1. A continuous function $u: \Omega \rightarrow \mathbb{R}$ on a domain $\Omega \subset \mathbb{C}$ has the property S if, for each $z_{o} \in \Omega$, there is a $\rho>0$ such that

$$
\int_{0}^{2 \pi} u\left(z_{o}+r e^{i \theta}\right) \frac{d \theta}{2 \pi} \geqslant u\left(z_{o}\right) \quad \text { for } 0 \leqslant r<\rho
$$

Prove that
(a) if u has property S and attains its maximum value then it is constant.
(b) u has the property S if, and only if, u is subharmonic.
2. Let $u: \Omega \rightarrow \mathbb{R}$ be a continuous subharmonic function on a domain $\Omega \subset \mathbb{C}$. Show that, for $r \geqslant 0$, the function $\int_{0}^{2 \pi} u\left(z_{o}+r e^{i \theta}\right) d \theta / 2 \pi$ is continuous and increasing.
Let $\phi: \mathbb{C} \rightarrow[0, \infty)$ be a smooth function with
$\phi(w)=\phi(|w|)$ for all $w \in \mathbb{C}$.
$\phi(w)=0$ for $|w|>1$.
$\int_{\mathbb{C}} \phi(w) d u \wedge d v=\int_{0}^{\infty} \phi(r) 2 \pi r d r=1$ where $w=u+i v$.
For $\varepsilon>0$ set $\phi_{\varepsilon}(w)=\varepsilon^{2} \phi(w / \varepsilon)$, and $\Omega_{\varepsilon}=\{z \in \Omega: \mathbb{D}(z, \varepsilon) \subset \Omega\}$. Define $u_{\varepsilon}: \Omega_{\varepsilon} \rightarrow \mathbb{R}$ by

$$
u_{\varepsilon}(z)=\int_{|w| \leqslant \varepsilon} u(z+w) \phi_{\varepsilon}(w) d u \wedge d v .
$$

Prove that
(a)

$$
\frac{\partial u_{\varepsilon}}{\partial z}(z)=\frac{\partial}{\partial z} \int_{\mathbb{C}} u(w) \phi_{\varepsilon}(w-z) d u \wedge d v=-\int_{\mathbb{C}} u(w) \frac{\partial \phi_{\varepsilon}}{\partial z}(w-z) d u \wedge d v
$$

(b) u_{ε} is a smooth function on Ω_{ε}.
(c) Each u_{ε} is subharmonic and $u_{\varepsilon} \rightarrow u$ locally uniformly as $\varepsilon \rightarrow 0$.

Thus each continuous subharmonic function is the locally uniform limit of smooth (and hence C^{2}) subharmonic functions.
3. Let $u: \mathbb{D} \rightarrow \mathbb{R}$ be continuous and subharmonic. Show that the least harmonic majorant of u is given by

$$
\lim _{r \rightarrow 1-} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) \frac{r^{2}-|z|^{2}}{\left|z-r e^{i \theta}\right|^{2}} \frac{d \theta}{2 \pi}=\sup _{r<1} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) \frac{r^{2}-|z|^{2}}{\left|z-r e^{i \theta}\right|^{2}} \frac{d \theta}{2 \pi}
$$

4. Prove that a relatively compact domain with piecewise smooth boundary is regular for the Dirichlet problem.
5. Show that there cannot be a barrier at an isolated boundary point.
6. Show that every relatively compact domain Ω in R is contained within another relatively compact domain Ω^{\prime} which is regular for the Dirichlet problem.
7. If g is the Green's function for R with pole at z_{o} and $f: S \rightarrow R$ is a conformal equivalence, then $g f$ is the Green's function on S with pole at $f^{-1}\left(z_{o}\right)$.
8. Find the Green's function on the unit disc with a pole at any specified point (and prove that it is the Green's function).
9. Let g be the Green's function on a domain $\Omega \subset \mathbb{C}$ with a pole at z_{o} and let f be a smooth function on Ω with compact support within Ω. Prove that

$$
\int_{\Omega} \triangle f(z) g(z) d \bar{z} \wedge d z=-4 \pi i g\left(z_{o}\right) .
$$

Hint: Stokes’ Theorem.
(This means that g defines a distribution with $\triangle g=-4 \pi i \delta_{z_{o}}$. In partial differential equations and applied mathematics this is often taken as the definition of the Green's function.)
10. Let K be a compact subset of the non-compact Riemann surface R. Prove that we can cover K by finitely many discs so that the union of the discs is a domain Ω which is regular for the Dirichlet problem. Let g be a Green's function for Ω. Show that, for suitable small $\varepsilon>0$, the set $\{z \in \Omega: g(z)>\varepsilon\}$ contains K and has a real analytic boundary.
Hence every Riemann surface has a compact exhaustion by sets with real analytic boundaries.
11. Show that, for any distinct points z_{o}, w in any Riemann surface R there is a harmonic function $f: R \backslash\left\{z_{o}, w\right\} \rightarrow \mathbb{R}$ which has logarithmic singularities at z_{o} and w with coefficients +1 and -1 respectively.
12. Let R be an elliptic Riemann surface and z_{o}, ζ distinct points of R. Show that the function $q\left(z_{o}, \cdot\right): R \backslash\left\{z_{o}, \zeta\right\} \rightarrow \mathbb{R}$ on the parabolic surface $R \backslash\{\zeta\}$ has a logarithmic singularity at ζ with coefficient -1 (and at z_{o} with coefficient +1).
13. Show that every Riemann surface is triangulable.

