

�
r @
@s
C.s; 0/;

@

@t
� ı C.s; t/

�
�

�
r @
@t
C.0; t/;

@

@s
� ı C.s; t/

� ˇ̌̌
sDtD0

D hK.�/; d�.�/i � hK.�/; d�.�/i ;

where .�/ used the fact that r is compatible with the metric and that it is symmetric. �

Since M is an oriented 2-manifold, each tangent space TxM Š R2 is an oriented vector space’. Thus
given a unit vector v 2 TxM , we write eitv for vector obtained by rotating v by an angle t according to
the orientation of the surface. Thus ei�=2v is the unique vector such that fv; ei�=2vg is a positively oriented
orthonormal basis of TxM . Let i W TM ! TM denote the almost complex structure on M defined by

(4.1.2) i.x; v/ D .x; ei�=2v/:

Given a point v 2 TxM , we will often abuse notation slightly and simply write iv for the vector ei�=2v.

DEFINITION 4.4. Define a flow �t W SM ! SM by

�t .x; v/ D .x; e
itv/;

and let

V.x; v/ WD
d

dt

ˇ̌
tD0
�t .x; v/

denote the infinitesimal generator of this flow.

We see that

d�.V.x; v// D d�

�
d

dt

ˇ̌
tD0
�t .x; v/

�
D 0;

since � ı �t is the constant map SxM ! fxg.
Moreover

K.V .x; v// D K

�
d

dt

ˇ̌
tD0
�t .x; v/

�
D

d

dt

ˇ̌
tD0
eitv

D iv:

In particular this shows that the one dimensional distribution V of TSM is spanned by V . We call V
the vertical vector field on SM .

DEFINITION 4.5. We define the connection 1-form  to be the dual 1-form to V via the Sasaki metric,
that is

 .x;v/.�/ WD hhV.x; v/; �ii :
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EXERCISE 4.6. Show that

 .x;v/.�/ D hK.�/; ivi :
Next, let ˛ denote the contact form from Definition 1.23. Show that ˛ is the 1-form dual to the geodesic
vector field X under hh�; �ii. Finally define a third 1-form ˇ by

ˇ.x;v/.�/ D hd�.�/; ivi :

Prove that f˛; ˇ;  g is a moving coframe for SM . That is, for all .x; v/ 2 SM , f˛.x;v/; ˇ.x;v/;  .x;v/g
is a basis of T �

.x;v/
SM .

DEFINITION 4.7. Let H denote the vector field dual to ˇ. We call H the horizontal vector field.

Summarizing, we have defined a moving frame fX;H; V g of TSM with dual moving coframe f˛; ˇ;  g
of T �SM . The next thing to observe is the Cartan structure equations; these will be very useful for us.

Fix a point x0 2 M . There exist isothermal coordinates .x1; x2/ on a neighborhood U about x0, that
is, the length element ds2 of g is written as

ds2 D e2�.x
1;x2/

n�
dx1

�2
C
�
dx2

�2o
for some smooth function � (see [Spi99, Volume IV, p314]) . If .x1; x2; v1; v2/ are the induced local
coordinates on TM jU then we have

SM jU D
n
.x; v/ 2 TM jU W e

2�
˚
.v1/2 C .v2/2

	
D 1

o
:

Thus we can define coordinates .x1; x2; �/ on SM jU via

.x1; x2; �/ 7! .x1; x2; e�� cos �; e�� sin �/ 2 SM jU :

We now wish to compute the vector fields X;H; V in terms of these local coordinates.

Let f�kij g denote the Christoffel symbols of r. We can write the geodesic vector field X in the local
coordinates .x1; x2; v1; v2/ on TM jU as

(4.1.3) X.x; v/ D vi
@

@xi
� � ijk.x/v

j vk
@

@vi

(see [GHL04, Section 2.219]). Recalling that the Christoffel symbols � i
jk

are given by

� ijk D
1

2
gi`

�
@jgk` C @kg j̀ � @`gjk

�
(see [GHL04, Proposition 2.54]) we compute in our isothermal coordinates .x1; x2/ that

� ijk D @j�ı
i
k C @k�ı

i
j � @i�ıjk :

From this we can compute X.x; v/ using (4.1.3) in terms of our coordinates .x1; x2; v1; v2/; then using

@vi

@�
D �e�� sin �;

@v2

@�
D e�� cos �;

we can compute X.x; v/ in terms of our local coordinates
�
x1; x2; �

�
to obtain

(4.1.4) X .x; v/ D e��
�

cos �
@

@x1
C sin �

@

@x2
C

�
�
@�

@x1
sin � C

@�

@x2
cos �

�
@

@�

�
:

EXERCISE 4.8. Verify this formula. Moreover, prove that

(4.1.5) H .x; v/ D e��
�
� sin �

@

@x1
C cos �

@

@x2
�

�
@�

@x1
cos � C

@�

@x2
sin �

�
@

@�

�
(it may be helpful to use the following alternative (though equivalent) description of H . Given .x; v/ 2
SM , the flow ht of H is given by

ht .x; v/ D .
.x;iv/.t/; Z.t//;

where Z.t/ is the parallel transport of v along 
.x;iv/.t/). Finally, show that V is given simply by

V.x; v/ D
@

@�
:



4.1. THE STRUCTURE OF THE TANGENT BUNDLE OF A CLOSED SURFACE 37

From these three relations we can deduce Cartan’s structural equations for the commutators ŒH; V �,
ŒV; X� and ŒX;H�. Recall that the Gaussian curvature K of M can be given in the isothermal coordinates�
x1; x2

�
by

K D �e�2���

(see [Spi99, Volume III, p136]). Easy calculations then give

ŒH; V � D X;

ŒV;X� D H(4.1.6)
ŒX;H� D KV:

REMARK 4.9. Note the similarity of these and the equations (3.1.2) in Example 3.5; indeed (3.1.2)
corresponds to the case K D �1 (see Remark 3.7).

EXERCISE 4.10. Deduce the following structure equations for the dual coframe f˛; ˇ;  g:

d˛ D  ^ ˇ;

dˇ D � ^ ˛;(4.1.7)
d D �K˛ ^ ˇ:

The reader is referred to [ST67, Section 7.2] for an alternative derivation of the structural equations not
requiring the use of isothermal coordinates.

DEFINITION 4.11. Let us define the area form �a on M by

�a.v; u/ WD hu; ivi ;

for any u; v 2 TxM , so for v 2 SxM ,
�a.v; iv/ D 1:

Then clearly

(4.1.8) ���a D ˛ ^ ˇ;

since

���a.�; �/ D �a.d�.�/; d�.�//

D hd�.�/; id�.�/i
D hd�.�/; i˛.�/v C iˇ.�/ivi
D ˛.�/ˇ.�/ � ˇ.�/˛.�/

D ˛ ^ ˇ.�; �/:

Thus using (4.1.7) we have also shown

d D �K���a;

which can be used to define the Gaussian curvature (see the aforementioned [ST67, Section 7.2]).

SUMMARY 4.12. It may be helpful to the reader to summarize the results of this section. We have
shown that if we define 1-forms ˛; ˇ;  on SM by

˛.x;v/.�/ D hd� .�/ ; vi ;

ˇ.x;v/.�/ D hd�.�/; ivi ;

 .x;v/.�/ D hK.�/; ivi ;

then f˛; ˇ;  g is a smooth coframe of SM and satisfy the structural equations 4.1.7, and if �a denotes the
area form then

d D �K���a:

Moreover if fX;H; V g denotes the dual frame then X is the geodesic vector field

X.x; v/ D
d

dt

ˇ̌
tD0
�t .x; v/

where �t W SM ! SM is the geodesic flow, and X;H and V satisfy the structural equations 4.1.6.
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4.2. The Jacobi equations

We now wish to obtain ODE’s for the evolution of the differential of �t . In order to do so, we need to
make the following remark, which we shall use many times throughout these notes.

REMARK 4.13. Suppose Y andZ are two vector fields on a manifoldN , and  t denotes the local flow
of Y . Then by definition,

ŒY;Z�.x/ D
d

dt

ˇ̌
tD0
d �t .Z. tx//;

and hence

(4.2.1) d �t fŒY;Z�. tx//g D
d

dt
fd �t .Z. tx//g :

Let M be an arbitrary surface, and �t the geodesic flow on M . Fix a point .x0; v0/ 2 SM . We will
adopt the following notation: let H.t/ WD H.�t .x0; v0// and H D H.0/ D H.x; v0/, and similarly for
X.t/; V .t/ etc.

Let � 2 T.x0;v0/SM . We can write

� D aX C yH C zV

for some constants a; y; z 2 R. Moreover there exist smooth functions a.t/; b.t/; c.t/ satisfying

(4.2.2) d�t .�/ D a.t/X.t/C y.t/H.t/C z.t/V .t/;

subject to the initial conditions

a.0/ D a;

y.0/ D y;(4.2.3)
z.0/ D z:

We will derive ODE’s that a.t/; y.t/; z.t/ must satisfy. These are Jacobi-type equations; for the purposes
of this course we shall refer to them as ‘the’ Jacobi equations.

PROPOSITION 4.14. The functions a.t/; y.t/; z.t/ satisfying (4.2.2) and (4.2.3) satisfy the Jacobi
equations:

Pa D 0;

Py � z D 0;(4.2.4)
Pz CKy D 0:

PROOF. We begin by applying d��t to both sides of (4.2.2) to obtain

� D a.t/d��t .X.t//C y.t/d��t .H.t//C z.t/d��t .V .t//;

and then differentiating both sides with respect to t and applying (4.2.1) we obtain

0 D
d

dt
.�/

D Pa.t/d��t .X.t//C a.t/d��t .ŒX;X�.t//C Py.t/d��t .H.t//

Cy.t/d��t .ŒX;H�.t//C Pz.t/d��t .V .t//C z.t/d��t .ŒX; V �.t//;

and then applying the structure equations and grouping like terms we obtain

0 D d��t f Pa.t/X.t/C . Py.t/ � z.t//H.t/C . Pz.t/CK.t/y.t//V .t/g :

Since d��t is an isomorphism (being invertible) and fX.t/;H.t/; V .t/g is a basis of each tangent space
T�t .x0;v0/SM the coefficients of X.t/;H.t/ and V.t/ must vanish for all t , and this is precisely what we
wanted to show. �

REMARK 4.15. Note that if K � �1 then the Jacobi equations have the solutions y.t/ D e˙t , and we
recover the result of Lemma 3.6.



CHAPTER 5

A criterion for a flow to be Anosov

The aim of this chapter is to prove a general criterion for a flow �t W N ! N on a closed manifold
N to be Anosov. As a corollary to this we will be able to prove Theorem 1.6. In the second subsection we
will go through the explicit construction due to V. J. Donnay and C. C. Pugh [DP03] of embedded closed
surfaces in R3 whose geodesic flows are Anosov. These examples contain, of course, regions with positive
curvature.

5.1. The criterion

DEFINITION 5.1. Here is the general setting. Let N be a closed manifold, and �t a non-singular flow
on N with infinitesimal generator X .

We consider the quotient bundle bTN defined bybT xN WD TxN=RX.x/:

Since d�t .X.x// D X.�tx/, d�t descends to the quotient to define a map At W bT xN ! bT �txN satisfying

AsCt D As ı At :

The following theorem is the main result of this chapter, and was proved by Wojtkowski in [Woj00,
Theorem 5.2], and extends to flows an earlier result of Lewowicz [Lew80] for diffeomorphisms.

THEOREM 5.2. Let N be a closed manifold and �t W N ! N a non-singular flow on N with infini-
tesimal generator X . Suppose there exists a quadratic form Q W TN ! R on TN satisfying the following
four properties:

(1) For each x 2 N , the form Qx WD QjTxN W TxN ! R depends continuously on x.
(2) For all x 2 N , v 2 TxN and a 2 R, we have

Qx.v C aX.x// D Qx.v/:

Thus Q can be projected onto the quotient bundle bTN to definebQ W bTN ! R:

(3) bQ W bTN ! R is non-degenerate.
(4) The Lie derivative LXQ must be continuous, and if bL denotes the projection of the Lie derivative

LXQ to bTN , so bL.v/ WD d

dt

ˇ̌
tD0

bQ.At .v//;
then bL must be positive definite on bTN .

Then the flow �t is Anosov.

The proof of this theorem will take some time; before we begin with the proof however we will deduce
Theorem 1.6.

PROOF. (of Theorem 1.6)
We simply need to exhibit a quadratic form Q on TSM satisfying the four conditions of Theorem 5.2.

Given � 2 T.x;v/SM we may write

� D aX.x; v/C yH.x; v/C zV .x; v/;

for some constants a; y; z. We define our quadratic form Q by

(5.1.1) Q.x;v/.�/ WD yz:

39
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Checking the first three conditions of Theorem 5.2 is trivial, but the fourth requires the Jacobi equations
(4.2.4). Adopting the notation of Proposition 4.14, we have

bL.�/ D d

dt

ˇ̌
tD0
OQ.At .�//

D
d

dt

ˇ̌
tD0
y.t/z.t/

D Py.0/z.0/C y.0/ Pz.0/

D z2 �K.x; v/y2

> 0;

if � � aX ¤ 0, since K.x; v/ < 0. �

An important step in proving Theorem 5.2 is the following auxiliary proposition.

PROPOSITION 5.3. Let N be a closed manifold, and �t a non-singular flow on N with infinitesimal
generator X . The flow �t is Anosov if and only if there exists an At -invariant splitting of bTN asbTN D bEs ˚ bEu;
and constants C;� > 0 such that for all t � 0,


At jbEs


 � Ce��t ;


A�t jbEu


 � Ce��t :

This proposition is easy if �t has a codimension 1 invariant subbundle, which is the case for the geo-
desic flow. This is not true in general though.

PROOF. One direction is trivial - if �t is Anosov then the desired At -splitting arises from the d�t -
splitting; we simply identify bTN with Es ˚Eu. For the converse, we need to know how to reconstruct Es

and Eu from knowledge of bEs and bEu, and this is not entirely obvious.
Since X.x/ ¤ 0 for all x 2 N we can choose a Riemannian metric on N such that jX.x/j D 1 for all

x 2 N . Under this metric we can identify bTN with .RX/?, which we will do from now on without further
comment.

Here is the plan: we will find functions s W bEs ! R; u W bEu ! R that are linear in v and such that if
we set

Es.x/ WD
n
v C s.x; v/X.x/ W v 2 bEso I

Eu.x/ WD
n
v C u.x; v/X.x/ W v 2 bEuo ;

then Es and Eu are d�t -invariant and satisfy the required decay properties for the Anosov splitting.
Now since

(5.1.2) d�t .v/ D At .v/C hd�t .v/; X.�tx/iX.�tx/;

if such a function s.x; v/ exists, then

d�t .v C s.x; v/X.x// D d�t .v/C s.x; v/X.�tx/

D At .v/C .s.x; v/C hd�t .v/; X.�tx/i/X.�tx/;

and hence for our proposed definition of Es to be d�t -invariant we need

(5.1.3) s.�tx;At .v// D s.x; v/C hd�t .v/; X.�tx/i :

Now define

S.x; v/ WD �
d

dt

ˇ̌
tD0
hd�t .v/; X.�tx/i :

Note that S.x; v/ is linear in v, and that

S.�tx;At .v// D �
d

dt
hd�t .v/; X.�tx/i :
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Indeed,

S.�tx;At .v// D �
d

dr

ˇ̌
rD0
hd�r .At .v//; X.�r .�tx//i

D �
d

dr

ˇ̌
rD0
hd�rCt .v/; X.�rCtx/i

D �
d

dr

ˇ̌
rDt
hd�r .v/; X.�rx/i :

Now define

s.x; v/ WD

Z 1
0

S.�rx;Ar .v//dr:

Since S is linear in v and jAr .v/j decreases exponentially as r ! 1 for v 2 bEs , the above integral
converges uniformly, and thus s is well defined. Next, observe that

s.�tx;At .v// D

Z 1
0

S.�rCtx;ArCt .v//dr

D

Z 1
t

S.�rx;Ar .v//dr

D s.x; v/ �

Z t

0

S.�rx;Ar .v//dr

D s.x; v/C hd�r .v/; X.�rx/i
ˇ̌rDt
rD0

D s.x; v/C hd�t .v/; X.�tx/i ;

since v 2 bEs � .RX/?, and thus (5.1.3) is verified. This gives us our desired subbundle Es . Since s.x; v/
is linear in v, (5.1.2) implies we can find constants C;� � 0 such that

jd�t .v/j � Ce
��t
jvj for all t � 0 and v 2 Es :

The construction for the unstable bundle is similar, and is left as an exercise:

EXERCISE 5.4. Complete the proof of Proposition 5.3 by constructing the unstable subbundleEu. Use
the same ideas to show that the Anosov property is invariant under time changes, in other words, if the flow
of X is Anosov, then the flow of fX is also Anosov, where f is any smooth positive function.

�

We will now prove Theorem 5.2.

PROOF. (of Theorem 5.2)
Due to the previous proposition it is enough to exhibit a splitting bTN D bEs ˚ bEu satisfying the

hypotheses of Proposition 5.3. Set, for x 2 N :

CC.x/ WD
n
v 2 bT xN W bQx.v/ � 0

o
;

C�.x/ WD
n
v 2 bT xN W bQx.v/ � 0

o
;

CC1.x/ WD
\
t�0

At .C
C.��tx//;

C�1.x/ WD
\
t�0

A�t .C
�.�tx//;

and then set CC WD
`
x2N C

C.x/ etc. We will now use the hypotheses of the theorem to prove the
existence of five constants ˛; ˇ; 
; ı; " > 0.

˛: By compactness and the fact that bL is positive definite we deduce the existence of ˛ > 0 such thatbL.v/ � ˛ jvj2 for all v 2 bTN:
ˇ: By compactness there exists ˇ > 0 such thatˇ̌̌bQ.v/ˇ̌̌ � ˇ jvj2 for all v 2 bTN:
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Thus for all v 2 bTN and t > 0 we have
d

dt
bQ.At .v// � ˛ jAt .v/j

2

�
˛

ˇ

ˇ̌̌bQ.At .v//ˇ̌̌ :(5.1.4)

In particular for all t > 0 we have
At .C

C/ � int.CC/ [ f0g;

A�t .C
�/ � int.C�/ [ f0g:


 : Now we integrate (5.1.4) with respect to t to discover that if 
 WD ˛
ˇ

thenbQ.At .v//bQ.v/ � e
t for v 2 int.CC/;

and bQ.At .v//bQ.v/ � e�
t for Atv 2 int.C�/:

ı: By compactness there exists ı > 0 such that for all v 2 A1.CC/ (and thus in particular for all
v 2 CC1), bQ.v/ � ı jvj2 :

": By compactness there exists " > 0 such that for all v 2 A�1.C�/ (and thus in particular for all
v 2 C�1),

�bQ.v/ � " jvj2 :
The next part of the proof is the following claim:

Claim: If bQ has (constant) signature .`;m/ with l C m D dimN � 1, then for all x 2 N , CC1.x/
contains an `-dimensional subspace and C�1.x/ contains an m-dimensional subspace.

Proof of claim: Let G`.x/ denote the compact Grassmannian of `-planes in bT xN , and let Ln denote
the set of points in G`.x/ corresponding to `-planes in An.CC.��nx//. Then each Ln is a closed non-
empty set in G`.x/ with LnC1 � Ln. Thus compactness implies

T
n2NLn ¤ ;, which proves the claim

for CC1.x/. The proof is similar for C�1.x/.

It is now easy to complete the proof. If v 2 CC1.x/ and t > 0 we have

ˇ jvj2 � bQ.v/
D bQ.At .A�t .v//
� e
tbQ.A�t .v//
� ıe
t jA�t .v/j

2 ;

and thus

jA�t .v/j �

r
ˇ

ı
e�


t
2 jvj :

Similarly if v 2 C�1.x/ we obtain

jAt .v/j �

r
ˇ

"
e�


t
2 jvj :

Thus if bEs.x/ WD span fC�1.x/g
and bEu.x/ WD span

˚
CC1.x/

	
then we can find constants C;� > 0 such that bEs and bEu satisfy the decay conditions of Proposition 5.3.
Finally, one observes that T bN D bEs ˚bEu. Indeed, we must have bEs \bEu D f0g, since a non-zero vector
in the intersection would have contradictory decay properties. Moreover since dim TxbN D l Cm, the two
subbundles span T bN . This completes the proof. �



5.2. THE DONNAY-PUGH EXAMPLE 43

REMARK 5.5. In fact, the converse to the theorem above also holds. Namely, if �t is Anosov, then
there exists a quadratic form Q satisfying the hypotheses of Theorem 5.2. This is proved in [Lew80] for
diffeomorphisms, and the proof for flows is similar. As an application of the converse of Theorem 5.2, one
can deduce the following result.

COROLLARY 5.6. The set of Anosov flows is C 1-open.

We conclude this section with a couple of exercises.

EXERCISE 5.7. This exercise is one step in the proof of the converse to Theorem 5.2. Show that if �t
is an Anosov flow with infinitesimal generator X and there exists a quadratic form Q satisfying conditions
.1/ and .2/ and .4/ of Theorem 5.2 then in fact Q also satisfies condition .3/, that is, the projected form bQ
is non-degenerate.

EXERCISE 5.8. Let .M; g/ be a closed surface with curvatureK. Suppose thatK � 0, and thatK D 0
at only finitely many points. Prove that the geodesic flow of .M; g/ is Anosov.

5.2. The Donnay-Pugh example

The purpose of this section is to sketch the construction of V.J. Donnay and C.C. Pugh [DP03] of
embedded closed surfaces in R3 whose geodesic flows are Anosov.

DEFINITION 5.9. A dispersing tube is a surface of revolution in R3 given in cylindrical coordinates
.r; �; z/ by a function r D h.z/ such that h W Œ�1; 1�! .0; 1� satisfies:

(1) h.z/ D h.�z/;
(2) h.˙1/ D 1;
(3) if jzj < 1, then h is smooth and h00.z/ > 0;
(4) the graph of h has infinite order contact with the lines z D ˙1. In particular limz!˙1 h

0.z/ D

˙1.

The surface T looks like a catenoid and it has planar ends and negative curvature. Its geodesics are easy
to describe. There is the closed geodesic � around the waist of the tube (z D 0) and there are geodesics
asymptotic to it. Every other geodesic either enters and exits T without meeting � , or it crosses � once
on its way from one end of the tube to the other. The entry and exit angles are equal because the tube is
symmetric.

Note that we can perform independent linear scalings in the variables z and r without altering the main
properties of T .

We will now show how to get the Anosov condition. We start with the following exercise.

EXERCISE 5.10. Let M be a closed surface. Given a Riemannian metric g on M , let Kg denote the
sectional curvature of .M; g/, and let �gt W S

gM ! SgM denote the geodesic flow of .M; g/. Show that
if jKg j � 2, there exist positive constants a and b independent of g such that for all t 2 Œ0; 1� and all �,

aj�j2 � jd�
g
t .�/j

2
� bj�j2:

Given numbers positive numbers �; � and t0, let S.�; �; t0/ be the set of Riemannian metrics g on M
such that every unit speed geodesic of g of length one experiences negative curvature Kg � �� for at least
a time t0 and Kg � �. Moreover, we require jKg j � 2. The next lemma is the key for the construction.

LEMMA 5.11. Given �; t0 > 0, there exists �0 > 0 sufficiently small such that for all � � �0 any
metric g 2 S.�; �; t0/ is Anosov.

PROOF. Let Q.x;v/ be the quadratic form (5.1.1) used in the proof of Theorem 1.6. Consider a new
quadratic form defined by

Q0.x;v/.�/ D

Z 1

0

Q�t .x;v/.d�t .�//dt:

EXERCISE 5.12. Show that the Lie derivative of Q0 along X is given by

LXQ
0
.x;v/.�/ D

Z 1

0

. Py2 �Ky2/dt

where y is the solution of the Jacobi equation Ry C Ky D 0 with y.0/ D y and Py.0/ D z. Conclude that
Q0 is non-degenerate on ker ˛.
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From now on we might as well assume that � is such that a D 0. Therefore it suffices to show that for
all � sufficiently small

(5.2.1)
Z 1

0

. Py2 �Ky2/dt > 0

provided that � ¤ 0. Without loss of generality suppose that the geodesic starting at .x; v/ experiences
negative curvature � �� in Œ0; t0�. Clearly, we have:Z 1

0

. Py2 �Ky2/dt �

Z t0

0

. Py2 C �y2/dt � �

Z 1

t0

y2dt:

Since jd�t .�/j2 D Py2.t/ C y2.t/, on account of Exercise 5.10, there are positive constants a and b such
that for all t 2 Œ0; 1� and �

aj�j2 � Py2.t/C y2.t/ � bj�j2:

Therefore Z 1

0

. Py2 �Ky2/dt � aminf1; �gt0j�j2 � �b.1 � t0/j�j2

and (5.2.1) follows by choosing

� <
aminf1; �gt0
.1 � t0/b

:

�

Here is the main idea of the construction, for the details we refer the reader to [DP03, DP04]. Consider
a sphere Sn in R3 with radius 2n for n large so that it is nearly flat. Drill in sufficiently many holes in it,
so that every unit speed geodesic of length one meets the boundary of a hole at an angle at least � > 0.
Consider a concentric copy of Sn, say S 0n, which is shrunk by 1� 2�n. Connect the boundaries of matching
holes in Sn and S 0n by dispersing tubes. Note that this requires a modification of the metric on the spheres
near the boundaries of the holes.

There are three types of geodesics in the resulting surfaceM . The closed geodesics � around the waist
of each tube, the geodesics that are asymptotic to these closed geodesics and the geodesics that enter and
exit dispersing tubes at an angle � �.

Now, the point is that every unit speed geodesic of unit length experiences negative curvature K � ��
for at least a time t0 because it enters a tube at an angle � �. Also the curvature of M is � � where � is the
maximum of the curvature of the surface. If we take n very large, then � becomes as small as we wish, but
� and t0 stay fixed since the dispersing tubes stay roughly of the same size and the entry angle is always at
least �.

We can now apply Lemma 5.11 to conclude that for n large the geodesic flow of M is Anosov.



CHAPTER 6

Livsic Theory

In this chapter we give an outline of Livsic theory. Principally this consists of three separate results, the
Livsic Periodic Data Theorem, the Livsic Cocycle Regularity Theorem and the Measurable Livsic Theorem.
We will essentially give two versions of each; the first is the commutative case, and it is this version that
we will use throughout the book. The second version is the noncommutative case; we will need this only
for the last chapter in the book, and so the reader may omit these until later (specifically, the somewhat
technical Section 6.2 can be omitted until the final chapter). This chapter is in five parts. In the last section
of the chapter we discuss flow cohomology, and outline how we will use this to prove Theorem 1.9.

6.1. The Commutative Livsic Periodic Data Theorem

We need the following result in order to get started on proving the first version we present of the Livsic
Periodic Data Theorem. It is a simple consequence of the Anosov Closing Lemma (see Theorem 6.4) and
we will give a proof at the end of Section 6:2 (see Proposition 6.10).

PROPOSITION 6.1. Let �t W N ! N be a transitive Anosov flow on the closed manifold N , and
f W N ! R an ˛-HRolder continuous function. Then there exists " > 0, K0 > 0 and T0 > 0 such that if
d.�T x; x/ < " for some T > T0 then there exists a closed orbit � with period T C � for some � � 0 such
that ˇ̌̌̌

ˇ
Z TC�

0

f .�tp/dt �

Z T

0

f .�tx/dt

ˇ̌̌̌
ˇ � K0d.�T x; x/˛;

where p is some point in � .

DEFINITION 6.2. Let N be a closed manifold and �t a flow on N , and f W N ! R a continuous
function. We say that f satisfies the periodic orbit obstruction condition if for every closed orbit � we
have

(6.1.1)
Z �

0

f .�tx0/dt D 0;

where � is the period of � and x0 is any point in � .

Here then is the Livsic Periodic Data Theorem.

THEOREM 6.3. Let N be a closed manifold and �t a transitive Anosov flow on N , and f W N ! R

an ˛-HRolder continuous function satisfying the periodic orbit obstruction condition. Then there exists an
˛-HRolder continuous function u W N ! R such that u is differentiable in the flow direction and X.u/ D f ,
where X is the infinitesimal generator of �t .

Note that u being differentiable in the flow direction and X.u/ D f is equivalent to requiring that

(6.1.2) u.�tx/ � u.x/ D

Z t

0

f .�sx/ds;

by the fundamental theorem of calculus.

PROOF. Let �0 be a dense orbit of �t and x0 2 �0. First define u W �0 ! R by

u.�tx0/ D

Z t

0

f .�sx0/ds:

Then we claim that u is ˛-HRolder continuous on �0.

45
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Take x; y 2 �0 such that d.x; y/ < ", where " is as in the statement of the Proposition 6.1. Suppose
x D �rx0 and y D �sx0 where without loss of generality s � r and s � r > T0. Then d.�s�rx; x/ < �.
Hence Proposition 6.1 implies the existence of a closed orbit � of �t such thatˇ̌̌̌Z s�r

0

f .�tz0/dt �

Z s�r

0

f .�tx/dt

ˇ̌̌̌
� K0d.�s�rx; x/

˛
D K0d.y; x/

˛;

where z0 2 � is any point.
But since f satisfies the periodic orbit obstruction condition, the first term is zero, whence we obtain

(6.1.3) ju.y/ � u.x/j D

ˇ̌̌̌Z s�r

0

f .�tx/dt

ˇ̌̌̌
� K0d.y; x/

˛:

Thus u is ˛-Hölder continuous on �0 as claimed. Moreover it is clear that (6.1.2) holds on �0.
It is now easy to complete the proof. Since u is ˛-HRolder on �0, in particular it is uniformly continuous,

and thus there exists a unique extension of u to a function u W �0 D N ! R. We can pass to the limit in
both (6.1.2) and (6.5.1) to conclude that u is ˛-HRolder continuous on all of N and is differentiable along
the flow direction and satisfies X.u/ D f . �

6.2. The Noncommutative Livsic Periodic Data Theorem

Our treatment of the Noncommutative Livsic Periodic Data Theorem is based on [dlLW07, Lemma
2.4]. We begin with the following result, known as the Anosov Closing Lemma; the precise statement given
below is that of [dlLW07, Lemma 2.4]; for the proof we refer the reader to [KH95, Corollary 18.1.8].

THEOREM 6.4. Let �t W N ! N be a transitive Anosov flow on a closed manifold N . Then there
exists " > 0, K > 0 and T0 > 0 such that if for some T > T0,

d.�T x; x/ < ";

then there exists a unique periodic point p 2 N with period T C � such that

max fd.x; p/; d.�T x; p/; j� jg � K"

and
W s

loc.p/ \W
u

loc.x/ ¤ ;:

In fact, this unique point p in addition satisfies

max fd.x; p/; d.�T x; p/; j� jg � Kd.�T x; x/;

and there exists a unique point z 2 N such that

W s
loc.p/ \W

u
loc.x/ D fzg :

At the end of this section we shall show how to deduce Proposition 6.1 from Theorem 6.4.

DEFINITION 6.5. Let G be a compact Lie group. A G-valued cocycle �t is a map C W N � R ! G

that satisfies
C.x; t C s/ D C.�tx; s/C.x; t/

for all x 2 N and s; t 2 R, where the product denotes multiplication in G.

Let g denote the Lie algebra of G. If C is smooth then we can consider its infinitesimal generator
A W N ! g defined by

A.x/ WD
d

dt

ˇ̌
tD0
C.x; t/:

In fact, we can recover C from A:

LEMMA 6.6. C is the unique solution to the ODE

(6.2.1)
d

dt
C.x; t/ D dRC.x;t/.A.�tx//

subject to the initial condition

(6.2.2) C.x; 0/ D e;

where Rg W G ! G is right translation by g 2 G, and e is the identity element of G.
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PROOF. We have

dRC.x;t/.A.�tx// D dRC.x;t/

�
d

ds

ˇ̌
sD0

C.�tx; s/

�
D dRC.x;t/

�
d

ds

ˇ̌
sD0

C.x; t C s/ � C.x; t/�1
�

D dRC.x;t/

�
dRC.x;t/�1

�
d

ds

ˇ̌
sD0

C.x; t C s/

��
D

d

dt
C.x; t/;

and uniqueness follows from standard ODE theory. �

Thus more generally, if we are given a continuous function A W N ! g we can define a cocycle C by
the equations (6.2.1) and (6.2.2).

Here is the analogue of Definition 6.2.

DEFINITION 6.7. Let �t W N ! N be a flow on a closed manifoldN , andG a compact Lie group. Let
C be a G-valued cocycle. We say that C satisfies the periodic orbit obstruction condition if for all x 2 N
and T 2 R,

�T x D x ) C.x; T / D e:

We now state our main theorem of this chapter, the Livsic Periodic Data Theorem. We will use this
theorem in the final chapter of these notes (see Theorem 13.9).

THEOREM 6.8. Let �t W N ! N be a transitive Anosov flow on a closed manifoldN , andG a compact
Lie group with Lie algebra g. Let A W N ! g be a Hölder continuous function and C the corresponding
G-valued cocycle defined by equations (6.2.1) and (6.2.2). Suppose in addition that C satisfies the periodic
orbit obstruction condition. Then there exists an Hölder continuous function u W N ! G such that for all
x 2 N and t 2 R,

(6.2.3) C.x; t/ D u.�tx/u.x/
�1:

Before starting the proof, we will need the following two remarks.

REMARK 6.9. If G is a compact Lie group then G admits a bi-invariant metric dG , that is, a metric
dG W G �G ! R such that for all g; h; k 2 G we have

dG.g � h; g � k/ D dG.h; k/ D dG.h � g; k � g/:

Indeed, such a metric is obtained as the geodesic metric of a bi-invariant Riemannian metric h�; �i on G as
follows: select a left-invariant metric .�; �/ and a volume form ! D �1 ^ � � � ^ �dimG where the � i are
left-invariant 1-forms. Then define

hv;wi WD
1R

G
!.x/

Z
G

.dRx.v/; dRx.w//!.x/:

Then h�; �i is bi-invariant. See [GHL04, Section 2.46] for more information.

We will also need the following elementary inequality during the proof of Theorem 6.8. By Lemma
6.6, if C and A are as above, we have

d

dt
C.x; t/ D dRC.x;t/.A.�tx//;

we thus can estimate

dG.C.x; t/; e/ �

ˇ̌̌̌Z t

0

dRC.x;s/.A.�sx//ds

ˇ̌̌̌
�

Z t

0

jA.�sx/j ds:(6.2.4)

Without further ado, we begin the proof of Theorem 6.8
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PROOF. (of Theorem 6.8)
In this proof we will let K denote an arbitrary constant, which may change from line to line. Let ˛

be the Hölder exponent of A. Fix a point x0 2 N such that the orbit � of x0 is dense in N . We begin by
defining our function u on � . Choose a point u.x0/ 2 G and then set

u.�tx0/ WD C.x0; t / � u.x0/:

We now show that u is ˛-Hölder continuous on � . Apply Theorem 6.4 with x WD �tx0 to deduce the
existence of �;K; T0 > 0 such that if T > T0 and

d.�tCT x0; �tx0/ < �

then there exists a unique periodic point p with period T C � where � D �.T / is bounded for all T , and

(6.2.5) d.�tCT x0; p/ � Kd.�tCT x0; �tx0/;

together with a point z 2 W s.p/ \W u.�tx0/.
Now note that

dG.u.�tCT x0/; u.�tx0// D dG.C.x0; t C T / � u.x0/; C.x0; t / � u.x0//

D dG.C.x0; t C T /; C.x0; t //

D dG.C.�tx0; T / � C.x0; t /; C.x0; t //

D dG.C.�tx0; T /; e/;

where we repeatedly used bi-invariance and the cocycle property. Then by the triangle inequality and bi-
invariance, we have

dG.C.�tx0; T /; e/ � dG.C.�tx0; T /; C.z; T //C dG.C.z; T /; e/

D dG.C.�tx0; T / � C.z; T /
�1; e/C dG.C.z; T /; e/;

� dG.C.�tx0; T / � C.z; T /
�1; e/C dG.C.z; T /; C.p; T //

CdG.C.p; T /; e/

D dG.C.�tx0; T / � C.z; T /
�1; e/C dG

�
C.p; T /�1 � C.z; T /; e

�
;

CdG.C.p; T /; e/;

and thus

dG.u.�tCT x0/; u.�tx0// � dG.C.�tx0; T / � C.z; T /
�1; e/„ ƒ‚ …

.I/

C dG.C.p; T /
�1
� C.z; T /; e/„ ƒ‚ …

.II/

C dG.C.p; T /; e/„ ƒ‚ …
.III/

:(6.2.6)

We therefore need to estimate .I/ ; .II/ and .III/. More specifically, we will show that each one can be
bounded by a term of the form Kd.�tCT x0; �tx0/

˛ .

Estimate of .I/: Define

a.s/ WD C.�tCT x0;�s/
�1
� C.�T z;�s/:

Then by the chain rule,
d

ds
a.s/ D dLC.�tCT x0;�s/�1 ı dRC.�T z;�s/.A.�tCT�sx0/ � A.�T�sz//;

where Lg W G ! G is left-translation by g 2 G. Since dLg and dRg are dG-isometries for all g 2 G, we
have ˇ̌̌̌

d

ds
a.s/

ˇ̌̌̌
D jA.�tCT�sx0/ � A.�T�sz/j

� Kd.�tCT�sx0; �T�sz/
˛

� Ke��˛sd.�tCT x0; �T z/
˛

� Ke��˛sd.�tCT x0; p/
˛

� Ke��˛sd.�tCT x0; �tx0/
˛
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for some (varying) constantK > 0, where in the first inequality we used the fact A is ˛-Hölder continuous,
the second and third used the fact that �T z 2 W u

loc.�tCT x0/, and the last used (6.2.5). Thus

(6.2.7) dG.a.s/; e/ �
K

�˛
d.�tCT x0; �tx0/

˛;

and note that (6.2.7) is uniform in s.
Now take s D T to obtain

a.T / D C.�tCT x0;�T /
�1
� C.�T z;�T /

D
˚
C.�tx0; T � T / � C.�tx0; T /

�1
	�1
�
˚
C.z; T � T / � C.z; T /�1

	�1
D C.�tx0; T / � C.z; T /

�1;

and combining this with (6.2.7) we obtain

dG.C.�tx0; T / � C.z; T /
�1; e/„ ƒ‚ …

.I/

� Kd.�tCT x0; �tx0/
˛;

which gives us an estimate for .I/.

Estimate of .II/: This is very similar to the estimate of .I/ above. Define

b.s/ WD C.p; s/�1 � C.z; s/:

Then
d

ds
b.s/ D dLC.p;s/�1 ı dRC.z;s/ ŒA.�sz/ � A.�sp/� ;

and as before we have ˇ̌̌̌
d

ds
b.s/

ˇ̌̌̌
D jA.�sz/ � A.�sp/j

� Kd.�sz; �sp/
˛

� Ke��˛sd.z; p/˛

� Ke��˛sd.�tCT x0; �tx0/
˛;

where in the first inequality we used the fact A is ˛-Hölder continuous, the second used the fact that
z 2 W s.p/, and the last used (6.2.5). Thus

dG.b.s/; e/ �
K

�˛
d.�tCT x0; �tx0/

˛;

again, uniform in s. Then as before take s D T and note that b.T / D C.p; T /�1 � C.z; T /, we have

dG.C.p; T /
�1
� C.z; T /; e/„ ƒ‚ …

.II/

D dG.b.T /; e/

�
K

�˛
d.�tCT x0; �tx0/

˛;

which finishes the estimate of .II/.

Estimate of .III/: To bound .III/ we finally use the hypotheses that C satisfies the periodic orbit
obstruction condition; since p is periodic with period T C � we have

C.p; T C �/ D e;

and thus
C.p; T / D C.p;��/

by the cocycle property. Then by (6.2.4), we have

dG.C.p;��/; e/ �

Z 0

��

jA.�sx0/j ds:

� Kd.�tCT x0; �tx0/
˛;
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sincej� j is bounded and A is ˛-Hölder continuous. Thus

dG.C.p; T /; e/„ ƒ‚ …
.III/

� Kd.�tCT x0; �tx0/
˛;

which completes the estimate for .III/.

Putting these estimates together into (6.2.6) then gives

(6.2.8) dG.u.�tCT x0/; u.�tx0// � .I/C .II/C .III/ � Kd.�tCT x0; �tx0/˛;

and thus u is Hölder continuous on � as claimed.

As in the proof of Theorem 6.3, it is now easy to complete the proof: since u is Hölder continuous
it is in particular uniformly continuous, and thus admits a unique extension to a map u W N� D N ! g.
Moreover passing to the limit in (6.2.3) and (6.2.8) then shows that u satisfies the conditions of the theorem
and is ˛-Hölder continuous, and the proof is complete. �

We conclude this section by showing how to deduce Proposition 6.1 from Theorem 6.4. For the conve-
nience of the reader we restate Proposition 6.1 as Proposition 6.10 below.

PROPOSITION 6.10. Let �t W N ! N be a transitive Anosov flow on the closed manifold N , and
f W N ! R an ˛-HRolder continuous function. Then there exists � > 0, K0 > 0 and T0 > 0 such that if
d.�T x; x/ < � for some T > T0 then there exists a closed orbit � with period T C � for some � � 0 such
that ˇ̌̌̌

ˇ
Z TC�

0

f .�tp/dt �

Z T

0

f .�tx/dt

ˇ̌̌̌
ˇ � K0d.�T x; x/˛;

where p is some point in � .

PROOF. By Theorem 6.4, we can find �;K; T0 > 0 such that if T > T0 and d.�T x; x/ < � then there
exists a unique periodic point p 2 N with period T C � such that

max fd.x; p/; d.�T x; p/; j� jg � K min f�; d.�T x; x/g

and a unique point z 2 W s
loc.p/ \W

u
loc.x/: Now we estimateˇ̌̌̌

ˇ
Z TC�

0

f .�tp/dt �

Z T

0

f .�tx/dt

ˇ̌̌̌
ˇ �

Z �

0

jf .�tp/j dt C

Z T

0

jf .�tp/ � f .�tz/j dt

C

Z T

0

jf .�tz/ � f .�tx/j dt:

Arguments very similar to the proof of Theorem 6.8 above show that we can bound each separate term by
a term of the form Kd.�T x; x/

˛ , and thus this completes the proof. �

6.3. The Livsic Cocycle Regularity Theorems

In this subsection and the next, we shall state two sets of results, both addressing the issue of regularity.
The first deals with the following situation. Suppose we assume that f in Theorem 6.3 or C in Theorem 6.8
possesses higher regularity than just Hölder continuity. Does this imply that u has more regularity? Here is
the precise answer. We call these two results the Livsic Cocycle Regularity Theorems.

THEOREM 6.11. Let N be a closed manifold and �t a transitive Anosov flow on N with infinitesimal
generator X , and f W N ! R a C k function, for k 2 N [ f1g satisfying the periodic orbit obstruction
condition. Then there exists a C k function u W N ! R such that X.u/ D f .

THEOREM 6.12. Let �t W N ! N be a transitive Anosov flow on a closed manifold N , and G a
compact Lie group with Lie algebra g, A W N ! g is a C k function, for k 2 N [ f1g and C the
corresponding G-valued cocycle defined by equations (6.2.1) and (6.2.2). Suppose C satisfies the periodic
orbit obstruction condition. Then there exists a C k function u W N ! G such that for every x 2 N and
t 2 R, C.x; t/ D u.�tx/u.x/�1.

We will use the second of these two theorems in Chapter 13 (see Theorem 13.9).
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REMARK 6.13. We will also state a different form of Theorem 6.11 which is the one we will use in
several places throughout these notes. Its proof is but part of the proof of Theorem 6.11. It is important to
note that this statement does not require either the transitivity of the flow or the periodic orbit obstruction
condition.

THEOREM 6.14. Suppose �t W N ! N is an Anosov flow on a closed manifold N with infinitesimal
generator X . Suppose f is a C k function for k 2 N [ f1g, and u is a Hölder continuous function that is
differentiable in the flow direction such that X.u/ D f . Then there exists a C k function v W N ! R such
that X.v/ D f .

We will not attempt to prove Theorem 6.12 but we will sketch an outline of the proof of a special case
of Theorem 6.11; see Corollary 6.16 below, in order to give an essence of how the proofs go. Theorem
6.11 is originally due to de La Llave, Marco and Moriyon (see [dlLMM86, Theorem 2.1]), although Livsic
considered the C 1 case for abelian Lie groups in [Liv71, Liv72]. A different proof was given by Hurder and
Katok in [HK90, Theorem 2.2]. The proof was then further simplified by Journé in [Jou86] (see Theorem
6.17, below). Theorem 6.12 is due to Niţică and Török in [NT96, NT98].

To begin our proof of a special case of Theorem 6.11, we first prove that u has the same regularity as
f in the stable and unstable directions.

PROPOSITION 6.15. LetN be a closed manifold and �t a transitive Anosov flow onN , and f W N ! R

a C k function, for k 2 N [ f1g satisfying the periodic orbit obstruction condition. Then there exists a
Lipschitz continuous function u W N ! R that is differentiable in the flow direction and of class C k along
the stable and unstable manifolds such that X.u/ D f .

PROOF. By Theorem 6.3, we know that that u is Lipschitz continuous on all of N (since we may take
˛ D 1). Suppose now y 2 W s.x/. Using (6.1.2) we obtain

u.y/ � u.x/ D u.�ty/ � u.�tx/C

Z t

0

ff .�sx/ � f .�sy/gds:

Since jf .�sx/ � f .�sy/j � Ce��td.x; y/ we conclude that the integral converges uniformly and thus we
may let t !1 to obtain

u.y/ � u.x/ D

Z 1
0

ff .�sx/ � f .�sy/gds:

Now take a curve 
 W .��; �/! W s.x/ with 
.0/ D x and P
.0/ D v 2 TxW s.x/ D Es.x/. Then

u.
.r// � u.
.0//

r
D �

1

r

Z 1
0

ff .�s.
.r/// � f .�s.
.0///gds;

and hence
d

dr

ˇ̌
rD0

u.
.r// D �

Z 1
0

df .d�s.v//ds:

Now since v 2 Es.x/ we have d�s.v/ ! 0 exponentially fast as s ! 1, and hence the integral again
converges uniformly. This shows that u is differentiable in the direction of the stable manifold W s.x/. A
similar argument shows that u is differentiable in the unstable direction. In fact, this shows that if f is C k

then u is C k along the stable and unstable foliations. �

COROLLARY 6.16. Let N be a 3-manifold, and �t and f satisfying the conditions of the Livsic theo-
rem, where f is in addition C 1. Then u is C 1 on all of N .

It is only for notational simplicity that we assume that N is 3-dimensional; the same proof clearly
works for higher dimensions but is harder to write down.

PROOF. Let fX; Y s; Y ug be a C 0 local frame on U � N such that fX.x/; Y s.x/; Y u.x/g is a basis of
TxN for all x 2 U and such that for all x 2 U ,

Es.x/ D spanfY s.x/g

and
Eu.x/ D spanfY u.x/g:



6.4. THE MEASURABLE LIVSIC THEOREMS 52

If .x1; x2; x3/ are local coordinates on U then for i D 1; 2; 3 we can find continuous functions ai ; bi ; ci

such that
@

@xi
D aiX C biY s C ciY u:

Then
@u

@xi
D aiX.u/C biY s.u/C ciY u.x/;

which is continuous by Proposition 6.15. Hence u is C 1 as claimed. �

In fact, the following theorem, due to Journé [Jou86] allows us to deduce the full Theorem 6.11 from
Proposition 6.15.

THEOREM 6.17. Let N be a smooth manifold and Fs and Fu two Hölder transverse foliations with
uniformly smooth leaves. Then if u W N ! R is uniformly C k along the leaves of the two foliations then u
is C k on all of N .

Finally we conclude this section by stating an enhanced version of Theorem 6.11; essentially this is a
version ‘with parameters’. Its proof can be found in [dlLMM86]. We will use this result once, in the proof
of Theorem 12.7 in Chapter 12.

THEOREM 6.18. LetN be a closed manifold, and fXsg a smooth family of vector fields (that is, s 7! Xs
is smooth) generating transitive Anosov flows f�st g. If ffsg is a smooth family of functions (that is, s 7! fs
is smooth) such that for every closed orbit �s of the flow �st of Xs we haveZ T.�s/

0

fs.�
s
t x
s
0/dt D 0;

where T .�s/ is the period of �s and xs0 is some point in �s , then the smooth functions us such that

Xs.us/ D fs;

(whose existence is guaranteed Theorem 6.11) actually form a smooth family of functions, that is, s 7! us
is also smooth.

6.4. The Measurable Livsic Theorems

We will now move on to the second set of regularity results. Essentially they both say the same thing: if
instead of assuming (in either Theorem 6.3 or Theorem 6.8) that the periodic orbit obstruction condition is
satisfied, but instead we assume the existence of a measurable function w satisfying the conclusions of the
theorem almost everywhere then both theorems still hold, that is, there exists an ˛-Hölder continuous func-
tion u satisfying the conclusions of the theorem. Together we call them the Measurable Livsic Theorems.
We will use Theorem 6.19 in Chapter 11 (see Theorem 11.8).

THEOREM 6.19. Let N be a closed manifold and �t a transitive Anosov flow on N , and f W N ! R

an ˛-HRolder continuous function. Suppose there exists a measurable function w that is differentiable in
the flow direction and satisfies X.w/ D f almost everywhere, where X is the infinitesimal generator of
�t . Then there exists an ˛-HRolder continuous function u W N ! R such that u is differentiable in the flow
direction and X.u/ D f .

THEOREM 6.20. Let �t W N ! N be a transitive Anosov flow on a closed manifold N , and G a com-
pact Lie group with Lie algebra g. Let A W N ! g be a Hölder continuous function and C the correspond-
ing G-valued cocycle defined by equations (6.2.1) and (6.2.2). Suppose there exists a measurable function
w W N ! G such that for almost every x 2 N and t 2 R, C.x; t/ D w.�tx/w.x/�1. Then there exists an
Hölder continuous function u W N ! G such that for every x 2 N and t 2 R, C.x; t/ D u.�tx/u.x/�1.

We shall not try to prove either theorem; the first is due to Livsic and Sinai (see [LS72]), and a version of
the second is due to Parry and Pollicott (see [PP97]). A generalization of Theorem 6.20 is given in [Wal00,
Section 6], which also ties together this result with Theorem 6.12, as well as giving further historical
comments on all of these results.
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6.5. The cohomological equation

We now return to Theorem 1.9. That is, let .M; g/ be a closed surface whose geodesic flow �t is
Anosov, and let h 2 C1.M/ and � 2 �1.M/. Suppose I ŒhC �� D 0. Define f W SM ! R by

f .x; v/ D h.x/C �x.v/:

Then since I ŒhC �� D 0, the conditions of the Theorem 6.11 are satisfied, and we conclude that there
exists a smooth function u W SM ! R such that X.u/ D f , where X is the geodesic vector field (note that
Theorem 3.12 and Corollary 3.14 gives transitivity of �t ).

The PDE
X.u/ D f

is called the cohomological equation.

DEFINITION 6.21. We can do cohomology with functions: if f; g W SM ! R are smooth functions
we say that f is flow cohomologous to g if there exists a smooth u W SM ! R such thatX.u/ D f �g (the
reason for this will become clear in Chapter 9 - see Remark 9.4). In particular we say f 2 C1.SM;R/ is
a coboundary if f D X.u/ for some u 2 C1.SM;R/.

LEMMA 6.22. Suppose we could show that the function u W SM ! R we obtain such that

(6.5.1) X.u/ D h.x/C �x.x; v/

is independent of v. Then Theorem 1.9 is true.

PROOF. If 
.x;v/.t/ WD � ı �t .x; v/ is the unique geodesic on M adapted to .x; v/ then if u.x; v/ D
g.x/ for some smooth function g WM ! R then we would have

X.u/ D
d

dt

ˇ̌
tD0
u.�t .x; v//

D
d

dt

ˇ̌
tD0
g.
.x;v/.t//

D dgx.v/;

and thus

(6.5.2) dgx.v/ D h.x/C �x.v/:

Then by considering .x;�v/ we obtain h.x/ D 0, and thus h � 0 as x was arbitrary, and then (6.5.2) reads

dg D �;

so � is indeed exact. �

It however will not be easy to show that u is independent of v; showing this will take all of Chapters 8
and 9. Before doing so however we will investigate in the next chapter an enlarged class of flows.



CHAPTER 7

�-geodesic flows

In this chapter we enlarge the class of flows we study; instead of just geodesic flows we study �-
geodesic flows, which we show include all magnetic and thermostat flows. Finally we formulate a version
of Theorem 1.9 for �-geodesic flows.

7.1. Enlarging the class of flows

DEFINITION 7.1. Let .M; g/ be a closed surface, and let D
dt

denote the covariant derivative associated
to the Levi-Civita connectionr. Let i denote the almost complex structure onM induced by g (see (4.1.2)).
Let � 2 C1.SM;R/ be an arbitrary smooth function. The �-geodesic equation is

(7.1.1)
D P


dt
D �.
; P
/i P


(note that the standard geodesic equation (1.1.1) is the special case � D 0). We call curves that satisfy
(7.1.1) �-geodesics.

EXERCISE 7.2. Verify that as in the standard geodesic case, given .x; v/ 2 SM there exists a unique
�-geodesic 
.x;v/ adapted to .x; v/, and that we can define a flow �t W SM ! SM by

(7.1.2) �t .x; v/ D .
.x;v/.t/; P
.x;v/.t//:

DEFINITION 7.3. Let .M; g/ be a closed surface and � 2 C1.SM;R/. The �-geodesic flow �t is
the flow (7.1.2). To distinguish from the standard case of the geodesic flow, we now let F denote the
infinitesimal generator of �t .

Recall now our moving frame fX;H; V g with coframe f˛; ˇ;  g from Chapter 4 (see Summary 4.12).
The infinitesimal generator can be expressed as a linear combination of the vector fields X;H; V , that is,
there exist smooth functions a; y; z W SM ! R such that

F D aX C yH C zV:

Namely, a D ˛.F /; y D ˇ.F / and z D  .V /. In fact, the following lemma shows that these functions
a; y; z take a particularly simple form.

LEMMA 7.4. The infinitesimal generator satisfies F D X C �V .

PROOF. Recalling the definition of the moving coframe f˛; ˇ;  g we have for 
 D 
.x;v/,

 .F.x; v// D hK.F.x; v//; i P
i

D

�
D P


dt
; i P


�
D h�.
; P
/i P
; i P
i
D �.
; P
/:

Similarly

˛.F.x; v// D hd�.F.x; v//; vi

D h P
; P
i

D 1;

and

ˇ.F.x; v// D hd�.F.x; v//; ivi
D h P
; i P
i
D 0:
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Thus

F D ˛.F /X C ˇ.F /H C  .F /V

D X C �V:

�

In order to show that enlarging the class of flows we consider is a worthwhile thing to do, in the next
two sections we consider two special cases of this new type of flow.

7.2. Magnetic Flows

DEFINITION 7.5. Let � be a closed 2-form on M . Since M is an orientable surface, there exists a
smooth function f WM ! R such that

(7.2.1) � D f �a;

where �a is the area form from Definition 4.11.
Consider now the 2-form !� 2 �

2.TM/ defined by

!� WD �d˛ C �
��

where � W TM !M is the footpoint map.

EXERCISE 7.6. Prove that !� is a symplectic form.

We call the symplectic manifold .TM;!� / a twisted tangent bundle. Let H W TM ! R be the energy
Hamiltonian from Lemma 1.3 defined by

H.x; v/ D
1

2
jvj2 :

The magnetic flow or twisted geodesic flow associated to !� is defined to be the flow of the unique
vector field QF on TM defined by

i QF !� D dH;

i.e., it is the Hamiltonian flow ofH with respect to the twisted symplectic form !� . It is physically relevant,
as it models the motion of a particle of unit mass and unit charge under the effect of a magnetic field (which
is represented by the 2-form � ). See for instance [AG90, Gin96] for more information.

Set � WD f ı � W SM ! R, where f is as in (7.2.1). Let �t denote the �-geodesic flow with
infinitesimal generator F .

LEMMA 7.7. QF jSM D F , that is, �t is the magnetic flow restricted to SM .

PROOF. Note that � extends to a function in all TM . Similarly, the vector fields X and V are also
defined in all TM . We only need to show that on TM we have iXC�V !� D dH . Since ��� is annihilated
on vertical vectors we have

iXC�V !� D �iXd˛ � �iV d˛ C iX�
��

D dH � �iV d˛ C iX�
��:

Thus we only need to check that iV d˛ D iX���a. Take .x; v/ 2 TM and � 2 T.x;v/TM and compute

iV d˛.�/
.�/
D hd�.�/; ivi
D �a.v; d�.�//

D iX�
��a.�/;

where .�/ used Lemma 4.3. �

We have shown that magnetic flows form a subset of �-geodesic flows, namely, magnetic flows re-
stricted to SM are precisely the �-geodesic flows where � is of the form � D f ı � for some f 2
C1.M;R/. In the next section we shall see that taking � to be a 1-form allows us to model another
physically relevant situation.
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7.3. Thermostats

The geodesic flow is studied for several reasons. From a dynamical point of view, the geodesic flow is
a ‘model’ of a conservative dynamical system, and thus is studied as a prototype to more realistic systems.
Here is another, more geometrical point of view. Suppose Nr is an arbitrary affine connection on M with
associated covariant derivative ND

dt
. Then a curve 
 is a geodesic with respect to Nr if

ND P

dt
D 0, and the

corresponding flow N�t is the geodesic flow arising from Nr. From this point of view, the (standard) geodesic
flow is the geodesic flow arising from the distinguished Levi-Civita connection, and thus is important in its
own right.

We will now study thermostats, which are an extension of the above. From a dynamical point of view,
these systems are studied as a model of a dissipative dynamical system. From the geometric point of view,
these are the flows arising from metric connections that are not necessarily torsion-free.

Here is the definition.

DEFINITION 7.8. Let .M; g) be a closed surface. Suppose E W M ! TM is a vector field on M . Let
r denote the Levi-Civita connection and D

dt
the associated covariant derivative. Consider the equation

(7.3.1)
D P


dt
D E.
/ �

hE.
/; P
i P


j P
 j2
:

The reason behind the strange looking term hE.
/; P
i P


j P
 j2
is given in the next exercise: this is ‘Gauss’ least

constraint principle’; see [Hoo86].

EXERCISE 7.9. Show that if 
 satisfies (7.3.1) then H.
.t/; P
.t// is constant, where H is the energy
Hamiltonian from Lemma 1.3. Conclude that if �t is the flow defined by (7.3.1) then �t restricts to define
a flow on SM .

We can write for v 2 SxM

(7.3.2) E.x/ D hE.x/; vi v C hE.x/; ivi iv;

and thus
D P


dt
D hE.
/; P
i P
 C hE.
/; i P
i i P
 � hE.
/; P
i P


D �.
; P
/i P
;(7.3.3)

where
�.x; v/ D hE.x/; ivi :

In other words, if
� WD OgE

is the g-dual 1-form to E then
� D V.�/:

Conversely if � is defined to be V.�/ for some 1-form � and E WD Og�1� then the thermostat flow of E is
the �-geodesic flow of �. Thus thermostats are just another special case of �-geodesic flows.

We now want to give the aforementioned geometric interpretation. First of all, however, we need to
recall a more general version of the Fundamental Theorem of Riemannian Geometry.

THEOREM 7.10. Let .M; g/ be a Riemannian manifold and A an arbitrary antisymmetric 2-tensor.
Then there exists a unique metric connection Nr with torsion A.

EXERCISE 7.11. Prove the theorem in the case where dim M D 2 (Hint: show there exists a unique
1-form � such that

A.X; Y / D �.Y /X � �.X/Y;

and try
NrXY D rXY � hX; Y iE C �.Y /X

where E D Og�1� and r is the Levi-Civita connection).
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Let .M; g/ be a closed surface and A an arbitrary antisymmetric 2-tensor. Let Nr denote the connection
given by Theorem 7.10. We now ask the question: what are the geodesics of Nr? If ND

dt
is the associated

covariant derivative then
ND P


dt
D 0 ,

D P


dt
D h P
; P
iE.
/ � �. P
/ P
;

where D
dt

is the covariant derivative of the Levi-Civita connection and E and � are as in Exercise 7.11.
Since Nr is metric, we may assume j P
 j D 1 for any geodesic 
 , whence we obtain

D P


dt
D 1 �E.
/ � �. P
/ P


D E.
/ � hE.
/; P
i P


D hE.
/; i P
i i P


D �.
; P
/i P
;

where � D V.�/. We have thus proved the following observation due to Wojtkowski and Przytycki [WP08]:

LEMMA 7.12. The �-geodesic flows where � D V.�/ for � 2 �1.M/ are precisely the geodesic flows
arising from metric connections; namely if � D V.�/ then the �-geodesic flow is the geodesic flow of the
unique metric connection Nr with torsion A.X; Y / WD �.Y /X � �.X/Y .

We conclude this section with the following exercise.

EXERCISE 7.13. Suppose .M; g/ is a closed surface with Gaussian curvatureK, and �t W SM ! SM

is the flow of a thermostat E. Let divE denote the divergence of E with respect to the area form �a, that
is, divE WM ! R is uniquely defined by LE�a D divE �a.

Use Theorem 5.2 to show that if K C divE is negative, then �t is Anosov. (For this you will need to
derive the Jacobi equations for thermostats as we have done for geodesic flows.)

7.4. The X-ray transform and �-geodesic flows

This should have convinced the reader that this enlarged collection of flows is worth studying. We
conclude this chapter by stating a generalization of Theorem 1.9 to the case of this new type of �-geodesic
flows. It will be proved in Chapter 9. First, an obvious definition.

DEFINITION 7.14. Let .M; g/ be a closed surface and � 2 C1.SM;R/. Let �t be the �-geodesic
flow on SM . We can define the �-geodesic X-ray transform I in exactly the same way as the standard
X-ray transform, only we now integrate over �-geodesics. Namely, let G�.M; g/ denote the set of closed
�-geodesics and define I as before in Definition 1.8 (on functions, 1-forms, symmetric 2-tensors etc), only
replacing G.M; g/ with G�.M; g/.

Here is the generalization of Theorem 1.9 to �-geodesic flows, due to Dairbekov and Paternain [DP07,
Theorem B]. Earlier proofs of special cases of this result for some geodesic and magnetic flows (one of
which being 1.9) using Fourier analysis exist; see Guillemin and Kazhdan [GK80] and Paternain [Pat05].

THEOREM 7.15. Let .M; g/ be a closed surface and � W SM ! R any smooth function. Let �t be the
�-geodesic flow on SM . Suppose �t is Anosov, and that h 2 C1.M;R/ and � 2 �1.M/ are such that

I ŒhC �� D 0;

where I is the X-ray transform (integrating over �-geodesics). Then h � 0 and � is exact.



CHAPTER 8

The Maslov cycle and the Riccati equation

This chapter is dedicated to proving Theorem 8.2 below. An important consequence of this, explained
at the end of the chapter is the Riccati equations, Proposition 8.19. We use these in the next chapter to
deduce Theorem 7.15.

8.1. The Maslov cycle

DEFINITION 8.1. Let .M; g/ be a closed surface and �t an Anosov �-geodesic flow on SM with
infinitesimal generator F . Since �t is Anosov we have a splitting TSM D RF ˚ Es ˚ Eu. Recall also
the weak (un)stable bundles E˙ (see Exercise 3.24) defined by E� WD Es ˚ RF , EC WD Eu ˚ RF .

The main theorem we wish to prove is the following, taken from [DP07]:

THEOREM 8.2. Let .M; g/ be a closed surface and �t an Anosov �-geodesic flow on SM with infini-
tesimal generator F . Then

V.x; v/ … E˙.x; v/ for all .x; v/ 2 SM:

Despite the innocuous looking statement, proving this theorem will take some time. We will need the
following auxiliary construction.

DEFINITION 8.3. Define a fibre bundle ƒ.SM/ over SM as follows: given .x; v/ 2 SM , let

ƒ.x;v/.SM/ WD
˚
W � T.x;v/SM W dimW D 2; F.x; v/ 2 W

	
;

and then let ƒ.SM/ D
`
.x;v/2SM ƒ.x;v/.SM/.

EXERCISE 8.4. Show that ƒ.SM/ is a fibre bundle over SM , and compute its dimension.

We have two canonical sections V and H of the bundle ƒ.SM/! SM defined by

V.x; v/ D RV.x; v/˚ RF.x; v/;

H.x; v/ D RH.x; v/˚ RF.x; v/:

We let ƒV and ƒH denote the images of V and H respectively. ƒV is called the Maslov cycle. They are
both codimension one submanifolds of ƒ.SM/.

DEFINITION 8.5. The flow �t lifts naturally to a flow ��t on ƒ.SM/ by its differential, that is,

��t .W / WD d�t .W /:

We let F � denote the infinitesimal generator of ��t .

The key result we need in order to prove Theorem 8.2 is the following proposition. We do not require
the Anosov property for this result.

PROPOSITION 8.6. F � is transversal to the Maslov cycle ƒV .

PROOF. We will define a smooth map m W ƒ.SM/nƒH ! R such that ƒV D m�1.0/. From the
definition of m it will be clear that the statement F � is transversal to ƒV is equivalent to the statement
Pm.0/ ¤ 0. Then the proof will be completed by showing Pm.0/ D 1.

First, given W 2 ƒ.x;v/.SM/ with W ¤ RF.x; v/ ˚ RH.x; v/, we define the unique real number
m.W / such that

m.W /H.x; v/C V.x; v/ 2 W:

In more detail, if we plot the fH;V g-plane of T.x;v/SM on the page, with V on the vertical axis and H
on the horizontal axis, and the X -axis sticking out the page, then the cross section of W with the fH;V g-
plane is a sloping line that is not horizontal. We let 1

m.W /
denote the gradient of the line. Note that

W D RF.x; v/˚ RV.x; v/ if and only if m.W / D 0.
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Now fix a point .x0; v0/ 2 SM , and define the smooth curve

m.t/ WD m
�
��t .V.x0; v0//

�
:

Then it is clear that m satisfies the conditions stated above. We complete the proof therefore by showing
Pm.0/ D 1.

Writing H.t/ WD H.�t .x0; v0// and H D H.0/ D H.x0; v0/, and similarly for V.t/, V etc, m.t/ is
the unique real number such that

m.t/H.t/C V.t/ 2 d�t .V.x0; v0//:

Since V.x; v/ D RV.x; v/˚ RF.x; v/ and d�t .F.x; v// D F.�t .x; v//, it follows that

m.t/H.t/C V.t/ D a.t/F.t/C y.t/d�t .V /

for some smooth functions a.t/; y.t/. Thus applying d��t to both sides we obtain

m.t/d��t .H.t//C d��t .V .t// D a.t/F C y.t/V:

Now we differentiate with respect to t ; using (4.2.1) we obtain

Pm.t/d��t .H.t//Cm.t/d��t .ŒF;H�.t//C d��t .ŒF; V �.t// D Pa.t/F C Py.t/V:

Now setting t D 0 and using the fact that

ŒF; V � D ŒX C �V; V �

D ŒX; V �C Œ�V; V �

D �H C � ŒV; V � � V.�/V

D �H � V.�/.V /;(8.1.1)

as well as the fact that m.0/ D 0 we obtain

Pm.0/H �H � V.�/V D Pa.0/F C Py.0/V:

Now since fX;H; V g is a basis and F has no H -component, we can evaluate the coefficient of H on both
sides to obtain

Pm.0/ � 1 D 0:

This completes the proof. �

DEFINITION 8.7. Proposition 8.6 implies that ƒV determines an oriented codimension one cycle in
ƒ.SM/, and thus by duality a cohomology class

m 2 H 1.ƒ.SM/;Z/:

Let E denote either E� or EC, and define � 2 H 1.SM;Z/ Š Hom.H1.SM;Z/;Z/ to be the cohomology
class � WD E�m. Given a continuous closed curve 
 W S1 ! SM define the index of 
 to be �.Œ
�/. Since
E is �t -invariant, the previous result shows that if � is any closed orbit of �t then �.�/ � 0.

8.2. Some algebraic topology

To progress further we need the following piece of algebraic topology.

PROPOSITION 8.8. Let M be a closed orientable surface of genus g. If M is not diffeomorphic to the
2-torus then

Hk.SM;Z/ D

8̂̂̂<̂
ˆ̂:

Z2g k D 2

Z2g ˚ Z2g�2 k D 1

Z k D 0; 3

0 k ¤ 0; 1; 2; 3:

PROOF. For this we need to recall the Gysin sequence for homology (see e.g. [BT82, Proposition
14.33]): if � W N !M is an oriented sphere bundle with fibre Sn�1 then there is a long exact sequence in
homology

� � � ! Hk�nC1.M;Z/! Hk.N;Z/
��
! Hk.M;Z/



! Hk�n.M;Z/! : : : ;
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Applying this to the unit sphere bundle of an orientable manifoldM n, we first note that the mapHk.M;Z/


!

Hk�n.M;Z/ can only be non-trivial if both Hk.M;Z/ and Hk�n.M;Z/ are non-trivial, which can happen
only when k D n and M is compact. Hence when n D 2 and M is closed we obtain

H1.M;Z/! H2.SM;Z/! H2.M;Z/


! H0.M;Z/! H1.SM;Z/

��
! H1.M;Z/! 0:

We have H2.M;Z/ D H0.M;Z/ and in this case the map 
 is multiplication by the Euler characteristic
�.M/, that is

0! H1.M;Z/! H2.SM;Z/! Z
�.M/
! Z! H1.SM;Z/

��
! H1.M;Z/! 0:

Now recall that if M has genus g we have

Hk.M;Z/ D

8̂<̂
:

Z2g k D 1

Z k D 0; 2

0 k ¤ 0; 1; 2:

Thus the sequence becomes

0! Z2g ! H2.SM;Z/! Z
2�2g
! Z! H1.SM;Z/

��
! Z2g ! 0:

Thus we conclude that if M is not diffeomorphic to the 2-torus then

Hk.SM;Z/ D

8̂̂̂<̂
ˆ̂:

Z2g k D 2

Z2g ˚ Z2g�2 k D 1

Z k D 0; 3

0 k ¤ 0; 1; 2; 3;

where we have used the fact that since SM is necessarily orientable, H3.SM;Z/ Š Z. �

COROLLARY 8.9. If M is a closed orientable surface that is not diffeomorphic to the 2-torus and
� W SM ! M is the footpoint map then �� W H1.SM;R/! H1.M;R/ is an isomorphism. Moreover the
kernel of �� W H1.SM;Z/! H1.M;Z/ is precisely the torsion subgroup of H1.SM;Z/.

Using duality (or a similar argument with the Gysin sequence in cohomology) proves the following
result, which we will use this in Chapter 11:

COROLLARY 8.10. If M is a closed orientable surface that is not diffeomorphic to the 2-torus and
� W SM !M is the footpoint map then �� W H 1.M;R/! H 1.SM;R/ is an isomorphism.

We now require the following classical theorem in Riemannian geometry; the reader is referred to
[Cha06, Theorem IV.5.1] for a proof.

THEOREM 8.11. Let .M; g/ be a closed Riemannian manifold. Then every non-trivial free homotopy
class of loops contains a closed geodesic.

As a consequence we obtain the following corollary.

COROLLARY 8.12. If M is a closed orientable surface of genus g � 2 then every homology class in
H1.M;Z/ contains a closed geodesic.

PROOF. This is immediate from the previous theorem, since as g � 2, every homology class contains
a homotopically non-trivial representative. �

REMARK 8.13. The corollary is also true for M D S2, although there a different argument is needed;
see for instance [Kli78].

8.3. Proving V is transversal to E˙

Returning to working towards the proof of Theorem 8.2, we finally use the Anosov condition.

LEMMA 8.14. Returning to the situation in Definition 8.7, suppose that �t is in addition assumed to
be Anosov. Then � D 0 2 H 1.SM;Z/.
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PROOF. The proof uses Ghys’ Theorem 3.17. Recall that this tells us that if g0 denotes a metric on M
of constant curvature �1, and �0 W S0M ! M the corresponding sphere bundle and  t W S0M ! S0M

the corresponding geodesic flow, then there exists a homeomorphism G W SM ! S0M carrying orbits of
�t into orbits of  t . Note moreover that G determines an isomorphism G� W H1.SM;Z/! H1.S

0M;Z/,
which necessarily maps the torsion subgroup ofH1.SM;Z/ into the torsion subgroup ofH1.S0M;Z/, and
hence factors to define an isomorphism

OG� W H1.SM;Z/= ker �� ! H1.S
0M;Z/= ker �0� :

Since � W H1.SM;Z/ ! Z is a homomorphism, it too factors through ker �� to define a homomorphism
O� W H1.SM;Z/= ker �� ! Z, and thus to show � D 0 it suffices to show that the homomorphism

� WD O� ı OG�1� ı .�
0
�/
�1
W H1.M;Z/! Z

is identically zero. But given c 2 H1.M;Z/, let 
.t/ denote a closed geodesic belonging to the homology
class c. Then OG�1� ı .�

0
�/
�1.c/ contains the curve �.t/ WD G�1.
.t/; P
.t// as a representative, and thus by

Proposition 8.6,
�.c/ D �.Œ��/ � 0:

Thus � W H1.M;Z/ ! Z is a homomorphism such that �.c/ � 0 for all c 2 H1.M;Z/. This of course
implies � D 0, as was required.

�

REMARK 8.15. Let us also note that applying Corollary 3.33, we see that �t is transitive and hence the
non-wandering set � of �t is all of SM . We will use this in the proof of Theorem 8.2 below.

We can now finally prove Theorem 8.2.

PROOF. (of Theorem 8.2)
As before let E denote either E� or EC. It is sufficient to show that E.SM/\ƒV D ;. Suppose this

fails, so there exists .x; v/ 2 SM such that E.x; v/ \ RV.x; v/ ¤ f0g, that is, V.x; v/ 2 E.x; v/. Since
F � is transversal to ƒV , there exists " > 0 such that for t 2 .�"; "/nf0g we have

d�t .E.x; v/ \ RV.�t .x; v// D E.�t .x; v// \ RV.�t .x; v// D f0g:

Now set �˙ WD �˙"=2.x; v/. Then E.�˙/ \ ƒV D f0g. We can then find neighborhoods U˙ of �˙ such
that E.U˙/ \ƒV D f0g. Specifically, we claim that we can find � 2 UC and T > 0 such that �T � 2 U�.
Admitting this for now, we can then find paths 
C from �C to � and c� from �T � to �� such that 
˙ is
wholly contained in U˙. Now let 
 denote the concatenated loop running from .x; v/ to �C via �t then
along 
C to �, then down to �T � via �t and then along 
� to �� and then back up .x; v/ via �t . We claim
that �.
/ > 0, thus contradicting Lemma 8.14.

Indeed, we have a C1 contribution at .x; v/ to �.
/, and along the �t portions the contribution is non-
negative, and along the 
˙ sections the contribution is zero, since their images are contained in U˙.

It thus remains to deduce the existence of such �; T . More generally, let us first show that if � 2 � and
�1; �2 are points on orbit of � with �2 D �s�1 for some s > 0 then given neighborhoods Ui of �i there exists
� 2 U2 and T > 0 such that �T � 2 U1. For this note that since � is invariant, �2 2 �. Since �s.U1/ \ U2
is an open set containing �2, there exists � 2 �s.U1/\U2 and T 0 > s such that �T 0� 2 �s.U1/\U2. Then
take T D T 0 � s, so �T � 2 ��s.�s.U1/ \ U2/ � U1. Finally, we use the fact that by Remark 8.15 above,
� D SM , and so this certainly works for � D .x; v/ and �1 D �C; �2 D ��. This completes the proof. �

REMARK 8.16. Note that the proof just given uses Theorem 3.17 only to conclude that � D SM and
that there exists an orbit equivalence between �t and a geodesic flow  t . In particular, Theorem 3.17 is
not needed for the proof of Theorem 8.2 for the case where the flow �t is a geodesic flow (as opposed to a
�-geodesic flow).

8.4. The Riccati equation

Having finally now completed the proof of Theorem 8.2, we can reap the benefits.

DEFINITION 8.17. Theorem 8.2 implies the existence of functions r˙ on SM such that

H.x; v/C r�.x; v/V .x; v/ 2 E�.x; v/;

H.x; v/C rC.x; v/V .x; v/ 2 EC.x; v/:
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Indeed, the picture is the same as the definition of m in the proof of Proposition 8.6, only now r˙.x; v/

represents the gradient of the line. Since E�.x; v/ \EC.x; v/ D f0g, we have

r�.x; v/ ¤ rC.x; v/ for all .x; v/ 2 SM:

REMARK 8.18. Since M is a surface, Theorem 11.4 below tells us that the bundles E˙ are C 1, and
hence the functions r˙ are also C 1.

We now prove:

PROPOSITION 8.19. Let r D r˙, and E D E˙. Then r satisfies the following equation:

(8.4.1) F.r/C r2 CK �H.�/C �2 � V.�/r D 0:

If we restrict the equation above to a flow line of F , we obtain an ODE of Riccati-type. For the purposes
of these notes we shall refer to (8.4.1) as ‘the’ Riccati equation. It makes sense as r is continuous since E
is, and is smooth along �t (and so F.r/ makes sense) as E is �t -invariant.

Alternatively, if we let

(8.4.2) K WD K �H.�/C �2 C F.V.�//;

then we can write this as

(8.4.3) F.r � V.�//C r.r � V.�//C K D 0:

The reason for introducing K will become clear in the next chapter (see Proposition 9.7).

PROOF. Pick .x; v/ 2 SM , and let H.t/ D H.�t .x; v// and H D H.0/ D H.x; v/ etc. Set

(8.4.4) �.t/ WD d��t .H.t/C r.t/V .t//;

so �.t/ 2 E for all t . Now differentiate (8.4.4) with respect to t and set t D 0; using (4.2.1) we obtain

P�.0/ D ŒF;H�C F.r/V C rŒF; V �:

From (8.1.1) we know ŒF; V � D �H � V.�/V . Next,

ŒF;H� D ŒX C �V;H�

D ŒX;H�C Œ�V;H�

D KV C �ŒV;H� �H.�/V

D KV � �X �H.�/V

D ��F C .K �H.�/C �2/V:(8.4.5)

Thus

P�.0/ D ��F C .K �H.�/C �2/V C F.r/V � r.H C V.�/V /;

and noting that H D �.0/ � rV , rearranging we have

(8.4.6) P�.0/C r�.0/C �F D
˚
r2 C F.r/CK �H.�/C �2 � V.�/r

	
V:

Now we observe that P�.0/ 2 E; since �.t/ 2 E for all t . Thus the left-hand side of (8.4.6) lies in E,
and hence so must the right-hand side. But since V … E by Theorem 8.2 this forces the coefficient of the
right-hand side of (8.4.6) to be zero, which is precisely what we wanted to show. �



CHAPTER 9

The Pestov identity and the proof of Theorem 7.15

In this chapter we will prove several integral identities, the most important of which is the Pestov
identity (Proposition 9.8). This will then allow us to deduce Theorem 7.15.

9.1. Preliminaries

DEFINITION 9.1. Let .M; g/ be a closed surface. The form ‚ D �˛ ^ d˛ D ˛ ^ ˇ ^  is a volume
form on M , and ‚ gives rise to the Liouville measure � of Corollary 3.14.

Recall that the divergence of a vector field Y with respect to ‚ is the smooth function div‚Y such that

LY‚ D div‚Y �‚:

LEMMA 9.2. It holds that:
LX‚ D LH‚ D LV‚ D 0;

div‚F D V.�/:

PROOF. This is very simple once we recall Cartan’s equation: for any vector field Y and form !,

LY! D iY d! C diY!:

In particular when ‚ is a top dimensional form,

LY‚ D diY‚:

Now since
˛ ^ ˇ ^  .X; �; �/ D ˇ ^  .�; �/;

we have
diX‚ D d.ˇ ^  / D dˇ ^  � ˇ ^ d D 0

by the structural equations. Thus LX‚ D 0, and similarly LH‚ D LV‚ D 0. Now

LF‚ D diF‚

D diX‚C di�V‚

D 0C d� ^ iV‚C �diV‚

D d� ^ ˛ ^ ˇ:

Now write
d� D X.�/˛ CH.�/ˇ C V.�/ 

to observe that
d� ^ ˛ ^ ˇ D V.�/ ^ ˛ ^ ˇ D .�1/2V.�/‚:

�

The next lemma is a version of integration by parts.

LEMMA 9.3. LetN be a closed manifold,‚ a volume form onN , Y a vector field and f 2 C1.N;R/.
Then

(9.1.1)
Z
N

Y.f /‚ D �

Z
N

fLY‚:

If instead N has boundary @N , it holds that

(9.1.2)
Z
N

Y.f /‚ D �

Z
N

fLY‚C

Z
@N

f iY‚:

63
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PROOF. First note

d.f iY‚/ D df ^ iY‚C fdiY‚

D df ^ iY‚C fLY‚:

Next note that

iY .df ^‚/ D iY .df /‚ � df ^ iY‚

D Y.f /‚ � df ^ iY‚:

But iY .df ^‚/ D 0 as df ^‚ D 0, and thus

d.f iY‚/ D Y.f /‚C fLY‚:

Now apply Stokes’ theorem to conclude:

0 D

Z
N

d.f iY‚/ D

Z
N

Y.f /‚C

Z
N

fLY‚:

�

REMARK 9.4. Compare with the definition of flow cohomology (see Definition 6.21). We see now that
if f W SM ! R is cohomologous to zero, that is, there exists u W SM ! R such that X.u/ D f thenZ

SM

f ‚ D 0:

COROLLARY 9.5. There do not exist Anosov geodesic flows on the sphere or the torus.

PROOF. Let M be a closed surface. Take � D 0, and r D r˙, so Proposition 8.19 gives X.r/C r2 C
K D 0. Now integrate both sides over SM with respect to d�:

(9.1.3)
Z
SM

X.r/d�C

Z
SM

r2d�C

Z
SM

Kd� D 0:

Consider the third term in (9.1.3). Note that ˛ ^ ˇ D ���a, where �a is the area form (see Definition
4.11). Hence we can write

(9.1.4)
Z
SM

Kd� D

Z
SxM

d�

Z
M

Kd�a D 2� � 2��.M/ D 4�2�.M/;

where we have used the Gauss-Bonnet theorem. The first term of (9.1.3) is zero by Lemma 9.2 and Lemma
9.3 (although it is in fact the case that r is differentiable (see Remark 8.18), even if we only knew r was
continuous this would be okay, since the previous lemma will still hold if the function f is only assumed
continuous and differentiable along Y , by an approximation argument. Alternatively one could use Lemma
10.28 below.).

We conclude that

0 �

Z
SM

r2d� D �4�2�.M/:

In fact we have Z
SM

r2d� > 0;

since if
R
SM

r2 D 0 then r � 0, but note r is either r� or rC, and we know r�.x; v/ ¤ rC.x; v/ for all
.x; v/ 2 SM . This completes the proof. �

REMARK 9.6. The corollary also follows easily from Theorem 3.17. However the proof given is
independent of Theorem 3.17, see Remark 8.16.
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9.2. The first integral identity

For the remainder of this chapter, let .M; g/ denote a closed surface. In order to prove Theorem 7.15
we need three integral identities: Proposition 9.7, Proposition 9.9 and Proposition 9.12. Here is the first.

PROPOSITION 9.7. Let s W SM ! M be a smooth function and suppose �t is Anosov. Then for
r D r˙ and K defined as in (8.4.2),Z

SM

ŒF .s/�2 d� �

Z
SM

Ks2d� D

Z
SM

ŒF .s/ � rs C sV .�/�2 d�;

with equality if and only if s � 0. In particular,Z
SM

ŒF .s/�2 d� �

Z
SM

Ks2d� � 0;

with equality if and only if s � 0.

PROOF. We begin by expanding ŒF .s/ � rs C sV .�/�2:

ŒF .s/ � rs C sV .�/�2 D ŒF .s/�2 C s2r2 C s2 ŒV .�/�2

� 2F.s/sr C 2F .s/ sV .�/ � 2s2rV .�/:

Using (8.4.3) we can rewrite this as

(9.2.1) ŒF .s/ � rs C sV .�/�2 D ŒF .s/�2 � Ks2 �
˚
F..r � V.�//s2/ � s2ŒV .�/�2 C s2rV .�/

	
:

Now we use Lemma 9.2 and Lemma 9.3 to conclude thatZ
SM

F..r � V.�//s2/d� D �

Z
SM

..r � V.�//s2/V .�/d�;

and the three f�g bracketed terms in (9.2.1) disappear when we integrate, which givesZ
SM

.F s/2d� �

Z
SM

Ks2d� D

Z
SM

ŒF .s/ � rs C sV .�/�2 d�;

as we want.
Finally if

ŒF .s/ � rs C sV .�/�2 D 0;

then since we can have r D r� and r D rC, we obtain

.r� � rC/s D 0;

and then since r�.x; v/ ¤ rC.x; v/ for all .x; v/ 2 SM it follows that s � 0. �

9.3. The Pestov identity and the second integral identity

It is hard to overstate the importance of the next result, called the Pestov identity. Although it looks
somewhat ugly, when we integrate it over SM below, lots of the terms disappear, and the statement becomes
much more concise.

PROPOSITION 9.8. For every smooth function u W SM ! R we have

2H.u/ � VF.u/ D ŒF .u/�2 C ŒH.u/�2 �
�
K �H.�/C �2

�
ŒV .u/�2

CF.H.u/ � V.u//C V.�/ �H.u/ � V.u/ �H.F.u/ � V.u//

CV.F.u/ �H.u//:

PROOF. We first recall the brackets for the basis fF;H; V g. We have

ŒV; F � D H C V.�/V;

ŒH; V � D F C �V;

ŒF;H� D ��F C .K �H.�/C �2/V;

where we have used (8.1.1) and (8.4.5) and Lemma 7.4.
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Let us begin by looking at

2H.u/ � VF.u/ � V.F.u/ �H.u// D H.u/ � VF.u/ � VH.u/ � F.u/

D H.u/ � fFV.u/C ŒV; F �.u/g

�Fu fHV.u/C ŒV;H�.u/g

D Hu fFV.u/CH.u/C V.�/ � V.u/g

�F.u/ fHV.u/ � F.u/C �V.u/g

D ŒF .u/�2 C ŒH.u/�2 C FV.u/ �H.u/

�HV.u/ � F.u/

��F.u/ � V.u/CH.u/ � V.�/ � V.u/:

Now using the fact that

F.V.u/ �H.u// D FV.u/ �H.u/C V.u/ � FH.u/

and that
H.F.u/ � V.u// D HF.u/ � V.u/C F.u/ �HV.u/;

together with
ŒF;H�.u/ � V.u/ D FH.u/ � V.u/ �HF.u/ � V.u/;

we can rewrite this last equation as

2H.u/ � VF.u/ � V.F.u/ �H.u// D ŒF .u/�2 C ŒH.u/�2 C F.V.u/ �H.u//

�H.V.u/ � F.u// � ŒF;H�.u/ � V.u/

��F.u/ � V.u/CH.u/ � V.�/ � V.u/;

and then finally substituting for ŒF;H� the extraneous terms cancel and we obtain

2H.u/ � VF.u/ � V.F.u/ �H.u// D ŒF .u/�2 C ŒH.u/�2

�.K �H.�/C �2/ ŒV .u/�2

CF.H.u/ � V.u//

CV.�/ �H.u/ � V.u/ �H.V.u/ � F.u//;

which completes the proof. �

We can now prove the second of the two integral identities we need.

COROLLARY 9.9. The integral Pestov identity:

2

Z
SM

H.u/ � VF.u/d� D

Z
SM

ŒF .u/�2 d�C

Z
SM

ŒH.u/�2 d�(9.3.1)

�

Z
SM

.K �H.�/C �2/ ŒV .u/�2 d�:

PROOF. We integrate the Pestov identity over SM and note that by Lemma 9.2 and Lemma 9.3, we
have Z

SM

H.F.u/ � V.u//d� D

Z
SM

V.F.u/ �H.u//d� D 0;

since LV‚ D LH‚ D 0 and moreoverZ
SM

F.H.u/ � V.u//d� D �

Z
SM

.H.u/ � V.u// � V.�/d�;

since div‚F D V.�/ which disposes of the remaining two terms. �

Let us also give a version of this corollary in the case whereM is compact with boundary @M ; we will
use this result in Chapter 12.

EXERCISE 9.10. Suppose M has boundary @M . Prove the integral Pestov identity:
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2

Z
SM

H.u/ � VF.u/d� D

Z
SM

ŒF .u/�2 d�C

Z
SM

ŒH.u/�2 d�

�

Z
SM

.K �H.�/C �2/ ŒV .u/�2 d�

C

Z
@.SM/

H.u/ � V.u/ � iF‚ �

Z
@.SM/

Fu � V u � iH‚

�

Z
@.SM/

Fu �Hu � iV‚:

To show how far we have come, let us now quickly prove a special case of Theorem 1.9 (which is itself
a special case of Theorem 7.15).

THEOREM 9.11. Let .M; g/ be a closed surface of negative curvature and let h 2 C1.M;R/ a
function such that I Œh� D 0. Then h � 0.

PROOF. This is easy, given what we have already proved. The Livsic Cocycle Regularity Theorem 6.11
gives the existence of a smooth u 2 C1.SM;R/ such that X.u/ D h, and then since VX.u/ D V.u/ D 0
as V is the vertical vector field, viewing h as a function SM ! R sending .x; v/ 7! h.x/ we clearly have
V.h/ D 0 since h is independent of v. Thus Corollary 9.9 reduces toZ

SM

ŒX.u/�2 d�C

Z
SM

ŒH.u/�2 d� �

Z
SM

K ŒV.u/�2 d� D 0:

SinceK < 0 each term is non-negative, and thus we conclude all three terms are zero; in particular X.u/ D
h D 0. �

9.4. The third integral identity

Now we prove the final integral identity.

PROPOSITION 9.12. Let K be defined by (8.4.3). Then for any u 2 C1.SM;R/,Z
SM

ŒF V.u/�2 d� �

Z
SM

K ŒV .u/�2 d� D

Z
SM

ŒVF.u/�2 d� �

Z
SM

ŒF .u/�2 d�:

PROOF. By (8.1.1) we have

FV.u/ D VF.u/ �H.u/ � V.�/ � V.u/;

and thus squaring both sides we have

ŒF V.u/�2 D ŒVF.u/�2 C ŒH.u/�2 C ŒV .�/�2 � ŒV .u/�2

� 2VF.u/ �H.u/ � 2VF.u/ � V.�/ � V.u/

C2V.�/ � V.u/ �H.u/:

Then using the fact that

2FV.u/ � V.�/ � V.u/C 2V.�/ � V.u/ �H.u/ D 2VF.u/ � V.�/ � V.u/ � 2 ŒV .�/�2 � ŒV .u/�2 ;

by (8.1.1) again, and the fact that

F
�
V.�/ � ŒV .u/�2

�
D 2V.�/ � V.u/ � FV.u/C ŒV .u/�2 F.V.�//;

we see that

ŒF V.u/�2 D ŒVF.u/�2 C ŒH.u/�2 � ŒV .�/�2 � ŒV .u/�2 :

� 2VF.u/ �H.u/ � F
�
V.�/ � ŒV .u/�2

�
C ŒV .u/�2 F.V.�//:

Integrating this last expression we obtain

2

Z
SM

H.u/ � VF.u/d� D

Z
SM

ŒVF.u/�2 d�C

Z
SM

ŒH.u/�2 d�

�

Z
SM

ŒF V.u/�2 d�C

Z
SM

ŒV .u/�2 F.V.�//d�;(9.4.1)
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since Z
SM

F
�
V.�/ � ŒV .u/�2

�
d� D �

Z
SM

ŒV .�/�2 � ŒV .u/�2 d�

by Lemma 9.2 and Lemma 9.3. Now we combine (9.4.1) and Corollary 9.9 to obtain the desired identity.
�

9.5. Proving the theorem

We will use the following exercise in the forthcoming proof.

EXERCISE 9.13. The measure � is invariant under v 7! eitv for any t 2 R.

PROOF. (of Theorem 7.15)
All the elements are in place, and the proof is painless. The Livsic Cocycle Regularity Theorem 6.11

gives the existence of a smooth function u W SM ! R that satisfies the cohomological equation

F.u/ D hC �:

Lemma 6.22 (which is clearly still valid in the more general setting of Theorem 7.15) shows that it is enough
to show that u is independent of v, that is, actually u W M ! R, or equivalently, we must show V.u/ D 0.
Applying Proposition 9.7 with s D V.u/ and Proposition 9.12, we have

(9.5.1) 0 �

Z
SM

ŒF V.u/�2 �

Z
SM

K ŒV .u/�2 D

Z
SM

ŒVF.u/�2 d� �

Z
SM

ŒF .u/�2 d�;

with equality if and only if V.u/ D 0. Since F.u/ D hC � ,

VF.u/ D V.hC �/

D V.�/

D
d

ds

ˇ̌
sD0

�x.e
isv/;

D �x.iv/;

and
ŒF .u/�2 D h2 C 2h� C �2;

and hence the right-hand side of (9.5.1) becomesZ
SM

Œ�x.iv/�2 d� �
Z
SM

h2d� � 2

Z
SM

h�d� �

Z
SM

Œ�x.v/�
2 d�:

By Exercise 9.13 the measure � is invariant under v 7! �v and v 7! iv and hence we haveZ
SM

Œ�x.iv/�2 d� D
Z
SM

Œ�x.v/�
2 d�;

and for any 1-form �, Z
SM

�d� D 0;

since �x changes sign as v 7! �v; in particularZ
SM

h�d� D 0:

Thus (9.5.1) becomes

0 �

Z
SM

ŒF V.u/�2 �

Z
SM

K ŒV .u/�2 D �

Z
SM

h2d� � 0;

and so V.u/ D 0 and the proof is complete. �



CHAPTER 10

Entropy

In this chapter we discuss applications of Theorem 7.15 to entropy (specifically, entropy production).
However in an effort to make these notes more self-contained, the first four sections and Section 6 are
devoted to background material on various aspects of entropy.

We begin with a discussion on when a flow preserves a volume form. We then define entropy, and in
the third section we study a special invariant measure called the SRB measure. We then move onto Ruelle’s
notion of entropy production, which we relate to the Hausdorff dimension of the SRB measure, and also to
�-geodesic flows on closed surfaces; as a corollary we obtain an explicit description of the SRB potential
in terms of the function rC from Definition 8.17.

10.1. Preserving volume forms

Let �t W N ! N be a flow on a closed N with infinitesimal generator F . Recall that �t is volume
preserving with respect to a volume form ! if for any compact domain of integration K � N ,

Vol.�t .K// D
Z
�t ŒK�

! D

Z
K

��t ! D

Z
K

! D Vol.K/:

Recall that the divergence of a vector field Y with respect to a volume form ! is the smooth function div!Y
defined by

div!Y � ! D LY!:

EXERCISE 10.1. Show that �t is volume preserving with respect to ! if and only if div!F D 0.

Question: When does �t preserve a volume form? In order to answer this, let us fix a ‘background’
volume form ! on N . Then any other volume form has the form f! for some f 2 C1.N /, f ¤ 0.
Without loss of generality, below we will assume f > 0.

LEMMA 10.2. It holds that
divf!F D F.logf /C div!F:

PROOF. We compute that

LF .f!/ D diF .f!/C iF d.f!/

D df ^ iF ! C fdiF !

D df ^ iF ! C fLF !

D df ^ iF ! C f .div!F /!:

Now since df ^ ! D 0 as ! is top dimensional, we have

0 D iF .df ^ !/

D iF df ^ ! � df ^ iF !

D F.f /! � df ^ iF !;

and thus we have
LF .f!/ D .F.f /C f div!F /!:

Since f is strictly positive we can rewrite this as

divf!F D
F.f /

f
C div!F;

or alternatively

(10.1.1) divf!F D F.logf /C div!F:

�

69
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This allows us to answer our question. Recall that a function f 2 C1.N;R/ is a coboundary with
respect to F (in the sense of flow cohomology) if and only if f D F.g/ for some g 2 C1.N;R/ (see
Definition 6.21).

COROLLARY 10.3. Let �t W N ! N be a flow on a closed manifold N , with infinitesimal generator
F . Then �t preserves a volume form if and only if div!F is a coboundary for some volume form !.

PROOF. We have just shown that if ! and f! are any two volume forms then divf!F is flow coho-
mologous to div!F , since divf!F � div!F D F.logf /. Hence if F preserves a volume form ! then for
every volume form f! we have divf!F D F.logf /. Conversely if div!F D F.f / then dive�f !F D 0,
since

dive�f !F D F.log e�f /C div!F D F.�f /C F.f / D 0:

�

We now return to the situation we are most interested in. Let us introduce the following definition,
which is the most general sort of flow we like to study.

DEFINITION 10.4. Let .M; g/ denote a closed surface. Fix h 2 C1.M;R/ and � 2 �1.M/. Define
� W SM ! R by

�.x; v/ D h.x/C V.x; v/.�x.v//;

where V is as always the vertical vector field. This flow �t is the obtained from the superpositive of a
magnetic field and a thermostat: recall from Lemma 7.7 and Definition 7.8 that this is modeling the effect
of a magnetic field h�a (where �a is the area form, see Definition 4.11) and a thermostat with external
field E D Og� . We will refer to �t as a magnetic thermostat flow determined by the pair .h; �/.

EXERCISE 10.5. Recall from Definition 9.1 that we have a preferred choice of volume form ‚ D

˛ ^ ˇ ^  on SM . Suppose F is the infinitesimal generator of a magnetic thermostat flow �t determined
by the pair .h; �/. Show that

div‚F D ��:

In fact, we can say more. Here is our first application of Theorem 7.15.

THEOREM 10.6. An Anosov magnetic thermostat flow �t determined by the pair .h; �/ is volume
preserving with respect to some volume form if and only if � is exact.

PROOF. If � D dg then writing F.g/ for what should really be F.g ı �/, we have

F.g/ D dg D � D �div‚F;

and hence �t preserves a volume form by Corollary 10.3. For the converse, by Corollary 10.3 again, if �t
is volume preserving with respect to a volume form ! then div!F D 0. Thus if ‚ D f! then

div‚F D F.logf / D ��:

But using Theorem 7.15, if the cohomological equation F.u/ D �� has a solution u 2 C1.SM;R/ then
� must be exact. �

10.2. Entropy

We now move on to discussing entropy. We will define two different types of entropy associated
to a flow �t , and state the Variational Principle (Theorem 10.16), which relates the two. A beautiful
comprehensive reference for all this material is [Wal82]. Another good reference is [KH95, Chapter 4],
from which most of this material is taken from.

DEFINITION 10.7. Let �t W N ! N be a flow on a closed manifold N . A measure m on N is �t -
invariant (or simply invariant if the flow �t is understood) if for any Borel setB � N , we havem.�t .B// D
m.B/. In other words, if �t�m is the measure defined by �t�m.B/ WD m.�t .B// then m is invariant if
�t�m D m for all t 2 R. An invariant measure is called ergodic if any Borel invariant set has measure zero
or one. Let M.�/ denote the set of all �t -invariant Borel probability measures m on M . It can be shown
that M.�/ is a nonempty compact convex set (in the weak �-topology) of the compact set M of all Borel
probability measures onN (the extreme points are the ergodic measures) - see for instance, [KH95, Section
4.1].
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As an example of an invariant Borel probability measure, if � is a closed orbit of �t with period T then
we can define a measure m� 2 M.�/ byZ

N

fdm� WD
1

T

Z T

0

f .�tx0/dt;

where x0 is some point in � . We call m� the ı-measure of the closed orbit � .

DEFINITION 10.8. A partition of N is a disjoint finite collection ˛ D fA1; : : : ; Akg of Borel sets
whose union is all of N . If ˛ D fA1; : : : ; Akg and ˇ D fB1; : : : ; Bng are two partitions then the join ˛ _ ˇ
is the partition given by

˛ _ ˇ D fAi \ Bj W i D 1; : : : ; k; j D 1; : : : ; ng:

Similarly we can form the join
W
i ˛i of multiple partitions ˛1; : : : ; ˛`.

DEFINITION 10.9. Given a Borel probability measure m, the entropy of a partition ˛ D fA1; : : : ; Akg
with respect to m is given by

Hm.˛/ WD �

kX
iD1

m.Ai / log m.Ai /;

where 0 log 0 is interpreted to be 0.

Let ˛ D fA1; : : : ; Akg a partition. Define ��n˛ to be the partition

��n˛ D f��n.A1/; : : : ; ��n.Ak/g :

DEFINITION 10.10. Let m 2 M.�/. The metric entropy of �t with respect to m is defined to be

hm.�/ WD sup
˛

lim
n!1

1

2
Hm

 
n�1_
iD0

��i˛

!
;

where the supremun is taken over all partitions ˛.

The following easy exercise gives an alternative definition of hm.�/.

EXERCISE 10.11. Given a partition ˛, and x 2 N , let C˛.x/ denote the unique element of ˛ with
x 2 C˛.x/. Given m 2 M.�/, define the information function of m and ˛, written I.mI˛/ by

I.mI˛/.x/ WD � logm.C˛.x//:

Prove that

Hm.˛/ D

Z
N

I.m; ˛/dm;

and hence that

hm.�/ D sup
˛

lim
n!1

1

2

Z
N

I.mI��n˛/dm:

We will now define a related concept; the topological entropy of �t .

DEFINITION 10.12. Select an arbitrary Riemannian metric g onN , and let d D dg denote the geodesic
distance function on .N; g/ from (2.1.1). Given T > 0 define a new metric dT by

dT .x; y/ WD max
t2Œ0;T �

d.�tx; �ty/:

Since N is compact, we can define N.T; "/ to be the minimal (finite) number of balls of radius " > 0

required to cover all of N under the dT metric.

We define the topological entropy of �t to be the quantity

htop.�/ WD lim
�!0

lim sup
T!1

1

T
logN.T; "/:

An easy argument shows that htop.�/ is well defined:

LEMMA 10.13. htop.�/ is independent of the choice of the Riemannian metric g
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PROOF. Let g and g0 be two Riemannian metrics on N , and let d and d 0 denote the corresponding
geodesic metrics on N . Since the geodesic metric always induces the manifold topology, both d and d 0

define the same topology on N .
Now consider the set D."/ � N � N consisting of all pairs .x; y/ with d.x; y/ � ". Then D."/ is a

compact subset of N � N , and hence the continuous function d 0 attains its minimum ı."/ > 0 on D."/.
Hence if d 0.x; y/ < ı."/ then d.x; y/ < ", and so any ı."/-ball in the metric d 0 is contained in an "-ball in
the metric d . This argument also works for the metrics dT and d 0T , and so we conclude

N 0.T; ı."// � N.T; "/;

(where N 0.T; ı."// means with respect to d 0 etc.) and so

lim sup
T!1

1

T
logN 0.T; ı."// � lim sup

T!1

1

T
logN.T; "/:

Letting "! 0 we see that h0top.�/ � htop.�/. Interchanging g and g0 completes the proof. �

EXERCISE 10.14. Here are two alternative characterizations of htop.�/. Say that a set Y � N is
.T; "/-separated if for any two points x; y 2 Y it holds that

dT .x; y/ > ":

Then if E.T; "/ denotes the maximum cardinality of a .T; "/-separated set, prove that

(10.2.1) htop.�/ D lim
"!0

lim sup
T!1

log E.T; "/
T

:

Similarly, say that a set Z � N is a .T; "/-spanning set if for any point x 2 N there exists a point y 2 Z
such that

dT .x; y/ < ":

Now let A.T; "/ denote the minimal cardinality of a .T; "/-spanning set. Prove that

htop.�/ D lim
"!0

lim sup
T!1

log A.T; "/
T

:

EXERCISE 10.15. Let �t W N ! N be a flow on a closed manifold N , and consider the ‘backward’
flow  t WD ��t . Show that for any invariant measure m

hm.�/ D hm. /:

How are the metric and topological entropy related? The metric entropy hm.�/ should be thought of
as a quantitative estimate of the complexity of the flow �t from the point of view of the invariant measure
m. It can be shown that the metric entropy of the union of two invariant sets is the sum (suitably weighted
by m) of the entropy of each of the sets individually, and so in some sense the metric entropy measures the
average complexity of �t . Meanwhile the topological entropy measures the global maximal complexity of
�t . It thus makes sense to assume that the metric entropy is at most the topological entropy, with the metric
entropy maximized for measures that assign the most weight to areas of high complexity.

This is indeed what happens; this is called the Variational Principle:

THEOREM 10.16. Let �t W N ! N denote a flow on a closed manifold N . Then

htop.�/ D sup
m2M.�/

hm.�/:

Moreover measures of maximum entropy, that is, measures m 2 M.�/ such that hm.�/ D htop.�/ always
exist.

The first statement of the theorem is actually true for any continuous flow on a compact metric space;
for a proof of this see [KH95, Theorem 4.5.3]. The second statement is due to Newhouse; see [New89], and
is one of the only places in these notes where the flow �t is actually required to be C1 (recall all flows are
assumed smooth in these notes), e.g. class C 2010 is not good enough. Section 4:5 of [KH95] also contains
a much fuller discussion on the difference between metric entropy and topological entropy.
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10.3. The SRB measure

In this subsection we define a special class of invariant measures, known as SRB measures. The ‘SRB’
stands for Sinai, Ruelle and Bowen, who did the pioneering work on this material; see Theorem 10.26 be-
low. Good references for this section are [KH95, Chapter 20], [Wal82, Chapter 9] and the survey article
[You02].

Let N be a closed manifold. Fix a Riemannian metric g on N , and let ! denote the volume form
associated to g. Recall that a probability measure m on N is absolutely continuous if in any local chart it is
given by integrating a density, that is, if

m.U / D

Z
U

f!;

where f W N ! R is a measurable function that is non-negative almost everywhere with respect to the
Riemannian measure (f is called the density) and ! is a volume form (remember the manifold N is always
assumed to be orientable). It is positive if the density is almost everywhere positive. A measure is called
smooth if is absolutely continuous and the density f is positive and smooth.

THEOREM 10.17. Let �t W N ! N be an Anosov flow on a closed Riemannian manifold .N; g/. Then
�t has at most one absolutely continuous invariant measure.

In particular, �t has at most one smooth measure. A proof of this weaker statement can be found in
[KH95, Theorem 20.4.1]. The full statement of Theorem 10.17 follows from Theorems 10.20 and 10.26
below.

Let �t W N ! N be an Anosov flow on a closed manifoldN . There is a unique �t -invariant probability
measure � on N called the SRB measure, which we will define below. In order to motivate this definition,
we remark that if �t admits an absolutely continuous invariant measure (necessarily unique, by Theorem
10.17), then this invariant measure is precisely the SRB measure (see Theorem 10.26 below). However
not all Anosov flows admit absolutely continuous invariant measures, and so we cannot take this as our
definition of the SRB measure; it is too restrictive. In order to give the proper definition, we will first need
to define pressure. This is a generalization of entropy, and, as with entropy, comes in two flavors. Let us
begin with the case where �t W N ! N is any flow on N .

DEFINITION 10.18. Given a continuous function f 2 C 0.N;R/ and an invariant measure m 2 M.�/
define the metric pressure of �t with respect to f and m by

Pm.�If / WD hm.�/C

Z
N

fdm:

Next we have the topological pressure.

DEFINITION 10.19. Given f 2 C 0.N;R/ and " > 0, let

S.�; f; T; "/ WD inf
E

8<:X
xi2E

e
R T
0 f .�txi /dt W N D

[
xi2E

BT .x; "/

9=; ;
where BT .x; "/ is the ball centered about x of radius " in the dT metric, and E is any set of points in N .
Then we define the topological pressure of �t with respect to f to be

Ptop.�If / WD lim
"!0

lim sup
T!1

1

T
logS.�; f; T; "/:

The name ‘pressure’ comes from statistical mechanics; see [You02] for a detailed explanation of the
history of this development. Similarly to Theorem 10.16, we have the Variational Principle for Pressure,
which asserts the following.

THEOREM 10.20. Let �t W N ! N be a flow on a closed manifold N , and let f 2 C 0.N;R/. Then

Ptop.�If / D sup
m2M.�/

Pm.�If /:

An equilibrium state is a measure m such that Ptop.�If / D Pm.�If /. If �t is Anosov and f is Hölder,
then there exists a unique equilibrium state mf .
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For a proof, see [KH95, Theorem 20.2.4, Corollary 20.3.8]. Theorem 10.16 is just the special case
f D 0, as is easily checked. Two different functions may generate the same equilibrium state. In fact, the
following holds.

EXERCISE 10.21. Suppose f and h are (flow) cohomologous. Then mf D mh.

Under the additional Anosov assumption the converse to the preceding exercise holds.

PROPOSITION 10.22. Suppose �t W N ! N is an Anosov flow on a closed manifold N . Suppose
f; h 2 C 0.N;R/ are Hölder continuous and satisfy mf D mh. Then, there is a constant c such that f is
cohomologous to hC c. Moreover the coboundary is the derivative along the flow of a Hölder continuous
function.

For a proof, see [KH95, Proposition 20.3.10]. The SRB measure for an Anosov flow is then obtained
as the equilibrium state with respect to a special choice of potential.

DEFINITION 10.23. Let �t W N ! N be an Anosov flow on a closed manifold. Fix a Riemannian
metric g on N , and put

Jt .x/ WD det.dx�t /

J st .x/ WD det.dx�t jEs.x//I

J ut .x/ WD det.dx�t jEu.x//:

We call J st and J ut the stable and unstable Jacobians of �t . Write

j.x/ WD
d

dt

ˇ̌
tD0

logJt .x/I

j s.x/ WD
d

dt

ˇ̌
tD0

logJ st .x/I

j u.x/ WD
d

dt

ˇ̌
tD0

logJ ut .x/:

Strictly speaking, all these functions depend on the choice of metric g. However if g0 is another
choice of metric and j 0 the corresponding function then j and j 0 differ only by a coboundary (with similar
statements for j s and j u). This can be easily seen as follows. By definition, ��t ! D Jt!, where ! is the
volume form on N induced by g and thus

LF ! D
@

@t

ˇ̌
tD0
��t ! D j � !;

which in turn implies

(10.3.1) div!F D j:

But we have already seen (cf. Lemma 10.2) that two divergences differ by a coboundary. Since we will
be interested only in expressions involving the integrals of j and j s;u over N , it therefore does not matter
which metric we choose (of course, we are implicitly assuming here that both metrics are at least Hölder
continuous).

Because of this, it is often convenient to choose the adjusted metric from Lemma 1.4. With this choice
of metric we have

Jt .x/ D J
s
t .x/ � J

u
t .x/;

and hence
j.x/ D j s.x/C j u.x/:

We shall do this implicitly from now on whenever we speak of the (un)stable Jacobians.

DEFINITION 10.24. The SRB measure � is then defined to be the unique equilibrium state associated to
�j u, that is, � D m�ju . The function j u is Hölder continuous; this follows from the fact that ([KH95, The-
orem 19.1.6]) the stable and unstable subspaces are Hölder continuous. We shall see in the next subsection
that Ptop.�;�j

u/ D 0.
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REMARK 10.25. The SRB measure can be defined on much more general objects than Anosov systems
(eg. non-uniformly hyperbolic attractors). In the most general situation possible, if �t W N ! N is a flow
of class C 2 on a closed manifold N then a Borel probability measure � is called an SRB measure if � has a
positive Lyapunov exponent almost everywhere, and � has absolutely continuous conditional measures on
unstable manifolds. We will not explain precisely what this definition means (although see the next section
for the definition of Lyapunov exponents), and instead refer the reader to [You02, Section 2]. However
without uniform hyperbolicity, there is no guarantee that an SRB measure may exist (although if it exists it
is unique). The lecture notes [You95] or the survery article [You02] of Young discuss the question of when
SRB measures exist in this more general setting.

The following theorem highlights the importance of the SRB measure. The theorem is essentially due
to Sinai, Ruelle and Bowen; [You02] gives a detailed commentary on this result, together with copious
references to the original proofs.

THEOREM 10.26. Suppose m is an absolutely continuous measure. Define a measure mT by

mT WD
1

T

Z T

0

�t�mdt:

Then mT converges to the SRB measure � in the weak �-topology; that is for any f 2 C 0.N;R/, we haveZ
N

fdmT !

Z
N

fd�

as T !1.
In particular, if .�t /�m D m for an absolutely continuous measure m then m is the SRB measure �.

As an immediate corollary of this theorem and Corollary 3.14 we obtain:

COROLLARY 10.27. If �t W SM ! SM is the geodesic flow of a closed manifoldM and �t is Anosov,
then the Liouville measure � is the SRB measure.

To conclude this section, we note the following observation, which will prove to be very helpful later
on.

LEMMA 10.28. Let �t W N ! N a flow on a closed manifold N with infinitesimal generator F . Let
m 2 M.�/ and f 2 C 0.N;R/ a continuous function that is continuously differentiable along the flow. ThenZ

N

F.f /dm D 0:

PROOF. Since .�t /�m D m we haveZ
N

F.f /dm D

Z 1

0

Z
N

F.f /d.�t�m/dt

D

Z
N

Z 1

0

d�txf .F.�tx//dtdm

D

Z
N

ff .�tx/ � f .x/gdm

D 0

using invariance. �

EXERCISE 10.29. Give an alternative proof of the previous lemma using Birkhoff’s ergodic theorem
(see for instance [KH95, Theorem 4.1.2]), which states that if g 2 L1.N;R/ then the functionbg defined by

bg.x/ D lim
T!1

1

T

Z T

0

g.�tx/dt;

is well defined almost everywhere and satisfiesZ
N

gdm D

Z
N

bgdm:
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10.4. Lyapunov exponents

In this section we define Lyapunov exponents. This gives us another way to express the importance
of the SRB measure. A good reference for Lyapunov exponents is [KH95, Chapter S]; see section S:2 in
particular. Another comprehensive reference is [BP07], or its earlier version [BP02].

DEFINITION 10.30. Let �t W N ! N denote a flow on a closed manifold N . Let g be any metric on
N . If x 2 N and v 2 TxN , define

�˙.x; v/ WD lim sup
t!˙1

1

t
log kdx�t .v/k :

EXERCISE 10.31. Prove the following facts (see [BP07, Proposition 1.3.1, Proposition 1.3.2] if you
get stuck): for each x 2 N , the functions �˙.x; �/ assumes only finitely many values on TxN , say

�C1 .x/ < �
C
2 .x/ < � � � < �

C

sC.x/
.x/; sC.x/ � dim N I

��1 .x/ > �
�
2 .x/ > � � � > �

�
s�.x/.x/; s�.x/ � dim N:

Define eECi .x/ WD ˚v 2 TxN W �C.x; v/ � �Ci .x/	 ;eE�i .x/ WD fv 2 TxN W ��.x; v/ � ��i .x/g :
Then we have filtrations

f0g DW eEC0 .x/ ( eEC1 .x/ ( � � � ( eEC
sC.x/

.x/ D TxN I

TxN D eE�1 .x/ ) eE�2 .x/ ) � � � ) eE�s�.x/C1 D f0g:
Define

kCi .x/ WD dim eECi .x/ � dim eE�i�1.x/I
k�i .x/ WD dim eE�i .x/ � dim eE�iC1.x/:

The numbers f�i .x/g are known as the Lyapunov exponents of �t at x.

DEFINITION 10.32. Fix an invariant measure m 2 M.�/. A point x 2 N is an m-regular point if the
following holds:

(1) sC.x/ D s�.x/ DW s.x/ and there exists a decomposition

TxN D

s.x/M
iD1

Ei .x/;

such that

eECi .x/ D iM
jD1

Ei .x/; eE�i .x/ D s.x/M
jDi

Ei .x/

(and hence Ei .x/ D eECi .x/ \ eE�i .x/, and

kCi .x/ D k
�
i .x/ DW ki .x/ D dim Ei .x/:

(2) �Ci .x/ D ��
�
i .x/ DW �i .x/ and for all v 2 Ei .x/nf0g,

lim
t!˙1

log kdx�t .v/k D �i .x/;

with uniform convergence in Ei .x/ \ SxN .
(3) The functions s; �i ; ki and the subspaces Ei depend measurably on x and are �t -invariant.

Let L.m/ denote the set of m-regular points.

Note that if m 2 M.�/ is ergodic then the functions x 7! �i .x/ and x 7! ki .x/ WD dim Ei .x/ are
constant m-a.e.

Given x 2 L.m/, let

Eu.x/ WD
M

fi W�i .x/>0g

Ei .x/; Es.x/ WD
M

fj W�j .x/<0g

Ej .x/;
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EC.x/ WD
M

fi W�i .x/>0g

Ei .x/; E�.x/ WD
M

fj W�j .x/<0g

Ej .x/;

and put as before
J ut .x/ WD det.dx�t jEu.x//; J st .x/ WD det.dx�t jEs.x//:

A proof of the following lemma can be found in [BP07, Proposition 3.1.6].

LEMMA 10.33. For all x 2 L.m/, it holds that

lim
t!1

1

t
logJ ut .x/ D XC.x/ WD

X
fi W�i .x/>0g

ki .x/�i .x/I

lim
t!1

1

t
logJ st .x/ D X�.x/ WD

X
fj W�j .x/<0g

kj .x/�j .x/:

The following theorem is known as Oseledec’s Multiplicative Ergodic Theorem ([KH95, Theorem
S.2.9]).

THEOREM 10.34. For any m 2 M.�/, the set L.m/ has measure one.

Next, as above put:

j u.x/ WD
d

dt

ˇ̌
tD0

logJ ut .x/; j s.x/ WD
d

dt

ˇ̌
tD0

logJ st .x/:

COROLLARY 10.35. Let m 2 M.�/. TheZ
N

XCdm D

Z
N

j udmI

Z
N

X�dm D

Z
N

j sdm:

PROOF. Birkhoff’s Ergodic theorem tells us thatZ
N

�
lim
t!1

1

t

Z t

0

j u.�tx/dt

�
dm D

Z
N

j udm;

and for all x 2 L.m/, Lemma 10.33 tells us that

lim
t!1

1

t

Z t

0

j u.�tx/dt D lim
t!1

1

t
logJ ut .x/ D X.x/:

Finally, Theorem 10.34 tells us that integrating over L.m/ is the same as integrating over N . The proof for
j s and X� is similar. �

The next result is known as Ruelle’s inequality; a proof of this may be found in [KH95, Theorem
S.2.13].

THEOREM 10.36. For any m 2 M.�/,

hm.�/ �

Z
N

XCdm:

EXERCISE 10.37. Prove that if �t W N ! N is a flow on a closed manifold N and htop.�/ > 0 then
there existsm 2 M.�/ with some of its Lyapunov exponents positive. Now suppose that dim N D 3. Prove
that if htop.�/ > 0 then there exists m 2 M.�/ with non-zero Lyapunov exponents.

For a discussion as to why having non-zero Lyapunov exponents is a desirable property, see for instance
[BP07].

The following theorem is due to Ledrappier and Young (see [LY85]), and gives yet another character-
ization of the SRB measure. It is valid in the most general setting in which SRB measures can sensibly be
defined (see Remark 10.25)
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THEOREM 10.38. Let �t W N ! N be a C 2 flow on a closed manifold and m 2 M.�/ a measure
admitting a positive Lyapunov exponent almost everywhere. Then

hm.�/ �

Z
N

XCdm;

and equality is attained if and only if m is the SRB measure �.

Thus we obtain the following formula, which is known as Pesin’s formula:

(10.4.1) h�.�/ D

Z
N

XCd�:

We conclude this section with a lemma which will be useful in the next section.

LEMMA 10.39. Let �t W N ! N be a flow on a closed manifold N . Let F denote the infinitesimal
generator of �t and m 2 M.�/. Let ! denote an arbitrary volume form on N . ThenZ

N

Xdm D

Z
N

div!Fdm

(in particular the right-hand side is independent of the choice of volume form).

PROOF. By (10.3.1), div!F D j and j D j sCj u for an adapted metric (which is merely measurable
in this situation, although this doesn’t matter). By integrating over N the result follows from Corollary
10.35. �

10.5. Entropy production

In this section we define entropy production, and state and outline the proof of an important result due
to Ruelle on the positivity of entropy production. There is relatively little (textbook) material available on
entropy production; an elementary introduction is given in [Jos05], and more advanced accounts are avail-
able in [Gal04, JQQ04]. The survey article [Che02] also contains a short section on entropy production.
Ruelle’s original papers [Rue96, Rue97b, Rue97a] are also very readable.

DEFINITION 10.40. Let �t W N ! N denote a flow on a closed manifold N with infinitesimal
generator F . Let m 2 M.�/. Define the entropy production of �t with respect to m, written em.�/ by

em.�/ WD �

Z
N

div!Fdm;

where ! is an arbitrary volume form on N .

Straight from Lemma 10.39 we obtain the following result ([Rue96, Lemma 1.1]):

COROLLARY 10.41. For any m 2 M.�/ it holds that

em.�/ D �

Z
N

Xdm:

The following theorem is the main result of this section. It is also due to Ruelle (see [Rue96, Theorem
1.2]), and relates the SRB measure to entropy production.

THEOREM 10.42. Let �t W N ! N be a flow on a closed manifold N , and suppose that �t admits an
SRB measure �. Then e�.�/ � 0. If �t is Anosov then we have equality if and only if �t preserves a smooth
volume form.

PROOF. For any m 2 M.�/ we have by Ruelle’s inequality that

hm.�/ �

Z
N

XCdm:

Replacing �t by ��t and using Exercise 10.15 gives us

hm.�/ � �

Z
N

X�dm:
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For the special case m D �, using Corollary 10.41 and Exercise 10.15 we find that

e�.�/ D �

Z
N

Xd�

D

�
h�.�/ �

Z
N

XCd�

�
�

�
h�.�/ �

Z
N

�
sum of positive Lyapunov exponents w.r.t. ��1

�
d�

�
� 0;

where we used Theorem 10.38.
Suppose now e�.�/ D 0. We claim this means that � is also the SRB measure with respect to ��t .

Indeed, e�.�/ D 0 implies that Z
N

XCd� D �

Z
N

X�d�;

and thus by Corollary 10.35

h�.�/ D �

Z
N

�
sum of negative Lyapunov exponents w.r.t. ��1

�
d� D

Z
N

�j sd�;

and hence by Theorem 10.20 both �j u and j s generate the same equilibrium state, and thus by Proposition
10.22 we see that �j u and j s are flow cohomologous, and thus there exists a Hölder continuous function
u W N ! R such that

j s C j u D F.u/:

But now if ! denotes a smooth volume form we know from (10.3.1) that div!F D j . Since j and j sC j u

coincide up to a coboundary F.w/, with w Hölder continuous, we deduce that

div!F D j

D j s C j u C F.w/

D F.uC w/:

Finally Theorem 6.14 implies that there exists a smooth v 2 C1.N;R/ such that div!F D F.v/. �

Combining this result with Theorem 10.6 we have:

COROLLARY 10.43. Let .M; g/ denote a closed Riemannian surface. Let �t W SM ! SM denote a
magnetic thermostat determined by the pair .h; �/. Suppose that �t is Anosov. Then e�.�/ D 0 if and only
if � is exact.

The reader is referred to [Gal04] and the references within for an explanation of why positivity of
e�.�/ is of interest; it is important in non-equilibrium statistical mechanics. In the next subsection we will
give one particular example, based on the work of L.-S.Young.

10.6. Hausdorff Dimension

In this section we define the Hausdorff dimension HD.m/ of a probability measure, and state two
theorems due to Young on how this invariant relates to entropy and other concepts discussed previously in
this chapter. This material will not be used elsewhere. We begin by recalling the definition of the Hausdorff
dimension of a metric space.

DEFINITION 10.44. Let X be a metric space and k � 0 a real number. Given a finite or countable
covering fUig of X , define its k-weight wk.fUig/ to be

wk.fUig/ WD
X
i

.diamUi /
k ;

where 00 WD 1. Given " > 0 define mk;".X/ by

mk;".X/ WD inf fwk.fUig/ W diamUi < " for all ig :

The infimum is taken over all such finite or countable coverings; if no such covering exists then the infimum
is defined to be C1. Since mk;".X/ is a non-increasing function of ", we can define the k-dimensional
Hausdorff measure of X to be

mk.X/ WD C.k/ � lim
"!0

mk;".X/ 2 Œ0;1�;
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where C.k/ is a positive constant defined to ensure that

mk.Œ0; 1�
k/ D 1 for k 2 N:

As the name suggests, mk is indeed a measure on the Borel � -algebra of X for any k � 0. Moreover
for any metric space X there exists a unique k0 2 Œ0;1� such that

mk.X/ D

(
0 k < k0

C1 k > k0:

This leads us to define:

DEFINITION 10.45. The Hausdorff dimension of a metric spaceX is the unique k0 such thatmk.X/ D
0 for k < k0 and mk.X/ D1 for k > k0. We write HD.X/ D k0.

REMARK 10.46. The Hausdorff dimension is not necessarily an integer. Moreover, mHD.X/.X/ could
be anything in Œ0;1�.

Finally we define the Hausdorff dimension of a measure.

DEFINITION 10.47. Let X be a metric space and m a Borel probability measure on X . Define the
Hausdorff dimension of the measure m to be

HD.m/ WD inf fHD.B/ W B � X a Borel set with m.B/ D 1g :

We have the following (see [You82]):

LEMMA 10.48. Let m be a Borel probability measure. Suppose for m-a.e. x 2 X it holds that

lim
"!0

logm.B.x; "//
log "

D k;

where B.x; "/ denote the ball about x of radius ". Then HD.m/ D k.

If HD.m/ … N [ f0g we say that m is a fractal measure.

The following theorem illustrates the link between Hausdorff dimension and entropy. It is due to Young
[You82].

THEOREM 10.49. Let �t W M ! M be a flow on a closed 3-manifold. Suppose m 2 M.�/ is ergodic.
Let �1 � �2 denote the Lyapunov exponents of �t . Then

HD.m/ D 1C hm.�/
�
1

�1
�
1

�2

�
;

as long as �1; �2 ¤ 0.

The next exercise relates the entropy production of the SRB measure to its Hausdorff dimension.

EXERCISE 10.50. Let �t W M ! M be an Anosov flow on a closed 3-manifold. Show that the
Hausdorff dimension of � is given by

HD.�/ D 2C
�
1C

e�.�/

h�.�/

��1
2 .2; 3�:

In particular, if e�.�/ > 0 then � is a fractal measure. Use Corollary 10.43 to conclude that an Anosov
magnetic thermostat with � non-exact has a fractal SRB measure.

10.7. The relation between the SRB potential and the function rC

In this final section we now return to the case of a closed surface .M; g/, and �t W SM ! SM an
Anosov �-geodesic flow. Recall we have unique functions r˙ (see Definition 8.17) such that

H C r˙V 2 E˙:

We aim to use the material we have developed in this chapter to obtain an explicit description of the function
rC.

Since E� D RF ˚Es and EC D RF ˚Eu, this implies there exist unique functions w˙ such that

w�F CH C r�V 2 Es;

wCF CH C rCV 2 Eu:
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LEMMA 10.51. Fix .x0; v0/ 2 SM , and let w D w˙, r D r˙ (with the same sign each time), and
define

�.t/ D d��t fw.t/F.t/CH.t/C r.t/V .t/g 2 E
s;u.0/;

where as before H.t/ D H.�t .x0; v0// and H D H.0/ D H.x0; v0/ etc., and �.t/ 2 Es.0/ if we have
chosen the ‘C’ sign and �.t/ 2 Eu.0/ if we have chosen the ‘�’ sign. Then

P�.0/ D �rwF � rH � r2V:

PROOF. We compute

P�.0/ D PwF C w
d

dt

ˇ̌
tD0
d��t .F.t//C

d

dt

ˇ̌
tD0
d��t .H.t/C rV .t//

D PwF C wŒF; F �C ŒF;H�C rŒF; V �C F.r/V

D PwF � �F C .K �H.�/C �2/V � rH � rV .�/V C F.r/V

D PwF � �F � rH C .F.r/CK �H.�/C �2 � V.�/r/V;

D PwF � �F � rH � r2V;(10.7.1)

by the Riccati equation (8.4.1), together with (8.1.1) and (8.4.5).
Since dimEs;u D 1, there exists a 2 R such that

P�.0/ D a�.0/;

and thus
a�.0/ D awF C aH C arV D PwF � �F � rH � r2V;

and then since fF;H; V g is a basis of T.x0;v0/SM by equating coefficients we see

a D �r:

Thus
Pw C rw D �;

and so substituting into (10.7.1) we obtain

P�.0/ D �rwF � rH � r2V

as required. �

Consider a Hölder continuous Riemannian metric on SM for which

fF; w�F CH C r�V; wCF CH C rCV g

is an orthonormal basis. In the statement below j u is considered with respect to this metric.

COROLLARY 10.52. Let �t W SM ! SM be an Anosov �-geodesic flow on a closed surfaceM . Then
the function rC is equal to j u.

PROOF. We now specialize Lemma 10.51 to the case of Eu, although for notational simplicity we will
still write r instead of rC etc. Set

J.t/ WD J ut .x0; v0/:

Then

j u.x0; v0/ D
d

dt

ˇ̌
tD0

logJ.t/ D PJ .0/;

since J.0/ D 1. By definition,

d�t .wF CH C rV / D J.t/ � fw.t/F.t/CH.t/C r.t/V .t/g 2 E
u.t/;

and hence

wF CH C rV D J.t/�.t/;

and so

0 D
d

dt

ˇ̌
tD0
.wF CH C rV /

D
d

dt

ˇ̌
tD0
J.t/�.t/

D PJ .0/�.0/C J.0/ P�.0/

D PJ .0/.wF CH C rV /C .�rwF � rH � r2V /;
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by the previous lemma. Thus PJ .0/ D r D rC, and hence j u D rC as claimed. �

Thus we have obtained an explicit description of rC, completing the goal we set out to achieve in this
chapter.

As corollary we obtain:

COROLLARY 10.53. Let �t W SM ! SM be an Anosov �-geodesic flow on a closed surfaceM . Then

h�.�/ D

Z
SM

rC d�:

In particular:

COROLLARY 10.54. Let .M; g0/ be a closed surface of constant curvature K < 0. Then the metric
entropy of the Liouville measure is

p
�K,

h�.�/ D
p
�K;

where �t W SM ! SM is the geodesic flow.

PROOF. By Corollary 10.27, the Liouville measure is the SRB measure. The Riccati equation (8.4.1)
reduces to

X.r/C r2 CK D Pr C r2 CK D 0;

and thus rC.x/ �
p
�K. The corollary now follows from Corollary 10.53 since � is a probability measure.

�

EXERCISE 10.55. Prove that if .M; g0/ is a surface of constant negative curvature and �t W SM !
SM the geodesic flow then there exists a unique measure of maximal entropy in M.�/, and this is precisely
the Liouville measure �.

Hence
htop.�/ D h�.�/;

meanwhile for any other m 2 M.�/ it holds that

htop.�/ > hm.�/:

A remarkable theorem of Katok [Kat82] asserts that the only surfaces for which the Liouville measure
is the measure of maximal entropy are those with constant curvature.

EXERCISE 10.56. Show that for an Anosov �-geodesic flow it holds

e�.�/ D �

Z
SM

.r� C rC/ d�:



CHAPTER 11

Regularity of the (un)stable bundles

In this chapter we give another application of Theorem 7.15, and focus on determining the regularity
of the strong and weak stable and unstable bundles.

11.1. Hölder continuity of the distributions Es; Eu; E� and EC

Let �t W N ! N be an Anosov flow on a closed manifold N , and let F denote the infinitesimal
generator of �t . Then we can write

TN D RF ˚Es ˚Eu:

Recall we say Es and Eu are the strong stable and unstable bundles, and E� D RF ˚ Es and EC D
RF ˚Eu the weak stable and unstable bundles (see Definition 8.1).

EXERCISE 11.1. Show that both Es and Eu are continuous.

Anosov proved in [Ano67] that the strong bundles Es and Eu are Hölder continuous.

THEOREM 11.2. Let �t W N ! N be an Anosov flow on a closed manifold N . Then the distributions
Es; Eu; E� and EC are all Hölder continuous.

The proof can be found in many books on hyperbolic dynamical systems; see for instance [KH95,
Theorem 19.1.6], [BS02, Theorem 6.1.3] (technically both these proofs are actually only for the case of
Anosov diffeomorphisms; for a proof for an Anosov flow see [Bal95, Appendix, Proposition 4.4]).

REMARK 11.3. What does it actually mean for a distribution to be Hölder continuous? If N � Rn is
a submanifold of Rn then the definition of a Hölder continuous distribution E � TN is the obvious one:
namely E � TN is ˛-Hölder continuous for some ˛ 2 .0; 1/ if there exists a constant C � 0 such that

dist.E.x/; E.y// � C kx � yk˛ for all x; y 2M with kx � yk � 1:

Here k�k is the standard Euclidean norm and given subspaces U; V � Rn,

dist.U; V / WD max
�

max
u2U;kukD1

min
v2V
ku � vk ; max

v2V;kvkD1
min
u2U
ku � vk

�
:

For an arbitrary closed Riemannian manifold .N; g/, we can use the same definition by first embedding N
into Rn. Compactness of N implies that the Hölder exponent ˛ is independent of the choice of embedding
(although the constant C does change).

Suppose now N is a 3-manifold. Then the weak bundles E˙ are of codimension 1, and this is enough
to force them to have more regularity. In fact, Hirsch, Pugh and Shub [HPS77] proved that in this case, the
weak bundles are C 1.

THEOREM 11.4. Let �t W N ! N be an Anosov flow on a closed 3-manifold N . Then the weak
bundles E˙ are of class C 1.

The proof can also be found in [KH95, Corollary 19.1.12].

11.2. The bundle S

In this subsection we restrict ourselves to the case of a transitive Anosov flow �t W N ! N on a closed
3-manifold N . Let us also consider the bundle

S D Es ˚Eu:

We know that this is Hölder continuous; we can actually say a lot more in the presence of an extra geometric
structure.

83
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DEFINITION 11.5. We say that the flow �t is a contact flow if there exists a contact 1-form ˛ such that
˛.F / D 1 and iF d˛ D 0. (That is, F is the Reeb vector field of ˛.)

If �t W SM ! SM is the geodesic flow on a closed surface then �t is contact, with ˛ the 1-form
defined in Definition 1.23.

LEMMA 11.6. Let �t W N ! N be an Anosov flow on a closed 3-manifold N . Suppose �t is contact
with contact form ˛. Then the bundle S has the same regularity as ˛; in particular if ˛ is C1 then so is S .

PROOF. It is enough to prove that

(11.2.1) S D ker ˛:

To prove this, observe that since ˛ is invariant (as LF ˛ D d.iF ˛/C iF .d˛/ D d.˛.F //C0 D d.1/ D 0),
if v 2 Es.x/ then

˛x.v/ D ˛�tx.d�t .v//

for any t � 0. But since
jd�t .v/j � Ce

��t
jvj

for some constants C;� > 0, and since there exists A > 0 such that

k˛xk � A

(using compactness of N ), we see that

j˛x.v/j � ACe
��t
jvj for all t > 0;

and thus Es � ker ˛. A similar argument, considering t < 0 shows that Eu � ker ˛. Hence S � ker ˛.
Since both sides of (11.2.1) have the same dimension, this is enough to prove (11.2.1). �

COROLLARY 11.7. Let �t W N ! N be an Anosov flow on a closed 3-manifold N . Suppose �t is
contact with a C 1 contact form ˛. Then the strong stable and unstable bundles Es and Eu are of class C 1.

PROOF. Since Es D S \E�, and both S and E� are of class C 1 (by Theorem 11.4 and Lemma 11.6)
so is Es . Similarly Eu is of class C 1. �

It is thus of interest to know when �t is contact. From (11.2.1), we can make a guess as to what a
contact form should be for �t (if it exists). We are led to consider the 1-form � on N defined by

�x.v/ WD

(
0 v 2 S.x/

1 v D F.x/:

In general we only know that � is Hölder continuous. However if we know that � is C 1 then a lot more is
true, as the following theorem due to Hurder and Katok ([HK90, Theorem 2.3]) says:

THEOREM 11.8. Assume �t is transitive and suppose � is of class C 1. Then actually � is of class C1,
and if d� is not identically zero then � ^ d� is a smooth volume form, and thus �t is contact with contact
form � .

PROOF. First, we observe that the continuous 3-form � ^ d� is a �t -invariant 3-form since � and d�
are. Set

A WD fx 2 N W .� ^ d�/x D 0g:

If A has non empty interior then A D N , since �t is transitive and A is invariant. Otherwise A is nowhere
dense. Let g denote a metric on N and !g the associated volume form. Let � denote the Riemannian
measure of .N; g/, that is the measure defined by

�.B/ D

R
B
!g

Vol.N; g/
; B � N a Borel set.

Then [Pla72, Theorem 4.1] tells us that �.A/ D 0. Let us now consider the two cases:
Suppose � ^ d� D 0. Then

0 D iF .� ^ d�/ D �.F /d� C � ^ iF d�:

But iF d� D LF � � diF � D 0 and hence d� D 0. Now we show that � is C1. Since � is of class
C 1 and closed, by the de Rham theorem we can find a harmonic 1-form ˇ and a C 1 function h such that
� D ˇ C dh. Applying this to F we derive 1 D ˇ.F /CX.h/. The Livsic cocycle regularity theorem 6.11
implies that h is C1 and thus � is C1.
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Now suppose � ^ d� is not identically zero. We first claim in this case that �t preserves a smooth
volume form. Indeed, let ! be any choice of volume form. Then there exists a continuous function f such
that

� ^ d� D f!:

Moreover f is differentiable in the direction of the flow and f ¤ 0 on a set of full measure (namely, A).
Since LF .f!/ D 0, we have

F.f /C f div!F D 0:
Consider the measurable function u defined as � logf at points where f is positive and as log.�f / at
points where f is negative. Then, almost everywhere

div!F D F.u/:

But now, Theorem 6.19 (this is the only place we use this theorem in these notes) implies that there exists a
Hölder continuous function w such that F.w/ D div!F , and then Theorem 6.11 implies that w is actually
smooth. Hence �t preserves a smooth volume form !0. Now apply the following exercise:

EXERCISE 11.9. Suppose �t W N ! N is a transitive flow and !1 and !2 are two �t -invariant volume
forms. Prove there exists a non-zero constant c 2 R such that !1 D c!2.

Thus we can write
� ^ d� D c!0

for some non-zero constant c. In particular, � ^ d� never vanishes. We now show that � is in fact of class
C1. Contract with F on both sides to obtain

d� � � ^ iF d� D ciF !
0;

and thus as iF d� D 0 we have
1

c
d� D iF !

0;

and the form iF !
0 is exact. Thus we can write iF !0 D d� for some smooth 1-form �, and hence � � c� is

closed. Then by the de Rham theorem we can write

� � c� D ˇ C dh

where ˇ is harmonic and h is of class C 1. Finally evaluating both sides on F we get

1 � c�.F / D ˇ.F /C F.h/;

and Theorem 6.11 tells us that h is actually of class C1. But this implies that � D c�C ˇC dh is of class
C1, and this completes the proof. �

COROLLARY 11.10. Let M be a closed surface and �t W SM ! SM an Anosov magnetic thermostat
�t determined by the pair .h; �/. If � is not exact then S is not C 1.

PROOF. We prove the contrapositive; namely that if � is C 1 then � is exact. First let us check that
we cannot have d� D 0. Indeed, recall from Corollary 8.10 and Corollary 8.12 that the zero class Œ0� 2
H1.SM;R/ contains a closed orbit � of �t say, with period T > 0. Then if .x0; v0/ 2 � ,Z

�

� D

Z T

0

�.F.�t .x0; v0///dt D T ¤ 0:

But since Œ�� D Œ0�, we have � D @D for some 2-chain D. Then if d� D 0, by Stokes’ theorem we have
the contradiction Z

�

� D

Z
D

d� D 0:

Thus we must be in the contact case. But then �t preserves a volume form (namely � ^ d� ) and hence
Theorem 10.6 completes the proof. �

Suppose now that �t W SM ! SM is a magnetic flow, so that �.x; v/ D f .x/ for some f 2
C1.M;R/. Suppose that �t is Anosov and the 1-form � is of class C 1. We investigate the consequences.

In other words, �t is the flow of the unique vector field F such that iF !� D dH , where H.x; v/ D
1
2
jvj2, !� D �d˛ C ��� and � D f �a (see Lemma 7.7).

EXERCISE 11.11. Show that there exists a non-zero constant c 2 R such that d� D c!� .
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EXERCISE 11.12. Show that H 2.M;R/ is generated by the Euler class e D ŒK�a�, and hence that
there exists a constant � and a 1-form � such that

� D �K�a C d�:

Recall the connection 1-form  from Definition 4.5. We have

��� D ���.K�a/C �
�.d�/

D ��d C ��.d�/

D d.�� C ���/;

where we are using the fact that d D �K˛ ^ ˇ D �K���a. In other words,

!� D d.�˛ � � C �
��/;

and hence !� is exact. Moreover
d� D cd.�˛ � � C ���/;

and thus we have
d� D 0;

where
� D � C c˛ C c� � c���;

that is, � is a closed 1-form on SM . Since �� W H 1.M;R/! H 1.SM;R/ is an isomorphism by Corollary
8.10, it follows there exists a closed 1-form � on M and a C 1 function u W SM ! R such that

� D ���C du:

We now apply this to F : since �.F / D ˛.F / D 1,  .F / D f and

���.F /.x; v/ D �.d�.F.x; v/// D �x.v/;

we obtain
1C c C c�f .x/ � c�x.v/ D �x.v/C du.x;v/.F /;

or alternatively

F.u/.x; v/ D du.x;v/.F /

D 1C c C c�f .x/ � c�x.v/ � �x.v/

DW h.x/C �x.v/;

where h WD 1C c C c�f is a function on M and � WD �c� � � is a 1-form.
We can now apply Theorem 7.15 to conclude that h D 0 and � is exact. Indeed, if 
 2 G�.M; g/ then

I ŒhC ��.
/ D I ŒF.u/�.
/ D

Z



F.u/ D 0:

Since c ¤ 0 and � is exact, d� D 0. We now have two cases: if � D 0 then � D �K�a C d� D 0, and
hence f D 0.

If � ¤ 0 then f must be constant. Since d� D 0, we conclude

f �a D �

D ��K�a C d�

D ��K�a;

which implies that K is constant.

Summarizing, we have proved:

THEOREM 11.13. Let �t W SM ! SM be an Anosov magnetic flow on a closed surface M , with
magnetic field � D f �a. If the bundle S is C 1 then:

(1) the cohomology class Œ�� D 0 implies � D 0, that is, �t is just the geodesic flow.
(2) Œ�� ¤ 0 implies that f is constant and the metric has constant Gaussian curvature.

EXERCISE 11.14. Relate the second case in the theorem above with an appropriate hyperbolic element
in sl.2;R/ in Example 3.5.

This concludes our discussion of the bundle S ; we now move on to discussing the regularity of the
weak stable and unstable bundles themselves.
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11.3. The weak bundles and the Godbillon-Vey class

In this section we look again at the weak bundles E˙. As before, let N be a closed 3-manifold and �t
an Anosov flow on N , with weak bundles E˙. Then according to Theorem 11.4, E˙ are always of class
C 1. We now ask:

Question: when are the weak bundles E˙ of class C 2?

DEFINITION 11.15. Let N be a closed 3-manifold and E � TN a C 2 subbundle of codimension 1.
We say that E is transversely orientable if there exists a vector field Z on N such that Z.x/ … E.x/ for all
x 2 N .

Suppose now E � TN is a transversely orientable subbundle which in addition is integrable (in the
sense of Frobenius). Define a 1-form � by

�x.v/ WD

(
0 v 2 E.x/

1 v D Z.x/;

so E D ker � and � is C 2.
We first claim there exists a C 1 form � such that d� D � ^ � . To see this first note that if X; Y are

vector fields belonging to E then d�.X; Y / D 0: indeed

d�.X; Y / D X�.Y / � Y �.X/ � �.ŒX; Y �/ D 0;

as ŒX; Y � belongs to E since E is integrable, and E D ker � .
Suppose d� D � ^ � for a 1-form �; then

iZd� D �.Z/� � �.Z/� D �.Z/� � �:

It then follows that if we define � by

(11.3.1) � D �iZd�

then d� D � ^ � . Note that if �0 is another 1-form with d� D �0 ^ � then �0 D �C a� for some smooth
function a.

The following numerical invariant is due to Godbillon and Vey in [GV71].

DEFINITION 11.16. Consider the C 0 form �^d�, where � is as defined above. We can integrate �^d�
over N , and we define the Godbillon-Vey invariant of E to be

gv.E/ WD
Z
N

� ^ d�:

Thurston gave examples of foliations F in S3 such that gv.TF/ takes all possible real values; see
[Thu74].

LEMMA 11.17. The Godbillon-Vey invariant is really an invariant of E: it is independent of the choice
of Z; � and �.

PROOF. It is enough to check that gv.E/ is invariant of � and � , since � and Z determine each other.
Suppose � is fixed but we choose a new �, that is, we replace � by �0 WD �C a� for some smooth function
a then

�0 ^ d�0 D .�C a�/ ^ .d�C da ^ � C ad�/

D � ^ d�C � ^ da ^ � C � ^ � ^ � C a� ^ d�

.�/
D � ^ d� � d.ad�/;

where .�/ used the fact that

� ^ d� D d.� ^ �/ � d� ^ �

D d.d�/ � � ^ � ^ �

D 0:

Thus �0 ^ d�0 � � ^ d� is exact, and hence by Stokes’ theoremZ
N

�0 ^ d�0 D

Z
N

� ^ d�:

�
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EXERCISE 11.18. Complete the proof by showing that if we change � to f � where f 2 C1.N;R/,
f > 0 then the value of gv.E/ does not change.

EXERCISE 11.19. Show that gv.E/ is invariant under C 2 diffeomorphisms, that is, if � W N 0 ! N is
a C 2 diffeomorphism then

gv.��E/ D gv.E/:

REMARK 11.20. We have seen that we can associate a numerical invariant gv.E/ to a transversely
orientable integrable C 2 subbundle E � TN of codimension one. Suppose we remove the condition that
N is 3-dimensional. The construction of � goes through as before, only we can no longer integrate � ^ d�
over N and thus cannot obtain a numerical invariant as before.

However all is not lost. From above, � ^d� D 0, and hence d� D � ^� for some form � . Thus �^d�
is a closed form on N and hence it represents a de Rham cohomology class, called the Godbillon-Vey class,

GV.E/ WD Œ� ^ d�� 2 H 3.N;R/:

The following result is a corollary of the work of Ghys.

THEOREM 11.21. LetM be a closed surface and �t W N ! N an Anosov �-geodesic flow. Then if the
bundles E˙ are C 2 then

gv.E˙/ D 4�2�.M/:

REMARK 11.22. The following is technical, and may be omitted without losing the main thread of this
chapter. Here is what Ghys actually proves. Theorem 4:6 in [Ghy93] asserts that a smooth Anosov flow
on a closed 3-manifold with weak stable and unstable foliations of class C 1;1 is smoothly orbit equivalent
(up to finite covers) to a suspension or to what Ghys calls a quasi-fuchsian flow and which are described in
Théorème B of [Ghy92] (in our case, since we are working with circles bundles the latter alternative holds.)
A quasi-fuchsian flow  depends on a pair of points .Œg1�; Œg2�/ in Teichmüller space, has smooth weak
stable foliation C1-conjugate to the weak stable foliation of a constant curvature metric g1 and smooth
weak unstable foliation C1-conjugate to the weak unstable foliation of a constant curvature metric g2.
Moreover,  preserves a volume form if and only if Œg1� D Œg2�. These results of Ghys imply that if
an Anosov �-geodesic flow has weak stable and unstable foliations of class C 1;1 then the Godbillon-Vey
invariant of the foliations must be equal to 4�2�.M/.

Returning to the setting we are interested in, we have the following result proved in [Pat07, Propo-
sition 3.1]. It can be thought of as a natural generalization to �-geodesic flows of an earlier result due to
Mitsumatsu (see [Mit85], as well as [HK90, Proposition 9.1]), stated as Corollary 11.24 below.

THEOREM 11.23. Let M be a closed surface and �t W SM ! SM an Anosov �-geodesic flow. Let
E D E˙ and r D r˙. Suppose E is of class C 2. Then

gv.E/ D 4�2�.M/ � 3

Z
SM

n
ŒV .�/�2 C ŒV .r/�2

o
d�C 2

Z
SM

˚
V.r/.V 2.�/ � 2�/

	
d�:

It will take us a while to prove this. Let us first note a corollary.

COROLLARY 11.24. In the geodesic flow case we have

gv.E/ D 4�2�.M/ � 3

Z
SM

ŒV .r/�2 d�;

where X.r/C r2 CK D 0. In particular if K � �1 then r˙ D ˙1 and so V.r/ D 0 and

gv.E/ D 4�2�.M/:

Before proving Theorem 11.23 we need the following lemma, which should be thought of as an inte-
grated version of Proposition 8.19.

LEMMA 11.25. Let r D r˙. Then we haveZ
SM

˚
.r � V.�//2 C �2

	
d� D �4�2�.M/C

Z
SM

ŒV .�/�2 d�:

PROOF. Let us recall the equation (8.4.1) satisfied by r :

F.r/C r2 CK �H.�/C �2 � V.�/r D 0:
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Next by Lemma 9.2 and Lemma 9.3 we haveZ
SM

F.r/d� D �

Z
SM

rV .�/d�;

and using the fact that
R
SM

H.�/d� D 0 (again by Lemma 9.2) and (9.1.4) we obtain

�

Z
SM

rV .�/d�C

Z
SM

.r � V.�//rd� D

Z
SxM

d�

Z
M

Kd�a C

Z
SM

ŒV .�/�2d�;

and then the Gauss-Bonnet theorem completes the proof. �

We now prove Theorem 11.23.

PROOF. (of Theorem 11.23)
Since we know V … E by Theorem 8.2 we may take Z D V , and thus

�.x;v/.�/ �

(
0 � 2 E.x; v/

1 � D V.x; v/:

Since E D spanfF;H C rV g we may take for our choice of �

� D ��˛ � rˇ C  :

Indeed,

�.V / D ��˛.V / � rˇ.V /C  .V /

D  .V /

D 1;

and

�.F / D ��˛.X C �V / � rˇ.X C �V /C  .X C �V /

D ��˛.X/C  .�V /

D 0;

and

�.H C rV / D ��˛.H C rV / � rˇ.H C rV /C  .H C rV /

D �rˇ.H/C  .rV /

D 0:

We then take the simplest possible choice of � given by (11.3.1); namely

� D �iV d�:

Using the now familiar structure equations of the coframe f˛; ˇ;  g and the fact that

d� D X.�/˛ CH.�/ˇ C V.�/ ;

dr D X.r/˛ CH.r/ˇ C V.r/ ;

we compute

d� D �d� ^ ˛ � �d˛ � dr ^ ˇ � rdˇ C d 

D �d� ^ ˛ � � ^ ˇ � dr ^ ˇ C r ^ ˛ �K˛ ^ ˇ

D �H.�/ˇ ^ ˛ � V.�/ ^ ˛ � � ^ ˇ �X.r/˛ ^ ˇ

�V.r/ ^ ˇ C r ^ ˛ �K˛ ^ ˇ

D .H.�/ �X.r/ �K/˛ ^ ˇ C .r � V.�// ^ ˛ � .�C V.r// ^ ˇ;

and hence
�iV d� D �.r � V.�//˛ C .�C V.r//ˇ:

We will omit the calculation of �^ d�; it is in the same vein as the above, and is tedious. We finally obtain

� ^ d� D A˛ ^ ˇ ^  ;
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where

A WD �.�C V.r//2 � .r � V.�//2 C .r � V.�// � V.�C V.r//

�.�C V.r//V .r � V.�//:

Using the fact ‚ D ˛ ^ ˇ ^  is a volume form giving rise to �, we have

gv.E/ D
Z
SM

Ad�:

We can simplify this by recalling that since LV‚ D 0 by Lemma 9.2 we haveZ
SM

V.�/d� D 0;

and thus using the fact that

V Œ.r � V.�//.�C V.r//� D V.r � V.�//.�C V.r//C .r � V.�//V .�C V.r//

we can rewrite

A D
�
�.�C V.r//2 � .r � V.�//2 � 2.�C V.r// � V.r � V.�//

�
CV Œ.r � V.�//.�C V.r//�

to obtain

gv.E/ D
Z
SM

Ad�

D

Z
SM

�
�.�C V.r//2 � .r � V.�//2 � 2.�C V.r// � V.r � V.�//

�
d�:

By expanding .�C V.r//2 and combining terms we can rewrite this as

gv.E/ D
Z
SM

�
��2 � .r � V.�//2 � 3ŒV .r/�2 � 4�V.r/C 2V 2.�/.�C V.r//

�
d�:

Next, using the fact that
V.�V.�// D ŒV .�/�2 C �V 2.�/

and that
R
SM

V.�/d� D 0 we haveZ
SM

�V 2.�/d� D �

Z
SM

ŒV .�/�2d�;

from which we obtain

gv.E/ D
Z
SM

�
��2 � .r � V.�//2 � 3ŒV .r/�2 C 2V.r/.V 2.�/ � 2�/ � 2ŒV .�/�2

�
d�;

and the proof is the completed by Lemma 11.25. �

COROLLARY 11.26. Let us specialize to the case of an Anosov magnetic thermostat determined by the
pair .h; �/. Suppose E is of class C 2. Then

gv.E/ D 4�2�.M/ � 3

Z
SM

ŒV .r C �/�2 d�:

PROOF. We have
V.�/ D V.hC V.�// D �x.i2v/ D ��;

and hence
V 2.�/ � 2� D �3V.�/ � 2h:

Since v 7! iv preserves � by Exercise 9.13, we haveZ
SM

ŒV .�/�2 d� D

Z
SM

�2d� D

Z
SM

ŒV .�/�2 d�;

and thus

gv.E/ D 4�2�.M/ � 3

Z
SM

�
ŒV .r/�2 C ŒV .�/�2

�
d� � 6

Z
SM

V.r/V .�/d�

�4

Z
SM

hV.r/d�:
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But then

0 D

Z
SM

V.hr/d�

D

Z
SM

hV.r/d�C

Z
SM

rV .h/d�

D

Z
SM

hV.r/d�C 0;

and thus obtain
gv.E/ D 4�2�.M/ � 3

Z
SM

ŒV .r C �/�2 d�;

thus completing the proof. �

REMARK 11.27. In fact Theorem 11.23 holds when E of class is C 1;˛ for any ˛ > 1
2

. Of course, for
this to make sense one needs to have a definition of gv.E/ in this case. The reader is referred to [HK90]
for this extension of the definition of gv.E/.

We conclude this chapter with one more result, illustrating the high degree of rigidity of Anosov mag-
netic thermostat flows on surfaces. We shall use this theorem in the next chapter when we return to the
boundary rigidity problem.

THEOREM 11.28. Let .M; g/ be a closed surface and let �t W SM ! SM be an Anosov magnetic
thermostat flow determined by the pair .h; �/, where � has zero divergence. Then if the both the weak
bundles E� and EC are C 2, we must have � � 0 and h constant; moreover this implies that the curvature
K of M is also constant.

REMARK 11.29. The assumption � has zero divergence is really no restriction at all, and is made only
to simplify the forthcoming proof. To remove this assumption, one needs to argue that E˙ are independent
of time changes and that there is a time change for which the divergence of � is zero. Also note that if
� � 0 and both h and K are constant, then we are in the homogeneous PSL.2;R/-case and the bundles
E˙ are in fact real analytic.

PROOF. Since E is C 2, Theorem 11.21 implies that gv.E/ D 4�2�.M/, and thus Corollary 11.26
implies that V.r C �/ D 0. Note that this holds for both r D r� and rC. Set s˙ D r˙ C � , which we can
think of as smooth functions defined on M as V.s˙/ D 0. Since r� ¤ rC for all .x; v/ 2 SM we may
assume that rC > r�. Now since by (8.4.1)

F.r�/C .r�/2 CK �H.�/C �2 � V.�/r� D 0;

F.rC/C .rC/2 CK �H.�/C �2 � V.�/rC D 0;

we have

F.log.rC � r�// D V.�/ � .r� C rC/;

D �� � .sC C s� � 2�/

D � � .sC C s�/;

and hence
F.log.sC � s�//C sC C s� D �:

But now note that if g is a C 1 function on M then F.g ı �/.x; v/ D dxg.v/, and thus the last equation
implies that sC C s� D 0 and that � is exact (with � D d.log 2sC/). Since � has zero divergence and is
exact, � � 0. Thus log 2sC is constant which in turn implies that r� and rC are also both constant.

Since � D 0 the Riccati equation (8.4.1) reduces to

F.r/C r2 CK �H.h/C h2 D 0:

Since r is constant, F.r/ D 0 and we conclude that K �H.h/C h2 is constant. Applying V to both sides
and noting V.K/ D V.h/ D 0 as both K and h are smooth functions on M we reduce to

0 D VH.h/

D ŒV;H�.h/ �HV.h/

D �X.h/

D �dh:
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Thus h is constant, and so H.h/ D 0 and thus K is constant. This completes the proof. �

Finally we mention that we can prove the following weaker result (which is actually all we will need
in the next chapter) without using Ghys’ theorem 11.21.

COROLLARY 11.30. Let .M; g/ be a closed surface and let �t W SM ! SM be an Anosov magnetic
thermostat flow determined by the pair .h; �/, where � has zero divergence. Suppose there is exists a C 2

orbit equivalence between �t and a geodesic flow �0t W S
0M ! S0M determined by a metric of constant

negative curvature �1. Then � � 0 and h is constant; moreover this implies that the curvature K of M is
also constant.

PROOF. The existence of the hypothesized orbit equivalence implies that the weak bundles E˙ of �t
are of class C 2 with gv.E˙/ D 4�2�.M/. Then previous proof now applies word for word. �



CHAPTER 12

Returning to the boundary rigidity problem

Having developed all of this extra material we return to the boundary rigidity problem. The main goal
of the first section of this chapter is to complete the proof of Theorem 2.8 from Chapter 2. Then in the
second section we discuss applications of this material to spectral geometry, and prove an important result
of Guillemin and Kazhdan.

12.1. Boundary rigidity

Before we get started on the proof of Theorem 2.8, we will prove that simple compact subdomains of
H2 are boundary rigid. The proof uses Theorem 11.28 from the previous chapter.

THEOREM 12.1. Let .M; @M/ � H2 be a compact simple manifold with the hyperbolic metric g. Then
.M; @M/ is boundary rigid, i.e., if g0 is another simple metric on M such that d D d 0 on @M � @M then
there exists a diffeomorphism  WM !M such that  j@M D Id and  �g D g0.

PROOF. Take a fundamental domain containingM ; that is, a discrete cocompact lattice � � PSL.2;R/
such that † WD H2=� is a closed Riemann surface with M � †.

Example 2.17 implies (after modifying g0 by a diffeomorphism if necessary) that we may glue the
metric g0 into †; more precisely we have a well defined new metric g00 on † given by

g00 D

(
g0 M

g †nM:

Then Lemma 2.19 implies that .†; g/ and .†; g00/ have smoothly conjugate geodesic flows, and Corollary
2.22 gives Vol.†; g/ D Vol.†; g00/. It follows that .†; g00/ has C1 weak bundles (since .†; g/ does) and
then Theorem 11.30 implies that .†; g00/ has constant curvatureK. Then finally the Gauss-Bonnet theorem
gives

�.†/ D

Z
†

K � dvolg00

D KVol.†; g00/
D KVol.†; g/

D �K

Z
†

.�1/ � dvolg

D �K�.†/;

and since �.†/ ¤ 0 it follows that K � �1.
In other words we have shown that after modifying g0 by a diffeomorphism if necessary we may

assume that g0 has constant curvature �1 on M . Now to complete the proof we can employ the (local)
Cartan-Ambrose-Hicks theorem (see [Cha06, p154]) to conclude that the map

expx ı.exp0x/
�1

with x 2 @M (where exp is the g-exponential map and exp0 is the g0-exponential map) is an isometry;
moreover this map restricts to @M as the identity. In other words, the desired map  may be defined as
expx ı.exp0/�1x . �

We will now use the technical machinery we have developed in this course to prove Theorem 2.8. We
first tackle the closed case; after this we will tackle the compact with boundary case (see Theorem 12.5,
below). This proof is adapted from [SU00, Theorem 1.2].

THEOREM 12.2. Let M be a closed surface of negative curvature, and ˇ a symmetric 2-tensor such
that I Œˇ� D 0. Then ˇ is potential.

93
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REMARK 12.3. The assumption that dimM D 2 is not necessary, and similar methods will give the
same result for M n-dimensional instead. However the assumption that M has negative curvature is used
twice in the proof, and it is currently an open problem as to whether the same result will hold if we only
assume that the geodesic flow of M is Anosov. In general, whilst the Anosov condition is weaker than the
negative curvature hypotheses (consider the Donnay-Pugh example from Section 5.2), it is fairly easy to
extend results proved about negative curvature to just the Anosov case. It appears that this is an exception
to this rule. Another exception is Theorem 8.2.

PROOF. We know that the geodesic flow is Anosov (thanks to Theorem 1.6), and moreover, considering
ˇ as a function SM ! R defined by

ˇ.x; v/ WD ˇx.v; v/;

since I Œˇ� D 0, Theorem 6.11 gives the existence of a smooth map u W SM ! R such that X.u/ D ˇ, that
is,

X.u/.x; v/ D ˇx.v; v/; for all .x; v/ 2 SM:

What we want to show is that u is a 1-form, say u.x; v/ D ıx.v/. Then if Z D Og�1ı is the vector field
g-dual to ı we have

X.u/.x; v/ D
d

dt

ˇ̌
tD0
ı
.x;v/.t/. P
.x;v/.t//

D
d

dt

ˇ̌
tD0

˝
Z.
.x;v/.t//; P
.x;v/.t/

˛
D 2 hrvZ.x/; vi

D ˇx.v; v/

and thus ˇ is a potential.
We need a criterion similar to the one we used in Lemma 6.22 for u to be a 1-form (up to a constant)

in terms of V . We claim that the desired statement we need is for

‰ WD V 2.u/C u D const:

Indeed, if u.x; v/ D ıx.v/C c then

‰.x; v/ D V 2.u/.x; v/C u.x; v/

D V.ıx/.iv/C ıx.v/C c

D ıx.i2v/C ıx.v/C c

D c:

Conversely if ‰ D c then solving the ODE on the circle SxM gives

u.x; v/ D f1.x/ cos � C f2.x/ sin � C c;

which is a 1-form up to a constant.
Next we recall the integrated Pestov identity (9.3.1) from Corollary 9.9

2

Z
SM

H.u/ � VX.u/d� D

Z
SM

ŒX.u/�2 d�C

Z
SM

ŒH.u/�2 d� �

Z
SM

K ŒV.u/�2 d�

(this is simplified from (9.3.1) since we are taking � D 0, i.e. the geodesic flow case).
The crux of the proof is the following innocent looking claim:

Claim: VX.‰/ D �2H.‰/.

Assuming the claim for the time being, we complete the proof. We apply the identity above to ‰ to
get, using the fact that K < 0,

0 � �

Z
SM

Œ2H.‰/�2 d�

D

Z
SM

ŒX.‰/�2 d�C

Z
SM

ŒH.‰/�2 �

Z
SM

KŒV.‰/�2d� � 0:

This implies that X.‰/ D V.‰/ D H.‰/ D 0, and thus ‰ is constant, as required.
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It remains therefore to prove the claim: note that we have not yet used the fact that ˇ is a symmetric
2-tensor.

Proof of claim: To prove the claim we repeatedly apply V :

X.u/ D ˇ

) VX.u/ D V.ˇ/

) XV.u/CH.u/ D V.ˇ/

) VXV.u/C VH.u/ D V 2.ˇ/

) XV 2.u/CHV.u/CHV.u/ �X.u/ D V 2.ˇ/

) X.‰/C 2HV.u/ D V 2.ˇ/C 2X.u/

) VX.‰/C 2VHV.u/ D V 3.ˇ/C 2V.ˇ/

) VX.‰/C 2
�
HV 2.u/ �XV.u/

�
D V 3.ˇ/C 2V.ˇ/

) VX.‰/C 2
�
HV 2.u/CH.u/ � VX.u/

�
D V 3.ˇ/C 2V.ˇ/

) VX.‰/C 2H.‰/ D V 3.ˇ/C 4V.ˇ/:

The proof is then completed by showing that V 3.ˇ/C 4V.ˇ/ D 0, and this is where we will finally use the
fact that ˇ is a symmetric 2-tensor. To prove this we write

V.ˇx.v; v// D ˇx.iv; v/C ˇx.v; iv/

D 2ˇx.iv; v/;

and thus

V 2.ˇx.v; v// D 2ˇx.i2v; v/C 2ˇx.iv; iv/

D �2ˇx.v; v/C 2ˇx.iv; iv/;

and hence

V 3.ˇx.v; v// D �4ˇx.iv; v/C 4ˇx.i2v; iv/

D �8ˇx.iv; v/

D �4V.ˇx.v; v//:

The proof is complete. �

EXERCISE 12.4. Prove Theorem 12.2 just assuming that the geodesic flow is Anosov and K � 0.

Next we show how to adapt this proof to work in the case that M has boundary @M , thus finally
completing the proof of Theorem 2.8. This proof is also adapted from [SU00, Theorem 1.1], although this
result was originally proved by Pestov and Sharafutdinov in [PS88].

THEOREM 12.5. Let .M; @M; g/ be simple and of negative curvature, and ˇ a symmetric 2-tensor
such that I Œˇ� D 0. Then ˇ is potential.

PROOF. In this case the equation we need to recall is the integral Pestov identity for the case whereM
has boundary (Exercise 9.10),

2

Z
SM

H.u/ � VX.u/d� D

Z
SM

ŒX.u/�2 d�C

Z
SM

ŒH.u/�2 d� �

Z
SM

K ŒV.u/�2 d�

C

Z
@.SM/

H.u/ � V.u/ � iX‚ �

Z
@.SM/

X.u/ � V.u/ � iH‚

�

Z
@.SM/

X.u/ �H.u/ � iV‚:

The proof is similar to the previous theorem, however there are some important differences. The most
important is that we can no longer use the Livsic Theorem 6.11 to obtain a smooth function u W SM ! R

such that X.u/ D ˇ. Thus we need to define u directly. We proceed as follows.
Firstly, recall from Section 2.10 that given any .x; v/ 2 SM there exists a unique geodesic 
.x;v/

adapted to .x; v/ and defined on an interval Œ��.x; v/; �C.x; v/�, where 
.x;v/.��.x; v// 2 @�.SM/ and

.x;v/.�C.x; v// 2 @C.SM/. Moreover the functions �˙ are smooth on SMnS.@M/ by the simple condi-
tion.
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Thus given .x; v/ 2 SM , define

u.x; v/ WD

Z 0

��.x;v/

ˇ
.x;v/.t/. P
.x;v/.t/; P
.x;v/.t//dt:

We claim u.x; v/ D 0 for .x; v/ 2 @SM ; indeed, the assertion uj�.SM/ D 0 is simply the fact that
I Œˇ� D 0, and the assertion uj@C.SM/ D 0 is immediate from the fact that clearly �C.x; v/ D 0 for
.x; v/ 2 @C.SM/. Moreover u is smooth where �� is smooth; this is true on SMnS.@M/ by the simple
condition.

Next, we claim that u satisfies

X.u/.x; v/ D ˇx.v; v/; for all .x; v/ 2 SMnS.@M/:

Indeed, fix .x; v/ 2 SMnS.@M/, and let 
.x;v/ W Œ��.x; v/; �C.x; v/� ! M be as above. For suffi-
ciently small s 2 R, let

xs WD 
.x;v/.s/; vs WD P
.x;v/.s/;

so that

.xs ;vs/.t/ D 
.x;v/.t C s/

and
��.xs; vs/ D ��.x; v/ � s:

Thus

u.
.x;v/.s/; P
.x;v/.s// D u.xs; vs/

D

Z 0

��.xs ;vs/

ˇ
.xs;vs/.t/. P
.xs ;vs/.t/; P
.xs ;vs/.t/dt

D

Z s

��.x;v/

ˇ
.x;v/.t/. P
.x;v/.t/; P
.x;v/.t//dt:

Differentiating this relation with respect to s and then setting s D 0 we obtain

X.u/.x; v/ D ˇx.v; v/

as claimed.
Thus we have shown u depends smoothly on .x; v/ apart from possibly points of S.@M/ where some

derivatives of u could very well become infinite. Below we shall integrate u over all of SM ; this means
that some of the integrals we consider may be improper, and thus one should really prove convergence. We
shall omit these checks, and refer the reader to [Sha94, Section 4.6] for information on how this is done.

Having done all of this the proof can essentially proceed as before, since we claim that with ‰ D
V 2.u/C u defined as before we have

(12.1.1)
Z
@.SM/

H.‰/ � V.‰/ � iX‚ �

Z
@.SM/

X.‰/ � V.‰/ � iH‚ �

Z
@.SM/

X.‰/ �H.‰/ � iV‚ D 0:

Indeed, having shown (12.1.1), modulo the convergence issues that we omit, exactly the same method as in
12.2 works, and the proof is complete.

To show (12.1.1) we use that fact that V.‰/ D 0 on @.SM/; this follows as u D 0 on @.SM/. This
kills all but the last term, and the last term dies as by (4.1.8),

iV‚ D ˛ ^ ˇ D �
��a;

and thus the restriction of iV‚ to @.SM/ is zero. �

12.2. Applications to spectral geometry

We conclude with an application to infinitesimal spectral rigidity. In order to state this result we require
some elementary definitions from spectral geometry.

DEFINITION 12.6. Let .M; g/ be a closed Riemannian manifold whose geodesic flow is Anosov. We
define 3 types of spectrum:

(1) The spectrum of the Laplacian, written Spec.�g/ is the sequence of eigenvalues (counted with
multiplicites) of the Laplacian �g acting on C1.M;R/.

(2) The marked length spectrum is the function Lg W ….M/ ! R, where ….M/ is the set of non-
trivial free homotopy classes, and for � 2 ….M/, Lg.�/ D `g.
�/, the length of the unique
closed geodesic 
� 2 � .
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(3) The length spectrum, written LSpec.g/ is defined to be the image of Lg , that is,

LSpec.g/ D f`.
/ W 
 2 G.M; g/g � R:

Note that LSpec.g/ is a countable set.

THEOREM 12.7. Let .M; g/ be a closed negatively curved surface, and let fgs W s 2 .�"; "/g be a
smooth 1-parameter family of metrics. Suppose that

(12.2.1) Spec.�gs / D Spec.�g0/ for all s 2 .�"; "/:

Then there exists a family  s WM !M of diffeomorphisms such that  0 D Id and such that

gs D  
�
s g0:

As stated this theorem was first proved by Guillemin and Kazhdan in [GK80]. We shall sketch their
original proof below in Remark 12.10, but for now we present a proof more in the spirit of these notes, due
to Croke and Sharafutdinov in [CS98]. This proof generalizes to higher dimensions, whereas the earlier
proof does not.

PROOF. Firstly we quote the result of Guillemin and Duistermaat [DG75] that the assumption (12.2.1)
implies that we also have equality of the length spectrums, that is,

LSpec.gs/ D LSpec.g0/ for all s 2 .�"; "/:

Let ….M/ denote the set of all non-trivial free homotopy classes of �1.M/. The function s 7! Lgs .�/ for
each � 2 ….M/ can be shown to be smooth. Since LSpec.gs/ D ImLgs is countable, we can actually
conclude the stronger result that the marked length spectrums coincide, that is,

(12.2.2) Lgs D Ls for all s 2 .�"; "/:

Now fix � 2 ….M/, and let 
s denote the closed geodesic in � for gs , with j P
sjs D 1. Then if ` D `0.
0/
then we have each 
s defined on Œ0; `�, by (12.2.2). In particular, the energy of 
s with respect to gs is
constant:

Es.
s/ WD

Z `

0

j P
s.t/j
2
s dt D ` for all s 2 .��; �/:

Thus the argument of Proposition 2.6 shows that if s0 2 .�"; "/ and

ˇs0 WD
@gs

@s

ˇ̌̌
sDs0

;

then ˇs0 is a symmetric 2-tensor, and
I Œˇs0 � D 0;

where I is the X-ray transform with respect to gs0 .
Thus by Theorem 12.2 we conclude that there exists a family of smooth vector field Zs such that

ˇs.v; w/ D hrvZs; wis C hv;rwZsis :

Then if we take  s to be the flow of Zs then gs D  �s g0. It remains to check that the map s 7!  s is
smooth.

EXERCISE 12.8. Show that s 7!  s is smooth (hint: use Theorem 6.18).

�

REMARK 12.9. In view of Exercise 12.4, Theorem 12.7 holds under the assumption that the geodesic
flow is Anosov and K � 0.

We now outline the original approach to this result.

REMARK 12.10. Guillemin and Kazhdan’s approach to Theorem 12.7: We will now briefly outline the
original proof of Theorem 12.7. The reader is referred to [GK80] for the full details. We will see the same
idea crop up again in the non-commutative setting of the next chapter (see Definition 13.15).

Guillemin and Kazhdan first defined

�C WD
X � iH

2
; �� WD

X C iH

2
;

so that
X D �C C ��;
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and then computed the commutation relations

Œ�iV; �C� D �C;

Œ�iV; ��� D ���;

Œ�C; ��� D
iKV

2
:

Then they note that as an operator on L2.SM;C/, V gives a decomposition

L2.SM;C/ D
M
n2Z

Hn;

where if f 2 Hn then V.f / D inf , and that �C W Hn ! HnC1 and �� W Hn ! Hn�1 are first order
elliptic operators.

For example, if � is a 1-form then � D ��1 C �1 2 H�1 ˚H1, given by

�1 D
� � iV .�/

2
; ��1 D

� C iV .�/

2
;

so �1 D ��1. Similarly if ˇ is a symmetric 2-tensor then ˇ D ˇ�2Cˇ0Cˇ2 with ˇ2 D ˇ�2 and ˇ0 D ˇ0.
We want to solve

X.u/ D ˇ;

and writing u D
P
n2Z un with un 2 Hn we can write this as

.�C C ��/

 X
n2Z

un

!
D ˇ�2 C ˇ0 C ˇ2:

This decouples into the recurrence relation

��.uiC1/C �
C.ui�1/ D ˇi :

Using K < 0 together with Œ�C; ��� D iKV
2

one can show that ui D 0 for ji j � 2 and from here it follows
easily that, up to a constant, u is a 1-form as required. Hence ˇs is potential, and ellipticity is then used to
show that s 7! ˇs is smooth, and then the proof is completed as before.

We conclude this chapter by showing how the operators �˙ give us another derivation of the integrated
Pestov identity from Corollary 9.9. This calculation shows how both approaches are related and why both
are successful in dealing with this circle of questions.

Suppose f 2 C1.SM;C/, and write f D uC iv. Then we claim:

(12.2.3)
ˇ̌
�C.f /

ˇ̌2
D j��.f /j2 C

1

2
hKiV.f /; f i I

Indeed, since LX‚ D LH‚ D 0 (Lemma 9.2), we also have L�˙‚ D 0, and thusZ
SM

�C.��.f / � Nf / � ��.�C.f / � Nf /d� D 0:

Hence Z
SM

�C��.f / � Nf � ���C.f / � Nf d� D

Z
SM

�C.f /��. Nf / � ��.f /�C. Nf /d�:

Using the fact that

�C. Nf / D �C.u � iv/ D ��.uC iv/ D ��.f /;

this becomes Z
SM

Œ�C; ���.f / � Nf d� D

Z
SM

�C.f /�C.f / � ��.f /��.f /d�;

that is, ˝
Œ�C; ���.f /; f

˛
D
ˇ̌
�C.f /

ˇ̌2
� j��.f /j2 ;

which is (12.2.3) since Œ�C; ���.f / D iKV.f /
2

.
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Now ˇ̌
�C.f /

ˇ̌2
D

1

4
jX.u/CH.v/C i fX.v/ �H.u/gj2

D
1

4

Z
SM

˚
ŒX.u/�2 C ŒH.v/�2 C 2X.u/ �H.v/

CŒX.v/�2 C ŒH.u/�2 � 2X.v/ �H.u/
	
d�;

and similarly

j��.f /j2 D
1

4

Z
SM

˚
ŒX.u/�2 C ŒH.v/�2 � 2X.u/ �H.v/

CŒX.v/�2 C ŒH.u/�2 C 2X.v/ �H.u/
	
d�:

Thus (12.2.3) gives us:Z
SM

fX.u/ �H.v/ �X.v/ �H.u/g d� D

�ˇ̌
�C.f /

ˇ̌2
� j��.f /j2

�
D

1

2
hKiV.f /; f i

D
1

2

Z
SM

K f.iV .u/ � V.v// � .u � iv/g d�

D
1

2

Z
SM

K f.vV .u/ � uV.v//

Ci.uV .u/C vV.v//g d�:

Next, using the fact that
2vV.u/ � V.uv/ D vV.u/ � uV.v/;

1

2

�
V.u2/C V.v2/

�
D uV.u/C vV.v/;

the imaginary part disappears and we can rewrite this asZ
SM

fX.u/ �H.v/ �X.v/ �H.u/g d� D

Z
SM

KvV.u/d�:

Now take v D V.u/ to obtainZ
SM

fX.u/ �HV.u/ �XV.u/ �H.u/g d� D

Z
SM

K ŒV.u/�2 d�;

and then by the commutation relations

ŒV; X� D H; ŒH; V � D X;

this becomesZ
SM

ŒX.u/�2 CX.u/ � VH.u/ � VX.u/ �H.u/C ŒH.u/�2d� D

Z
SM

KŒV.u/�2d�:

Finally using
V .X.u/ �H.u// D VX.u/ �H.u/CX.u/ � VH.u/;

we can rewrite this last line asZ
SM

ŒX.u/�2 � 2VX.u/ �H.u/C ŒH.u/�2d� D

Z
SM

KŒV.u/�2d�;

that is,

2

Z
SM

H.u/ � VX.u/d� D

Z
SM

ŒX.u/�2 d�C

Z
SM

ŒH.u/�2 d� �

Z
SM

K ŒV.u/�2 d�;

which is precisely the integrated Pestov identity from Corollary 9.9 (with � D 0).



CHAPTER 13

Transparent connections

In this last chapter we will discuss a problem in a similar vein to the problems discussed earlier related
to the Kernel of the X -ray transform on 1-forms. This chapter is entirely based on the second author’s
recent papers [Pat09b, Pat09a], to which the reader is referred to for more information. In this chapter we
will need rather more background material on connections and gauge theory than has been required up to
now; thus for the benefit of the reader we begin with a quick summary of some of this material.

13.1. Review on connections and curvature

We begin with a quick review on some elementary material on connections that we will need through-
out this chapter. A good reference for this material, written from a similar point of view is Chapter 3 of
[Jos08], or, at a rather more advanced level, Chapter 2 of [DK90].

Let M denote a smooth manifold, and let p W E ! M denote a complex vector bundle of rank n over
M , with Hermitian inner product h D h�; �i. Let �r .E/ denote the sheaf

U 7! �r .U;E/ WD �.U;ƒr .T �M/˝E/; U �M:

A connection r on E is an R-linear sheaf morphism r W �0.E/! �1.E/ satisfying

(13.1.1) r.f s/ D df ^ s C f rs

for local sections s of E and local smooth functions f . Let X.M/ denote the sheaf of vector fields on M .
Given a local vector field X 2 X.U;M/ we let rX denote the sheaf morphism �0.E/jU ! �0.E/jU
given by

rXs WD rs.X/:

We say that r is unitary if it is compatible with the Hermitian product in the sense that

X
˝
s; s0

˛
D
˝
rXs; s

0
˛
C
˝
s;rXs

0
˛

for all local vector fields X and local sections s; s0 of E.

Let�r .EndE/ denote the sheaf of sections of the bundle EndE, and let�r .adE/ denote the subsheaf
of �r .EndE/ such that �r .U; adE/ consists precisely of the elements A 2 �r .U;E/ such that for all
x 2 U and all X1; : : : ; Xr 2 TxM , the element

A.X1; : : : ; Xr / 2 GL.Ex/

is skew-hermitian.

Suppose E is given by the cocycle
˚
U˛; f˛ˇ

	
, that is, fU˛g is an open cover of M such that EjU˛ is

trivial for all ˛, and f˛ˇ W U˛ \ Uˇ ! GL.n;C/ are the transition functions for E. Then a connection r
on E determines elements A˛ 2 �1.U˛;EndE/ such that for s 2 �0.U˛; E/ we have

rs D ds C A˛s:

The elements fA˛g are related by:

Aˇ D f
�1
˛ˇ df˛ˇ C f

�1
˛ˇ A˛f˛ˇ on U˛ \ Uˇ :

If r is unitary then the A˛ are skew-symmetric and thus determine elements of �1.U˛; adE/.
If r1 and r2 are two connections on E generating elements

˚
A1˛
	

and
˚
A2˛
	

respectively then if
A˛ WD A

2
˛ � A

1
˛ we have

Aˇ D f
�1
˛ˇ A˛f˛ˇ on U˛ \ Uˇ ;

100
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and hence the fA˛g glue together to define a global element A 2 �1.M;EndE/. If both r1 and r2 are
unitary, then A 2 �1.M; adE/, and hence we have shown:

LEMMA 13.1. Given two unitary connections r1 and r2 on E there exists A 2 �1.M; adE/ such
that

r
2
D r

1
C A:

EXERCISE 13.2. Suppose E D M � Cn is the trivial bundle over M . Prove that if r is any unitary
connection on E then we can write r D d C A where A 2 �1.M; adE/.

Slightly more generally, suppose we are given a Lie subgroup G � GL.n;C/. Given a vector bundle
p W E ! M , we say that the structure group of E can be reduced to G if we can find a cocycle fU˛; f˛ˇ g
for E with f˛ˇ .x/ 2 G for all x 2 U˛ \ Uˇ . We then call the cocycle fU˛; f˛ˇ g a G-cocycle.

Let p W E ! M be a complex rank n vector bundle, and suppose we can reduce its structure group to
the Lie subgroup G � GL.n;C/. It therefore makes sense to talk about the bundle of G-frames. This is a
principal G-bundle over M defined as follows. Let Fx denote the set of all bases b D .e1; : : : ; en/ of Ex
such that as a matrix b 2 GL.n;C/ we actually have b 2 G. Thus Fx Š G. Let F WD

F
x2M Fx and let

pF W F ! M denote the projection sending b 2 Fx to x 2 M . As in the case of the tangent bundle, we
write an element of F in the form .x; b/ to indicate that b 2 Fx . We can define a right action of G on F by

F �G ! F; ..x; b/; u/ 7! .x; b � u/;

where ‘�’ denotes matrix multiplication.
Let g denote the Lie algebra of G and form the set gE defined to be the quotient of F � g under the

equivalence relation

..x; b/; X/ � ..x; b � u/; uXu�1/ for all ..x; b/; X/ 2 F � g and u 2 G:

Then gE admits the structure of a vector bundle over M , and is a real subbundle of EndE. Let �r .gE /
denote the sheaf of sections of this bundle. The previous bundle adE is just the special case of G D U.n/,
i.e., adE D u.n/E .

A connection r on E is called a G-connection if in a G-cocycle fU˛; f˛ˇ g, r is given by 1-forms
A˛ 2 �

1.U˛; gE /. Exactly the same argument as in Lemma 13.1 shows that if we have two G-connections
r1 and r2 then there exists A 2 �1.M; gE / such that r2 D r1 C A. Thus unitary connections are
precisely U.n/-connections. Later in this chapter we will focus exclusively on the case G D SU.2/.

Now suppose that  W N ! M is a smooth map from another smooth manifold N . Then there is a
bundle  �E over N defined as follows:

 �E
N //

p 

��

E

p

��
N

 
// M

Here
 �E D f.x; �/ 2 N �E W  .x/ D p.�/g ;

and p W .x; �/ 7! x and N W .x; �/ 7! � are the first and second projections. If E is given by cocycle˚
U˛; f˛ˇ

	
then  �E is given by cocycle

˚
 �1.U˛/; f˛ˇ ı  

	
.

Suppose r is a connection on E. Then we have a unique connection  �r on  �E defined by

. �r/X . 
�s/ D rd .X/s; X 2 X.N /; s 2 �0.E/:

Alternatively, if r determines elements A˛ 2 �1.U˛;EndE/ then  �r determines the elements  �A˛ 2
�1. �1.U˛/;End �E/ , that is,

 �rj �1.U˛/ D d C f
� ˛

is the local description of  �r.

Given a connection r on E, there exists a unique connection r� on E� determined as follows: for
� 2 �0.E�/ and s 2 �0.E/,

r
�
X�.s/ WD rX .�.s// � �.rXs/:
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This in turn defines a connection rEnd on E ˝E� D EndE by

r
End
X .s ˝ �/ D rXs ˝ � C s ˝r

�
X�:

Let fe1; : : : ; eng be a local frame for E over U˛ , and let
˚
"1; : : : ; "n

	
be the corresponding dual frame of

E�. Then a local section u 2 �0.U˛; E ˝E�/ of EndE can be written as

u D � ij ei ˝ "
j ; � ij 2 C

1.U˛;C/:

If A˛ has entries aij 2 �
1.U˛;M/ then

r
Endu D d� ij ei ˝ "

j
C � ija

k
i ek ˝ "

j
� � ija

j

k
ei ˝ "

k

D duC ŒA˛; u� :

Thus if rjU˛ D d C A˛ then rEndjU˛ D d C ŒA˛; ��. Taking this one step further and considering the
induced connection . �r/End on End �E, we see that . �r/Endj �1.U˛/ D d C Œ 

�A˛; ��.

Now we define the curvature of a connection r. Firstly, there exists a unique extension of r to a map
dr W �r .E/! �rC1.E/ defined as follows: if ! is a local r-form on M and s is a local section of E then

dr.! ˝ s/ WD d! ˝ s C .�1/r! ^ rs:

For r D 0, this is just the defining equation (13.1.1) for the connection, which ensures that dr is well
defined, that is, dr.f!˝ s/ D dr.!˝ f s/ for any smooth function f . Next, we define the curvature Fr
of r to be the composition

Fr D d
r
ı dr W �0.E/! �2.E/:

One easily checks that Fr is C1.M;R/-linear, that is,

Fr.f s/ D fFrs;

and hence Fr determines a global section Fr 2 �2.M;EndE/. If r is unitary then it is easily seen that
Fr 2 �

2.M; adE/.
If rjU˛ D d C A˛ then a trivial calculation shows that

Fr jU˛ D dA˛ C A˛ ^ A˛I

note that this shows that if E is a line bundle then Fr jU˛ D dA˛ , and hence in this case Fr is simply an
ordinary 2-form, Fr 2 �2.M/.

The curvature is natural with respect to pullbacks, that is, if  W N ! M is smooth and  �r is the
induced connection on  �E then

F �r D  
�Fr 2 �

2.N; ad �E/:

Indeed

F �r j �1.U˛/ D d. �A˛/C  
�A˛ ^  

�A˛

D  �.dA˛ C A˛ ^ A˛/

D  �.Fr jU˛ /:

Similarly one checks
FrEnd D ŒFr ; �� ;

and thus we have
F. �r/End D

�
 �Fr ; �

�
:

Finally we discuss gauge transformations. Let GE denote the global sections of the bundle AutE, that is,

GE WD �0.M;AutE/
D

˚
! 2 �0.M;EndE/ W !x W Ex ! Ex is an isomorphism for all x 2M

	
:

We call GE the gauge group of E, and elements of GE are called gauge transformations. The group
structure on GE is given by fibrewise matrix multiplication. A gauge transformation ! operates on the
space of unitary connections by

r 7! !�r;

where for s 2 �0.E/,
.!�r/.s/ WD !�1.r!.s//:
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Alternatively if r is given by d C A˛ on U˛ then !�r is given by

d C .!�1˛ d!˛ C !
�1
˛ A˛!˛/ on U˛;

where ! is given by !˛ on U˛ , so !ˇ D f �1
˛ˇ
!˛f˛ˇ on U˛ \ Uˇ if ff˛ˇ g are the transition functions

associated to the cover fU˛g.
We say that two unitary connections r1 and r2 are gauge equivalent if there exists ! 2 GE such that

r2 D !�r1. Gauge equivalence is clearly an equivalence relation. We let C D C.E/ denote the space of
unitary connections on E modulo gauge equivalence.

13.2. Bundle-valued cocycles

We now need to generalize Definition 6.5 and bundle-valued cocycles.

DEFINITION 13.3. Let �t W N ! N be a flow, where N is a closed manifold. Let p W E ! N be
a complex Hermitian vector bundle over N . A E-valued cocycle C over �t is a map C such that for each
.x; t/ 2 N � R, C.x; t/ W Ex ! E�tx is a unitary map satisfying

C.x; t C s/ D C.�tx; s/ ı C.x; t/ W Ex ! E�tCsx :

If E is trivial, with ˆ W E ! N � Cn a unitary trivialization, then we can recover a cocycle D in the
sense of Definition 6.5 as follows: given .x; t/ 2 N � R, and a 2 Cn, we can write

ˆ ı C.x; t/ ıˆ�1.x; a/ D .�tx; b/ 2 N � Cn

for some b 2 Cn; define D W N � R! U.n/ by

D.x; t/a D b;

that is,
ˆ ı C.x; t/ ıˆ�1.x; a/ D .�tx;D.x; t/a/:

It is then elementary to check that D is a U.n/-valued cocycle over �t in the sense of Definition 6.5.

Given such an E-valued cocycle C over �t , we can construct an E�-valued cocycle C � over �t as
follow, where E� is the dual vector bundle. Let Oh W E

�
! E� denote the conjugate isomorphism induced

by the Hermitian metric, that is,
Oh.�/.�/ WD h�; �i ; �; � 2 E:

Then define C � by
C �.x; t/ WD Oh ı C.x; t/ ı Oh�1 W E�x ! E��tx :

Similarly given two bundles E and E 0 over N , with corresponding cocycles C and C 0 over �t , we can
define an E ˚E 0-valued cocycle C ˚ C 0 over �t in the obvious way.

Finally, we have the analogue of the periodic orbit obstruction condition from Definition 6.7. Namely,
an E-valued cocycle C over �t satisfies the periodic orbit obstruction condition if whenever �T x D x we
have

C.x; T / D Id W Ex ! Ex :

It is easy to see that if E is trivial, then C satisfies the periodic orbit obstruction condition if and only if
the associated U.n/-valued cocycle D constructed above satisfies the periodic orbit obstruction condition
in the sense of Definition 6.7.

Here is the first result we need on E-valued cocycles.

PROPOSITION 13.4. Let �t W N ! N be a transitive Anosov flow over a closed manifold N . Let
p W E ! N be a rank n Hermitian vector bundle such that E ˚ E� is a trivial vector bundle. Suppose
there exists a E-valued cocycle C over �t satisfying the periodic orbit obstruction condition. Then E is a
trivial vector bundle.

PROOF. Let ˆ W E ˚ E� ! N � C2n denote a unitary trivialization, and let D W N � R ! U.2n/

denote the cocycle over �t defined by

ˆ ı C ˚ C �.x; t/ ıˆ�1.x; a/ D .�tx;D.x; t/a/ 2 N � C2n:
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Then D satisfies the periodic orbit obstruction condition and hence by the Livsic Cocycle Regularity The-
orem 6.12, we deduce the existence of a smooth function u W N ! U.2n/ such that

D.x; t/ D u.�tx/u.x/
�1 for all .x; t/ 2 N � R:

Now choose a point x0 2 N such that the orbit f�tx0 W t 2 Rg is dense in N (using transitivity of �t ). Let
U WD u.x0/ 2 U.2n/. Select a unitary basis fv1; : : : ; vng of Ex0 , and define points ai 2 C2n by

ˆ.x0; vi / D .x0; ai / 2 N � C2n:

Now define sections ei W N ! E ˚E� by

ei .x/ D ˆ
�1.x; u.x/U�1.ai //:

It is clear that fe1.x/; : : : ; en.x/g is a linearly independent set in .E˚E�/x for all x 2 N . In fact we claim
that ei .x/ 2 Ex for all i D 1; : : : ; n and x 2 N . This of course implies the triviality of E.

To see this observe that

ei .�tx0/ D ˆ�1.�tx0; u.�tx0/U
�1.ai //

D ˆ�1.�tx0;D.x0; t /.u.x0/U
�1.ai ///

D ˆ�1.�tx0;D.x0; t /ai /

D C ˚ C �.x0; t /..vi ; 0// 2 E�tx0 :

It follows that ei .x/ 2 Ex for a dense set of points in N . By continuity of ei , ei .x/ 2 Ex for all x 2 N .
�

13.3. Transparent connections

As before let .M; g/ be a closed Riemannian manifold and p W E ! M a Hermitian complex vector
bundle of rank n over M . Let r be a unitary connection on E. Before giving the key definition of this
chapter, let us quickly recall the concept of parallel transport. Let 
 W Œ0; T � ! M be a smooth curve in
M . Let D

dt
denote covariant derivation along 
.t/. Suppose � 2 E
.0/. Recall that standard ODE theory

ensures that there exists a unique section s� of E along 
 satisfying D
dt
s� � 0 and s�.0/ D � 2 E
.0/. This

defines a map P
 .t/ W E
.0/ ! E
.t/ by

P
 .t/.�/ D s�.t/:

It is easy to see that P
 .t/ is a linear unitary isomorphism. We call the family P
 of isomorphisms the
parallel transport along 
 .

Here then is the key definition.

DEFINITION 13.5. Let .M; g/ be a closed Riemannian manifold and p W E !M a Hermitian complex
vector bundle of rank n over M . Let r be a unitary connection on E. We say that r is transparent if for
every closed geodesic 
 W Œ0; T �!M we have

P
 .T / D Id W E
.0/ ! E
.0/:

EXAMPLE 13.6. Here are some examples of transparent connections.
(1) Here is the simplest possible example. Let E be the trivial vector bundle M � Cn, and let r

denote the trivial connection. Then r is certainly transparent.
(2) Suppose M has dimension 2. Then M admits the structure of a closed Riemann surface. Let

K be the canonical line bundle of M , which in this case is simply the holomorphic cotangent
bundle, K D T �M 1;0. Let rlc denote the unitary connection induced on E by the Levi-Civita
connection on M . Then rlc is evidently transparent.

(3) Generalizing this, let Ks denote the sth tensor product of K for s 2 Z, where K0 is understood
to be the trivial bundle. Let rlcs denote the induced connection on Ks . Then rlcs is a transparent
connection on Ks .

(4) Going even further, given an n-tuple of integers S D .s1; : : : ; sn/, let

ES WD K
s1 ˚ � � � ˚Ksn

and let
r
lc
S WD r

lc
s1
˚ � � � ˚ r

lc
sn

denote the induced connection on ES . Then rlcS is a transparent connection on ES .
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(5) Recall that complex vector bundles E over surfaces are classified (topologically) by their first
Chern class c1.E/ (see for instance [GH78, p140]) . The first Chern class of the canonical line
bundle K is 2g � 2, where g is the genus of the surface M , and the first Chern class of Ks is
.2g � 2/s, and the first Chern class of ES is .2g � 2/.s1 C � � � C sn/. Suppose now E is any
Hermitian bundle over M such that 2g � 2 divides c1.E/. Then we have c1.E/ D c1.ES / for
some S , and hence there exists a unitary isomorphism‰ W E ! ES . Then‰�rlcS is a transparent
connection on E.

Thus for surfaces, we have shown that if a Hermitian bundleE has first Chern class dividing 2g�2 (with
g the genus of the surface) then E admits a transparent connection. In fact, this is a necessary condition:

PROPOSITION 13.7. Let .M; g/ be a closed Riemannian surface of genus g whose geodesic flow is
Anosov, and let p W E ! M be a Hermitian vector bundle over M admitting a transparent connection r.
Then 2g � 2 divides c1.E/.

PROOF. This is a simple application of the Gysin sequence of the unit circle bundle � W SM ! M

from Proposition 8.8 together with Proposition 13.4. Indeed, since E ˚ E� is trivial as c1.E ˚ E�/ D
c1.E/ � c1.E/ D 0, Proposition 13.4 implies that ��E is trivial, and since c1.��E/ D ��c1.E/, we
conclude ��c1.E/ D 0. Then the Gysin sequence

0! H 1.M;Z/
��

! H 1.SM;Z/! H 0.M;Z/
�2�2g
�! H 2.M;Z/

��

! H 2.SM;Z/! : : : :

shows that ��c1.E/ D 0 if and only if c1.E/ is in the image of the map H 0.M;Z/! H 2.M;Z/ given by
cup product with the Euler class of SM . Equivalently, this happens if and only if 2�2g divides c1.E/. �

The situation is simpler in three dimensions, as the following exercise shows.

EXERCISE 13.8. Suppose .M; g/ is a closed 3-manifold whose geodesic flow is Anosov, and p W E !
M be a Hermitian vector bundle over M admitting a transparent connection r. Prove that E is trivial.

Let us suppose now thatE0 DM �Cn is the trivial vector bundle over the closed Riemannian manifold
.M; g/. Let �t W SM ! SM denote the geodesic flow, and let r denote a unitary connection on E0. Then
r defines a cocycle over �t in a natural way. Namely, in this case using Exercise 13.2 we can write
r D d C A where A W TM ! u.n/ is a smooth function that is linear in v 2 TxM for all x 2 M . Now
define C W SM � R! U.n/ by the ODE

d

dt
C.x; v; t/ WD �A.�t .x; v//C.x; v; t/; C.x; v; 0/ D Id:

Observe that r is a transparent connection if and only if C.x; v; T / D Id whenever �T .x; v/ D .x; v/.

We will say that the cocycle C is cohomologically trivial if there exists a smooth function u W SM !
U.n/ such that

(13.3.1) C.x; v; t/ D u.�t .x; v//u.x; v/
�1:

Clearly ifC is cohomologically trivial then the connectionr is transparent. Conversely, when �t is Anosov,
we have the following theorem.

THEOREM 13.9. If �t is Anosov then r is transparent if and only if C is cohomologically trivial.

PROOF. This is an application of the “full” Livsic Periodic Data Theorems from Chapter 6. Indeed, if
�t is Anosov and r is transparent then Theorem 6.8 gives the existence of a Hölder continuous function
v W SM ! U.n/ satisfying (13.3.1), and then Theorem 6.12 allows us to upgrade v to a smooth function u
satisfying (13.3.1). The proof is complete. �

13.4. The space T of transparent connections

Let us introduce the following notation. Let p W E ! M be a Hermitian vector bundle, and as before
let C D C.E/ denote the space of connections modulo gauge equivalence. Consider the space T � C of
transparent connections modulo gauge equivalence. The main goal of this chapter is to obtain some kind of
measure as to the size of T, at least in the case where M is a closed surface with Anosov geodesic flow.

For the case of line bundles, T is rather small. Indeed, we have the following result:
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THEOREM 13.10. Let .M; g/ be a closed Riemannian surface with Anosov geodesic flow, and let
p W E ! M be a Hermitian line bundle over M . Then any two transparent connections on E are gauge
equivalent, that is, T.E/ consists of at most one point.

PROOF. Let r1 and r2 be two transparent connections on E. We may write r2 D r1 C A, where
A 2 �1.M; adE/. Since E is a line bundle, we may write A D i� , where � is a real valued 1-form on M .

EXERCISE 13.11. Prove that for every closed geodesic 
 on M ,Z



� 2 2�Z:

Now let us define an S1-valued cocycle C over �t by

C.x; v; t/ WD ei
R t
0 �. P
.x;v/.s//ds;

where 
.x;v/ is the unique geodesic adapted to .x; v/. Then clearly �T .x; v/ D .x; v/ implies C.x; v; T / D
1, and hence by Theorem 6.12 there exists a smooth function u W SM ! S1 such that C.x; v; t/ D
u.�t .x; v//u.x; v/

�1. Differentiating this relation and setting t D 0, we obtain

(13.4.1) i�x.v/u.x; v/ D d.x;v/u.X.x; v//;

where X is the infinitesimal generator of �t . Now consider the closed 1-form ' WD du
iu
2 �1.SM/. Since

M is necessarily not the 2-torus (see Corollary 9.5), �� W H 1.M;R/ ! H 1.SM;R/ is an isomorphism
(see Corollary 8.10), and hence there exists a closed 1-form ! on M and a smooth function h on M such
that

(13.4.2) ' D ��! C dh:

Applying X to both sides of (13.4.2) and using (13.4.1) we get

�x.v/ D !x.v/C d.x;v/h.X.x; v//:

This holds for all .x; v/ 2 SM , and hence

I Œ� � !� D 0;

where I is the X-ray transform. Then by Theorem 7.15, this implies that ��! is exact, and so in particular,
� is closed. Then since

R


� 2 2�Z for all closed geodesics 
 , we must have

h
�
2�

i
2 H 1.M;Z/, and so we

may write

� D
dg

ig

for some smooth function g WM ! S1.
But this is precisely what we needed for r1 and r2 to be gauge equivalent; namely r2 D r1 C A

implies

(13.4.3) r
2
D r

1
C g�1dg:

Explicitly, if ri jU˛ D d C Ai˛ for Ai˛ 2 �
1.U˛; adE/, and gjU˛ D g˛ , where gˇ D  ˇ˛g˛ , (13.4.3)

implies that
A2˛ D A

1
˛ C g

�1
˛ dg˛:

But then

r
2
jU˛ D d C A2˛

D d C .g�1˛ dg˛ C A˛/

D d C .g�1˛ dg˛ C g
�1
˛ A˛g˛/;

where the last line follows as
g�1˛ A1˛g˛ D A

1
˛;

since GL.1;C/ is commutative. Thus r2 D g�r1 as required. �
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In order to cope with bundles of rank greater than one, considerable more work is required. For the
remainder of this section, we take .M; g/ to be a closed Riemannian surface, p W E ! M is a Hermitian
complex vector bundle of rank n, and r a unitary connection (which will often be taken to be transparent).
If � W SM ! M denotes the footpoint map, we have an induced connection ��r on the pullback bundle
��E, and then another induced connection D WD .��r/End on End��E.

The bundle End��E inherits an L2 inner product from the Hermitian metric from E as follows. To
begin with, pull h�; �i back via the second projection N� W ��E ! E to obtain a Hermitian metric (also
denoted by) h�; �i on ��E. We can use this to define the adjoint u� of an element u 2 End��E; namely by

hu.�/; �i D h�; u�.�/i ;

and this defines a Hermitian metric .u;w/ WD tr.uw�/ on End��E. This metric is compatible with D:

(13.4.4) Y.u;w/ D .DY u;w/C .u;DYw/

for a vector field Y on SM and sections u;w 2 �0.SM;End��E/.
Finally we define the desired L2-inner product h�; �iL2 on sections u;w of the bundle End��E by

hu;wiL2 WD

Z
SM

tr.uw�/d�;

where � denotes the Liouville measure.
We have Z

SM

X.tr.uw�//d� D
Z
SM

H.tr.uw�//d� D
Z
SM

V.tr.uw�//d� D 0

by Lemma 9.2 and together with (13.4.4) we have the following lemma.

LEMMA 13.12. Recall the framing fX;H; V g of SM . The operators �iDX ;�iDH and �iDV W
�0.SM;End��E/! �0.SM;End��E/ are self-adjoint with respect to h�; �iL2 .

REMARK 13.13. Observe that the operator DV is in fact independent of r, for if r 0 is another con-
nection and we write r 0 D r C A, then D0 D D C Œ��A; �� and D0V D DV since ��A.V / D 0.

The lemma above tells us almost immediately the following,

PROPOSITION 13.14. There exists an orthogonal decomposition

L2.SM;End��E/ D
M
m2Z

Hm;

such that �iDV D mId on Hm.

PROOF. Let us first consider the special case where both E and SM are trivial, and r is the trivial
connection. Thus SM D M � S1 and E D M � Cn, and hence ��E D M � S1 � Cn. In this case
u 2 �0.SM;End��E/ is simply a map u WM � S1 ! GL.n;C/ and DV u D V.u/. Fix x 2M . Then if
ux W S

1 ! GL.n;C/ denotes the map ux.�/ WD u.x; �/ then we have

V.u/ D
@

@�
ux.�/:

The statement then reduces to the assertion that smooth functions on the circle admit a Fourier expansion;
that is, feik� W k 2 Zg forms an orthonormal Hilbert basis of L2.S1;C/.

Now we proceed to the general case. TriangulateM in such a way that both E and SM are trivial over
each face Mr of the triangulation. Since

L2.SM;End��E/ D
M
r

L2.SMr ;End��E/;

the result then follows from the special case proved above. �

The next step is to introduce the following operators, following Guillemin and Kazhdan in [GK80].

DEFINITION 13.15. Define operators �C; �� W �0.SM;End��E/! �0.SM;End��E/ by

�C WD
DX � iDH

2
;

�� WD
DX C iDH

2
:
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The following easy lemma describes the commutation relations between �˙. In what follows, ? denotes the
Hodge star operator of the metric, and K denotes the Gaussian curvature of M .

LEMMA 13.16. We have
Œ�iDV ; �C� D �C;

Œ�iDV ; ��� D ���;

Œ�C; ��� D
i

2
.KDV C Œ?Fr ; ��/ :

PROOF. Firstly, since V is vertical, for any vector field U we have FD .V; U / D 0. Indeed,

FD.V; U / D
�
��Fr.V; U /; �

�
D ŒFr.d�.V /; d�.U //; ��

D 0;

since d�.V / D 0. Thus using

FD .V; U / D DVDU �DUDV �DŒV;U �;

and taking U D X , we have
ŒDV ;DX � D DŒV;X� D DH :

Taking U D H we obtain ŒDV ;DH � D �DX . The first two equations are then immediate. To prove the
third relation we start from the observation that

2 Œ�C; ��� D i ŒDX ;DH �

D FD.X;H/CKDV ;

and then use that fact that for any .x; v/ 2 SM ,

FD.X;H/.x; v/ D
�
��Fr.X;H/.x; v/; �

�
D ŒFr.d�.X/.x; v/; d�.H/.x; v/; ��

D ŒFr.v; iv/; �� ;

which is equivalent to
FD.X;H/ D Œ?Fr ; �� :

From this the third relation easily follows. �

Set �m WD Hm \�0.SM;End��E/. Then the first two relations above imply that �C maps �m into
�mC1, and �� maps �m into �m�1. Using Lemma 13.12 we see that ��C D ��� and ��� D ��C.

Now suppose r0 is another unitary connection on E. As before write r0 D r C A for A 2
�1.M; adE/. There are two ways we may think ofA as an element of��.SM; ad��E/. Firstly, ifU �M
is a trivializing neighborhood for E, and fe1; : : : ; eng a local frame on E with coframe

˚
"1; : : : ; "n

	
of E�,

then we can write AjU as aij ei ˝ "
j for some 1-forms aij 2 �

1
C.U /. Simply regarding the aij as lying in

C1.SUM;C/, we may think of aij ei ˝ "
j as defining an element of �0.SM; ad��E/, which we shall

continue to write as A.
We can also form

��A D .��aij /ei ˝ "
j
2 �1.SM; ad��E/:

These are not the same thing! They are related by .��A/.X/ D A: indeed

.��A/.X/ D .��aij /.X/ei ˝ "
j

D aij .d�.X//ei ˝ "
j

D A:

Similarly .��A/.H/ D � ? A.
Moreover we also have

DVA.x; v/ D A.x; iv/ D .� ? A/.x; v/;

and thus DVA D .��A/.H/. We also have D2
VA D �A.

Let us decompose
A D A�1 C A1
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where

A�1 WD
A � iDVA

2
2 �1;

and

A1 WD
AC iDVA

2
2 ��1:

Then finally set
�C WD �C C A1; �� WD �� C A�1:

EXERCISE 13.17. Prove that �C W �m ! �mC1, �� W �m ! �m�1 and ��C D ���, ��� D ��C.

The following relations however are rather less immediate.

LEMMA 13.18. It holds that
(1) i

2
? .rAC A ^ A/ D �C.A�1/ � ��.A1/C A1A�1 � A�1A1,

(2) Given u 2 �0.SM;End��E/ we have

Œ�C; ��� u D
i

2
.KDV uC .?Fr0/u � u.?Fr// ;

(3) If k�k stands for theL2 norm on�0.SM;End��E/ induced by h�; �iL2 , then for u 2 �0.SM;End��E/
we have

k�Cuk
2
D k��uk

2
C
i

2

˚
hKDV u; uiL2 C h.?Fr0/u; uiL2 � hu.?Fr/; uiL2

	
:

PROOF. From the definitions we have

A1A�1 � A�1A1 D
i

2
.A �DVA �DVA � A/

and

�C.A�1/ � ��.A1/ D
i

2
.DXDVA �DHA/ :

Next,

?.A ^ A/ D A �DVA �DVA � A;

and then

?.rA/ D D.��A/.X;H/

D DX .�
�A.H// �DH .�

�A.X// � .��A/.ŒX;H�/

D DXDVA �DHA � 0:

From this 1 follows.
To prove 2, first compute

Œ�C; ��� u D Œ�C; ��� uC f�C.A�1/ � ��.A1/C A1A�1 � A�1A1gu

D
i

2
fKDV uC Œ?Fr ; u�C ?.rAC A ^ A/ug

by 1 and Lemma 13.16. Then since

Fr0 D Fr CrAC A ^ A;

2 follows.
Finally to see 3, using the fact that ��C D ��� and ��� D ��C, we have

k�Cuk
2
D h�Cu;�CuiL2

D
˝
��C�Cu; u

˛
L2

D h����Cu; uiL2

D h��C��u; uiL2 C hŒ�C; ��� u; uiL2

D h�����u; uiL2 C hŒ�C; ��� u; uiL2

D k��uk
2
C hŒ�C; ��� u; uiL2 ;

and the result is then immediate from 2. �
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13.5. A distance between transparent connections

In this section we introduce a metric d onto the space T D T.E/. Here we take .M; g/ to be a closed
Riemannian surface with negative curvature, and p W E ! M a Hermitian complex vector bundle of
rank n. To begin with, suppose r1 and r2 are two unitary connections on E, with r2 D r1 C A for
A 2 �1.M; adE/. The induced connections ��r1 and ��r2 are related by

��r2 D ��r1 C ��A:

Thus the induced connections D1 and D2 on End��E are related by

D2
D D1

C
�
��A; �

�
:

The connections ri induce ��E-valued cocycles Ci over �t by

Ci .x; v; t/ W .�
�E/.x;v/ ! .��E/�t .x;v/; � 7! P i
.x;v/.t/.�/;

where P i
.x;v/ is the parallel transport defined by ri along the geodesic 
.x;v/. If r1 and r2 both happen to
be transparent, then the Ci satisfy the periodic orbit obstruction condition.

PROPOSITION 13.19. Suppose both r1 and r2 are transparent. Then there exists a smooth function
u 2 �0.SM;Aut��E/ such that

(13.5.1) C2.x; v; t/ D u.�t .x; v// ı C1.x; v; t/ ı u.x; v/
�1:

PROOF. Using Proposition 13.4 as before we deduce that ��E is trivial. We thus obtain U.n/-valued
cocycles Di W SM � R! U.n/ defined by

ˆ ı Ci .x; v; t/.ˆ
�1.x; v; a// D .�t .x; v/;Di .x; v; t/a/; .x; v; a/ 2 SM � Cn:

where ˆ W ��E ! SM � Cn is a unitary trivialization. Then we can apply Theorem 6.12 to deduce the
existence of smooth functions ui W SM ! U.n/ such that

Di .x; v; t/ D ui .�t .x; v//ui .x; v/
�1 for all .x; v; t/ 2 SM � R:

Now define a bundle automorphism u by

u.x; v/ W .��E/.x;v/ ! .��E/.x;v/I

u.x; v/� WD ˆ�1
�
.x; v/; u2.x; v/u1.x; v/

�1.pr2 ıˆ.�//
�
;

where pr2 W SM � Cn ! Cn is the second projection. Unraveling the definitions, we have

u.�t .x; v// ı C1..x; v/; t/ ı u.x; v/
�1� D C2..x; v/; t/�;

which completes the proof. �

From this we can prove:

PROPOSITION 13.20. It holds that
D1
XuC Au D 0:

PROOF. Fix .x; v/ 2 SM and take � 2 .��E/.x;v/. Since the curve t 7! Ci .x; v; t/� is ��ri -parallel,
if s is the section along t 7! �t .x; v/ defined by

s.t/ D C2.x; v; t/�

then

.��r1/C2.x; v; t/�
ˇ̌
tD0

D .��r1/s.0/

D .��r2 � ��A/s.t/
ˇ̌
tD0

D 0 � .��A/s.0/

D �.��A/�:

Similarly
.��r1/u

�
�t .x; v/C1.x; v; t/.u.x; v/

�1�/
� ˇ̌
tD0
D D1u.u�1�/;

and hence we have shown that applying ��r1 to both sides of (13.5.1), setting t D 0 and evaluating on X
we obtain

�A� D D1
Xu.u

�1�/:

Using the fact that .x; v/ and � were arbitrary, the conclusion follows. �
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Given u 2 �0.SM;End��E/, we can write

u D
X
m2Z

um;

where
um D proj�m ı u 2 �m:

Let us say that u has degree N 2 N if um D 0 for all jmj > N , and N is minimal with this property. If no
such N exists, we say u has degree1.

The crucial fact we wish to prove is that if u solves

(13.5.2) D1
XuC Au D 0

then u necessarily has finite degree. More precisely, we have the following result.

THEOREM 13.21. Let u 2 �0.SM;End��E/ solve (13.5.2). Then u has finite degree.

In fact, we have the following explicit upper bound on the degree: if l 2 N is such that the Hermitian
operators

†C
l;x
W EndEx ! EndEx ; ˛ 7! �lK.x/˛ C .i ? Fr2.x// ˛ � ˛ .i ? Fr1.x//

and
†�l;x W EndEx ! EndEx ; ˛ 7! �lK.x/˛ � .i ? Fr2.x// ˛ C ˛ .i ? Fr1.x//

are positive definite for all x 2M then the degree N of u satisfies N < l .

PROOF. Since DX D �C C ��, (13.5.2) may be rewritten as

�C.u/C ��.u/ D 0:

Projecting onto �m-components we obtain

(13.5.3) �C.um�1/C ��.umC1/ D 0

for all m 2 Z. Since K < 0, there exists a positive integer l such that the Hermitian operators

u 7! �l KuC .i ? Fr2/u � u.i ? Fr1/;

u 7! �l Ku � .i ? Fr2/uC u.i ? Fr1/

are positive definite for all x 2M . Using Lemma 13.18.3, we can find a constant c > 0 such that

(13.5.4) k�C.um/k
2
� k��.um/k

2
C c kumk

2

for all m � l . There is also a constant d > 0 such that

(13.5.5) k��.um/k
2
� k�C.um/k

2
C d kumk

2

for all m � �l . Combining (13.8.2) and (13.5.4) we obtain

(13.5.6) k�C.umC1/k � k�C.um�1/k

for all m � l � 1. Similarly, it follows from (13.8.2) and (13.5.5) that

(13.5.7) k��.um�1/k � k��.umC1/k

for all m � �l C 1. Since the function u is smooth, �C.um/ must tend to zero in the L2-topology as
m ! 1. It follow from (13.5.6) that �C.um/ D 0 for m � l � 2. However, (13.5.4) implies that �C
is injective for m � l and thus um D 0 for m � l . Similarly, using (13.5.5) and (13.5.7) we deduce that
um D 0 for m � �l . This shows that u has finite degree N � l � 1. �

With these auxiliary results now complete, we can get on to stating and proving the first main result of
the section.

THEOREM 13.22. Let .M; g/ be a Riemannian surface of negative curvature and p W E ! M a
Hermitian vector bundle of rank n overM . Let T denote the space of transparent connections onE modulo
gauge equivalence. Given ˛; ˇ 2 T, choose representativesr1 2 ˛,r2 2 ˇ and define d.˛; ˇ/ D N where
N is the smallest degree of an element u 2 �0.SM;Aut��E/ such that

D1
XuC Au D 0;

where r2 D r1 C A, A 2 �1 .M; adE/ and D1 is the connection on End��E induced by r1.
Then d defines a metric on T.
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PROOF. First we check that d is well defined. Suppose !; � 2 GE . Write r1 D d C A1 and r2 D
d C A2, so A D A2 � A1.

Now we have
D1u D duC Œ��A1; u�;

and hence

D1
Xu D du.X/C ŒA1; u�

D du.X/C A1u � uA1:

By definition,
��r1 D d C ��1d� C ��1A1�I

!�r2 D d C !�1d! C !�1A2!:

Thus !�r2 � ��r1 D ˛, where

˛ D !�1d! C !�1A2! � �
�1d� � ��1A1�

D !�1A! C !�1r1! � ��1r1�:

Write D� for the connection .��.��r1//End on End��E. Then

D�
D d C

�
��.��1d� C ��1A1�/; �

�
;

and hence

D�
Xu D du.X/C �

�1d�ŒX�uC ��1A1.X/�u � u�
�1d�.X/ � u��1A1.X/�:

Thus

D�
X .!

�1u�/C ˛.!�1u�/ D d.!�1u�/.X/C ��1d�.X/!�1u�

C��1A1.X/�!
�1u� � !�1u���1d�.X/

�!�1u���1A1.X/� C !
�1A2.X/!!

�1u�

C!�1d!.X/!�1u� � ��1d�.X/!�1u�

���1A1.X/�!
�1u�:

Expanding d.!�1u�/.X/ we find that every term cancels and we are left with

D�
X .!

�1u�/C ˛.!�1u�/ D !�1.D1
XuC Au/�:

Thus we have
D�
X .!

�1u�/C ˛.!�1u�/ D 0 , D1
XuC Au D 0:

The degree of u is equal to the degree of !�1u� since both ! and � are elements of �1.M;AutE/, and
hence this shows that d.˛; ˇ/ is independent of the choice of transparent connections r1 and r2 in the
gauge equivalence class ˛ and ˇ respectively.

It thus remains to see that d is actually a metric. Suppose d.˛; ˇ/ D 0. This means that there exists
u 2 �0.SM;Aut��E/ solving

D1
XuC Au D 0 and D1

V u D 0:

But
D1
V u D du.V /C ŒA1.d�.V //; u� D V.u/;

and V.u/ D 0 implies that u D ! ı � for some ! 2 �0.M;Aut��E/. Let us write bri for the connection
.ri /End. We have

D1
Xu.x; v/ D .D1

X! ı �/.x; v/

D br1d�.X/.! ı �/.x; v/
D br1v!;

and so D1
XuC Au D 0 implies br1! C A! D 0. Sincebr2! D br1! C ŒA; !� ;

we have br2! D �!A;
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that is,

�!.r2s/ � !.r1s/ D �!A.s/

D br2!.s/
D r

2.!.s// � !.r2s/;

that is,
r
1.s/ D !�1.r2.!.s///;

or r1 D !�r2. Thus d.˛; ˇ/ D 0 implies ˛ D ˇ.
To see d.˛; ˇ/ D d.ˇ; ˛/, we claim that if u solves D1

Xu C Au D 0 then the adjoint u� solves
D2
Xu
� � Au� D 0. Since clearly u has the same degree as u�, this would prove symmetricity. To see this

note that D1
XuC Au D 0 implies

D2
Xu
�
� Au� D D1

Xu
�
� u�A D .D1

XuC Au/
�:

Finally take a class 
 2 T and r3 2 
 . Write r3 D r1 C B and suppose D1
Xu C Au D 0 and

D1
Xw C Bw D 0 for u;w 2 �0.SM;End��E/. Using r3 D r2 C .B � A/ and D2 D D1 C Œ��A; ��

and also that D1
Xu
� D u�A we compute that

D2
X .wu

�/ D .D2
Xw/u

�
C w.D2

Xu
�/

D .D1
Xw C Aw � wA/u

�
C w.D1

Xu
�
C Au� � u�A/

D .A � B/wu�;

and since deg.wu�/ � deg.w/ C deg.u/ we see that d.
; ˇ/ � d.
; ˛/ C d.˛; ˇ/. This completes the
proof. �

The next corollary states that in the trivial bundle the trivial connection is locally unique among trans-
parent connections.

COROLLARY 13.23. Let .M; g/ be a closed surface with curvature K < 0. Let E D M � Cn be the
trivial bundle over M , and suppose r is a transparent connection on E. Suppose the Hermitian matrix

˙i ? Fr.x/ �K.x/Id

is positive definite for all x 2M . Then r is gauge equivalent to the trivial connection d .

PROOF. By Theorem 13.21, if ˛ denotes the gauge equivalence class of r and ˛0 2 T denotes the
equivalence class of d then d.˛; ˛0/ D 0. Thus r is gauge equivalent to d , since d is a metric. �

13.6. Classifying transparent connections on trivial bundles

In this section we will explain and sketch the proof of [Pat09a, Theorem 3.1] (see also [Pat09b,
Theorem B]), which gives an explicit description of all the transparent connections over the trivial vector
bundle for .M; g/ a closed negatively curved surface. We work with E0 the trivial bundle E0 D M � Cn

only, which has the advantage of simplifying the notation somewhat, as well as the statements of the results.
The main result in this section is Corollary 13.29, which is derived as an immediate consequence of the more
general Theorem 13.28 below. It is still possible to prove a statement like Corollary 13.29 for an arbitrary
Hermitian vector bundle E (modulo an assumption on c1.E/, c.f. Proposition 13.7). For this we refer
the reader to [Pat09b, Theorem B]. As before, we assume throughout that .M; g/ is a closed Riemannian
surface, and fX;H; V g is the canonical framing of SM . Define

A WD
˚
A W SM ! u.n/ W V 2.A/ D �A

	
:

EXERCISE 13.24. Show that there is a bijective correspondence between A and the set of all unitary
connections on E0.

Recall that for each unitary connection r on E0 there is a natural cocycle C over �t . Let us now say
a connection r on E0 is cohomologically trivial if the associated cocycle C is cohomologically trivial.
Then a cohomologically trivial connection is always transparent, and by Theorem 13.9 if �t is Anosov (e.g.
.M; g/ has negative curvature) then r is cohomologically trivial if and only if r is transparent.

Let A0 � A denote the set of functions A W SM ! u.n/ that correspond to cohomologically trivial
connections.
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EXERCISE 13.25. Show that A 2 A0 if and only if there exists a smooth function u W SM ! U.n/

such that X.u/C Au D 0 and V 2.A/ D �A.

We wish to study cohomologically trivial connections up to gauge equivalence. To do this, we first
introduce a particular nonlinear PDE for functions f W SM ! u.n/:

(13.6.1) H.f /C VX.f / D ŒX.f /; f �:

Let H � C1.SM; u.n// denote the set of solutions to (13.6.1). Note that if u 2 U.n/ and f 2 H then
u�1f u 2 H. Given two solutions f; h of (13.6.1), we say f and h are V -cohomologous if there exists
u W SM ! U.n/ such that

f D u�1V.u/C u�1hu:

Let H0 � H denote the set of solutions that are V -cohomologous to zero, that is

H0 WD
˚
f 2 H W there exists u W SM ! U.n/ such that f D u�1V.u/

	
:

Finally given any vector field Y on SM , let GY � C1.SM;U.n// denote the set of all functions
u W SM ! U.n/ such that Y.u/ D 0. Note that

GV D GE0

is the gauge group of the trivial bundle M � Cn.

LEMMA 13.26. The set GX acts on H0 via

.a; f / 2 GX �H0 7! a � f WD a�1faC a�1V.a/ 2 H0:

EXERCISE 13.27. Prove the lemma.

Here is the main theorem of this section.

THEOREM 13.28. There is a bijective correspondence between A0=GV and H0=GX .

COROLLARY 13.29. Suppose .M; g/ has negative curvature. Then there is a bijective correspondence
between the set T of transparent connections on E0 and H0=U.n/.

EXERCISE 13.30. Assuming Theorem 13.28, prove the Corollary 13.29 (hint: what is GX when �t is
transitive?).

PROOF. (of Theorem 13.28)
Let us start with a cohomologically trivial connection r onE0. This is the same as an elementA 2 A0,

and the fact that A lies in A0 tells us that there exists u 2 C1.SM;U.n// with X.u/C Au D 0. Set

f WD u�1V.u/:

Then we claim that f satisfies the PDE (13.6.1). We argue as follows. Using u we may define a connection
Nr on SM gauge equivalent to ��r by setting

B WD u�1duC u�1��Au

and Nr D d CB . Note that f D B.V /. Since F��r.�; V / D 0, we must also have F Nr.�; V / D 0. Using the
fact that F Nr D dB C B ^ B and the fact that B.X/ D 0 we compute

FB.X; V / D dB.X; V /C ŒB.X/; B.V /� D dB.X; V /:

But
dB.X; V / D XB.V / � VB.X/ � B.ŒX; V �/ D XB.V /C B.H/;

and hence

(13.6.2) B.H/ D �XB.V /:

We also compute
FB.H; V / D dB.H; V /C ŒB.H/; B.V /�;

and combine this with

dB.H; V / D HB.V / � VB.H/ � B.ŒH; V �/ D HB.V / � VB.H/

to obtain

(13.6.3) HB.V / � VB.H/C ŒB.H/; B.V /� D 0:
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Combining (13.6.2) and (13.6.3) we see that f satisfies (13.6.1), as claimed. To see that f is unique up to
an element of GX , note that if f 0 D v�1V.v/ is another solution then X.u�1v/ D 0, i.e. u�1v 2 GX .

This proves one direction. Now suppose we are given a solution f of (13.6.1) such that there is
u W SM ! U.n/ with with f D u�1V.u/. Set

A WD �X.u/u�1:

We claim that A 2 A0, that is, V 2.A/ D �A. Indeed, first compute that

V.A/ D �V.X.u/u�1/

D �VX.u/u�1 �X.u/V.u�1/

D �XV.u/u�1 �H.u/u�1 �X.u/V.u�1/

D �X.uf /u�1 �H.u/u�1 �X.u/f u�1

D �uX.f /u�1 �H.u/u�1:

Now apply V again and use the fact that f satisfies (13.6.1) to verify V 2.A/ D �A.

EXERCISE 13.31. Complete the details here.

To see that A is unique up to an element of GV D GE , observe that if we have another element v such
that f D v�1V.v/, this gives rise to a different connection r 0 D d CA0, where A0 D �X.v/v�1, and that
r is gauge equivalent to r 0. Indeed, if w WD uv�1 then

A0 D w�1dw C w�1Aw:

Finally, it is clear that our two correspondences are mutually inverse; this completes the proof. �

13.7. The Bäcklund transformation

For the remainder of this chapter we restrict to the case in which the structure group is SU.2/. Suppose
there is a smooth map b W SM ! SU.2/ such that f WD b�1V.b/ solves the PDE (13.6.1). Then, by
Theorem 13.28, A WD �X.b/b�1 defines a cohomologically trivial connection onM and �?A D V.A/ D
�bX.f /b�1 �H.b/b�1.

LEMMA 13.32. Let g W M ! su.2/ be a smooth map with detg D 1 (i.e. g2 D �Id). Then there
exists a W SM ! SU.2/ such that g D a�1V.a/.

PROOF. Let L.x/ (resp. U.x/) be the eigenspace corresponding to the eigenvalue i (resp. �i ) of
g.x/. We have an orthogonal decomposition C2 D L.x/ ˚ U.x/ for every x 2 M . Consider sections
˛ 2 �1;0.M;C/ and ˇ 2 �1;0.M;Hom.L; U // D �1;0.M;L�U/ such that j˛j2 C jˇj2 D 1. Such a pair
of sections always exists; for example, we can choose a section Q̌ with a finite number of isolated zeros and
then choose Q̨ such that it does not vanish on the zeros of Q̌. Then we set ˛ WD Q̨=.j Q̨ j2 C j Q̌j2/1=2 and
ˇ WD Q̌=.j Q̨ j2 C j Q̌j2/1=2. Note that N̨ 2 �0;1.M;C/ and ˇ� 2 �0;1.M;Hom.U;L// D �0;1.M;U �L/.
Using the orthogonal decomposition we define a W SM ! SU.2/ by

a.x; v/ D

�
˛.x; v/ ˇ�.x; v/

�ˇ.x; v/ N̨ .x; v/

�
:

Clearly a D a�1 C a1, where

a1 D

�
˛ 0

�ˇ 0

�
and

a�1 D

�
0 ˇ�

0 N̨

�
:

It is straightforward to check that ag D V.a/.
�

Now let u WD ab W SM ! SU.2/ and let F WD .ab/�1V.ab/ D b�1g b C f .

Question. When does F satisfy (13.6.1)?

If it does, then it defines (via Theorem 13.28) a new cohomologically trivial connection rF D dCAF
where AF is given by

AF D �X.ab/.ab/
�1
D �X.a/a�1 C aAa�1;
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and where A is the cohomologically trivial connection associated to f .
Write r D d C A.

LEMMA 13.33. F satisfies (13.6.1) if and only if

(13.7.1) � ? rg D .rg/g:

PROOF. Starting with F D b�1gb C f and using that A D �X.b/b�1 D bX.b�1/ we compute

X.F / D b�1.ŒA; g�CX.g//b CX.f /:

Similarly, using H.b/ D .?A/b � bX.f / we find

H.F / D b�1.Œ� ? A; g�CH.g//b C ŒX.f /; b�1g b�CH.f /:

Now we compute VX.F /; here we use that V.g/ D 0. We obtain

VX.F / D Œb�1.ŒA; g�CX.g//b; f �C b�1.Œ� ? A; g�C VX.g//b C VX.f /:

The last term we need for (13.6.1) is:

ŒX.F /; F � D b�1ŒŒA; g�CX.g/; g�b C Œb�1.ŒA; g�CX.g//b; f �C ŒX.f /; b�1g b�C ŒX.f /; f �:

Since f satisfies (13.6.1) we see that F satisfies (13.6.1) if and only if

H.g/C VX.g/ � 2Œ?A; g� D ŒŒA; g�CX.g/; g�:

Since g depends only on the base point and g2 D �Id we can rewrite this as

�2 ? .dg C ŒA; g�/ D Œdg C ŒA; g�; g� D 2.dg C ŒA; g�/ g:

Thus F satisfies (13.6.1) if and only if
� ? rg D .rg/g

as claimed.
�

We will now rephrase equation (13.7.1) in terms of holomorphic line bundles. Let us write M2.C/ for
the set of all 2 � 2 complex matrices.Recall that the connection A induces a holomorphic structure on the
trivial bundle M � C2 and on the endomorphism bundle M �M2.C/. We have an operator

N@A WD .r � i ? r/=2 D N@C ŒA�1; ��

acting on sections f WM ! M2.C/. Set � WD .Id�ig/=2 and �? D .IdCig/=2 so that �C�? D Id. Let
L.x/ be as above the eigenspace corresponding to the eigenvalue i of g.x/. Note that � is the Hermitian
orthogonal projection over L.x/ D Im .�.x//.

LEMMA 13.34. Let g WM ! su.2/ be a smooth map with det g D 1. The following are equivalent:
(1) � ? rg D .rg/g;
(2) L is a N@A-holomorphic line bundle;
(3) �? N@A� D 0.

PROOF. Suppose that (1) holds. Apply ? to obtain: rg D .?rg/g. Thus rg � i ? rg D i.rg � i ?
rg/g. In other words N@Ag D i.N@Ag/g D �ig.N@Ag/ (recall that g2 D �Id). Since � D .Id � ig/=2, then
N@Ag D �ig.N@Ag/ is equivalent to �? N@A� D 0 which is (3).

Using the condition �2 D � , we see that �? N@A� D 0 is equivalent to .N@A�/� D 0. The line bundle
L is holomorphic if and only if given a local section � of L, then N@A� 2 L. Using that �� D � we see that
N@A� 2 L if and only if .N@A�/� D 0. Clearly, this happens if and only if .N@A�/� D 0 and thus (2) holds if
and only if (3) holds.

�

The next theorem follows directly from Lemmas 13.33 and 13.34 and Theorem 13.28.

THEOREM 13.35. Let A be a cohomologically trivial connection and let L be a holomorphic line
subbundle of the trivial bundle M � C2 with respect to the complex structure induced by A. Define a
map g W M ! su.2/ with detg D 1 by declaring L to be its eigenspace with eigenvalue i . Consider
a W SM ! SU.2/ with g D a�1V.a/ as given by Lemma 13.32. Then

AF WD �X.a/a
�1
C aAa�1

defines a cohomologically trivial connection.
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REMARK 13.36. If the geodesic flow is transitive, two solutions u;w of X.u/C Au D 0 are related
by u D wg where g is a constant unitary matrix, because X.w�1u/ D 0. Thus the degrees of u and w are
the same. We can then talk about the “degree” of a cohomologically trivial connection as the degree of any
solution of X.u/C Au D 0.

If we start, for example, with the trivial connection A D 0 (which is obviously transparent), then a map
g W M ! su.2/ with detg D 1 and � ? dg D .dg/g can be identified with a meromorphic function. The
point of Theorem 13.35 is to show how to increase the degree of a cohomologically trivial connection by
one via A 7! AF . We shall call this transformation a Bäcklund transformation. In the next section we will
show how we can also run this procedure “backwards” to decrease the degree of a transparent connection.
We will thus show that any cohomologically trivial connection such that the associated u has a finite Fourier
series can be built up by successive applications of the transformation described in Theorem 13.35, provided
that the geodesic flow is transitive.

13.8. Lowering degree using Bäcklund transformations

Let A be a transparent connection with A D �X.b/b�1 and f D b�1V.b/, where b W SM ! SU.2/,
as in the previous section.

We first make some remarks concerning the SU.2/-structure. Let j W C2 ! C2 be the antilinear map
given by

j.z1; z2/ D .�Nz2; Nz1/:

If we think of a matrix a 2 SU.2/ as a linear map a W C2 ! C2, then ja D aj. This implies that given
b W SM ! SU.2/ with b D

P
k2Z bk , then jbk D b�kj for all k 2 Z.

Assumption. Suppose b has a finite Fourier expansion, i.e., b D
PkDN
kD�N bk , where N � 1. By Theorem

13.21 we know that this holds if M has negative curvature.

Let us assume also that N is the degree of b and thus both bN and b�N D �jbNj are non-zero.
The unitary condition bb� D b�b D Id implies that bN b��N D b�

�N bN D 0. These relations imply
that the rank of b�N and bN is at most one and equals one on an open set, which, as we will see shortly,
must be all of M except for perhaps a finite number of points.

We will now use the operators �˙ and �˙ from Section 13.4 again. Consider isothermal coordinates
.x1; x2/ on M such that the metric can be written as ds2 D e2�.d.x1/2 C d.x2/2/ where � is a smooth
real-valued function of .x1; x2/ (see Chapter 4). This gives coordinates .x1; x2; �/ on SM where � is the
angle between a unit vector v and @=@x. In these coordinates, V D @=@� and the vector fields X andH are
given by (4.1.4) and (4.1.5). Consider u 2 �n and write it locally as u.x1;2 ; �/ D h.x1; x2/ein� . Using
these formulas a simple, but tedious calculation shows that

(13.8.1) ��.u/ D e
�.1Cn/� N@.hen�/ei.n�1/� ;

where N@ D 1
2

�
@
@x1
C i @

@x2

�
.

EXERCISE 13.37. Verify (13.8.1).

In order to write �� suppose that A.x1; x2; �/ D a.x1; x2/ cos � C b.x1; x2/ sin � . If we also write
A D Ax1dx

1CAx2dx
2, thenAx1 D ae� andAx2 D be�. LetA Nz WD 1

2
.Ax1CiAx2/. Using the definition

of A�1 we derive

A�1 D
1

2
.aC ib/e�i� D A Nzd Nz:

Putting this together with (13.8.1) we obtain

(13.8.2) ��.u/ D e
�.1Cn/�

�
N@.hen�/C A Nzhe

n�
�
ei.n�1/� :

Note that �n can be identified with the set of smooth sections of the bundle .M � M.C// ˝ K˝n

where K is the canonical line bundle. The identification takes u D hein� into hen�.dz/n (n � 0) and
u D he�in� 2 ��n into hen�.d Nz/n.
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Consider now a fixed vector � 2 C2 such that s.x; v/ WD b�N .x; v/� 2 C2 is not identically zero.
Clearly s can be seen as a section of .M �C2/˝K˝�N . We may write b�N in local isothermal coordinates
as b�N D he�iN� . We can thus write s locally as s D eN�h�.d Nz/N .

LEMMA 13.38. The local section e�2N�s is N@A-holomorphic.

PROOF. Using the operators �˙ we can write X.b/C Ab D 0 as

�C.bk�1/C ��.bkC1/ D 0

for all k. This gives �C.bN / D ��.b�N / D 0. But ��.b�N / D 0 is saying that e�2N�s is N@A-
holomorphic. Indeed, using (13.8.2), we see that ��.b�N / D 0 implies

N@.he�N�/C A Nzhe
�N�
D 0

which in turn implies
N@.e�N�h�/C A Nze

�N�h� D 0:

This equation says that e�2N�s D e�N�h�.d Nz/N is N@A-holomorphic.
�

The section s spans a line bundle L over M which by the previous lemma is N@A-holomorphic. The
section s may have zeros, but at a zero z0, the line bundle extends holomorphically. Indeed, in a neigh-
borhood of z0 we may write e�2N�.z/s.z/ D .z � z0/kw.z/, where w is a local holomorphic section with
w.z0/ ¤ 0. The section w spans a holomorphic line subbundle which coincides with the one spanned by
s off z0. Therefore L is a N@A-holomorphic line bundle that contains the image of b�N (and U D jL is an
anti-holomorphic line bundle that contains the image of bN ). We summarize this in a lemma:

LEMMA 13.39. The line bundle L determined by the image of b�N is N@A-holomorphic.

We now wish to use the line bundle L to construct an appropriate g W M ! su.2/ such that when we
run the Bäcklund transformation from the previous section we obtain a cohomologically trivial connection
of degree� N �1. But first we need the following lemma. Recall that a matrix-valued function f W SM !
Mn.C/ is said to be odd if f .x; v/ D �f .x;�v/ and even if f .x; v/ D f .x;�v/.

LEMMA 13.40. Assume that the geodesic flow is transitive and let b W SM ! SU.2/ solve X.b/ C
Ab D 0. Then b is either even or odd.

PROOF. Write b D bo C be where bo is odd and be is even. Since the operator .X CA/ maps even to
odd and odd to even, the equation X.b/C Ab D 0 decouples as

X.bo/C Abo D 0I

X.be/C Abe D 0:

A calculation using these equations shows that X.b�obo/ D X.b�e be/ D X.b�obe/ D 0. Since the geodesic
flow is transitive, these matrices are all constant. Moreover, since b�obe is odd it must be zero. On the other
hand jb D bj implies that jbo D boj and jbe D bej, which in turn implies that both bo and be cannot
have rank 1. Putting all this together, we see that either bo or be must vanish identically.

�

Suppose that the geodesic flow is transitive. By Lemma 13.40, b D b�NCdCbN , where d has degree
� N � 2. We now seek a W SM ! SU.2/ of degree one such that u WD ab has degree � N � 1. For this
we need a1bN D a�1b�N D 0. We take a map g W M ! su.2/ with detg D 1 such that its i eigenspace
is L and its �i eigenspace is U . By Lemmas 13.34 and 13.39, � ? rg D .rg/g where r D d C A. The
construction of a with ag D V.a/ from Lemma 13.32 is precisely such that the kernel of a�1 is L and the
kernel of a1 is U , so the needed relations to lower the degree hold.

Finally by Theorem 13.35, u gives rise to a cohomologically trivial connection of the form �X.u/u�1.
Combining this with Proposition 13.21 we have arrived at the final result of these notes, which is from
[Pat09a, Theorem 5.4].

THEOREM 13.41. Let M be a closed orientable surface of negative curvature. Then any transparent
SU.2/-connection can be obtained by successive applications of Bäcklund transformations as described in
Theorem 13.35.
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