1. A continuous function $u: \Omega \to \mathbb{R}$ on a domain $\Omega \subset \mathbb{C}$ has the property S if, for each $z_o \in \Omega$, there is a $\rho > 0$ such that

$$\int_0^{2\pi} u(z_o + re^{i\theta}) \frac{d\theta}{2\pi} \ge u(z_o) \quad \text{for } 0 \le r < \rho.$$

Prove that

- (a) if u has property S and attains its maximum value then it is constant.
- (b) u has the property S if, and only if, u is subharmonic.
- 2. Let $u: \Omega \to \mathbb{R}$ be a continuous subharmonic function on a domain $\Omega \subset \mathbb{C}$. Show that, for $r \ge 0$, the function $\int_0^{2\pi} u(z_o + re^{i\theta}) d\theta/2\pi$ is continuous and increasing.
 - Let $\phi : \mathbb{C} \to [0, \infty)$ be a smooth function with
 - $\phi(w) = \phi(|w|)$ for all $w \in \mathbb{C}$.
 - $\phi(w) = 0$ for |w| > 1.
 - $\int_{\mathbb{C}} \phi(w) \, du \wedge dv = \int_0^\infty \phi(r) 2\pi \, r dr = 1 \text{ where } w = u + iv.$

For $\varepsilon > 0$ set $\phi_{\varepsilon}(w) = \varepsilon^2 \phi(w/\varepsilon)$, and $\Omega_{\varepsilon} = \{z \in \Omega : \mathbb{D}(z, \varepsilon) \subset \Omega\}$. Define $u_{\varepsilon} : \Omega_{\varepsilon} \to \mathbb{R}$ by

$$u_{\varepsilon}(z) = \int_{|w| \leqslant \varepsilon} u(z+w)\phi_{\varepsilon}(w) \ du \wedge dv.$$

Prove that

(a)

$$\frac{\partial u_{\varepsilon}}{\partial z}(z) = \frac{\partial}{\partial z} \int_{\mathbb{C}} u(w)\phi_{\varepsilon}(w-z) \, du \wedge dv = -\int_{\mathbb{C}} u(w) \frac{\partial \phi_{\varepsilon}}{\partial z}(w-z) \, du \wedge dv.$$

(b) u_{ε} is a smooth function on Ω_{ε} .

(c) Each u_{ε} is subharmonic and $u_{\varepsilon} \to u$ locally uniformly as $\varepsilon \to 0$.

Thus each continuous subharmonic function is the locally uniform limit of smooth (and hence C^2) subharmonic functions.

3. Let $u: \mathbb{D} \to \mathbb{R}$ be continuous and subharmonic. Show that the least harmonic majorant of u is given by

$$\lim_{r \to 1-} \int_0^{2\pi} u(re^{i\theta}) \frac{r^2 - |z|^2}{|z - re^{i\theta}|^2} \frac{d\theta}{2\pi} = \sup_{r < 1} \int_0^{2\pi} u(re^{i\theta}) \frac{r^2 - |z|^2}{|z - re^{i\theta}|^2} \frac{d\theta}{2\pi}$$

- 4. Prove that a relatively compact domain with piecewise smooth boundary is regular for the Dirichlet problem.
- 5. Show that there cannot be a barrier at an isolated boundary point.
- 6. Show that every relatively compact domain Ω in R is contained within another relatively compact domain Ω' which is regular for the Dirichlet problem.
- 7. If g is the Green's function for R with pole at z_o and $f: S \to R$ is a conformal equivalence, then gf is the Green's function on S with pole at $f^{-1}(z_o)$.
- 8. Find the Green's function on the unit disc with a pole at any specified point (and prove that it is the Green's function).
- 9. Let g be the Green's function on a domain $\Omega \subset \mathbb{C}$ with a pole at z_o and let f be a smooth function on Ω with compact support within Ω . Prove that

$$\int_{\Omega} \triangle f(z)g(z) \ d\overline{z} \wedge dz = -4\pi i g(z_o).$$

Hint: Stokes' Theorem.

(This means that g defines a distribution with $\Delta g = -4\pi i \delta_{z_o}$. In partial differential equations and applied mathematics this is often taken as the definition of the Green's function.)

10. Let K be a compact subset of the non-compact Riemann surface R. Prove that we can cover K by finitely many discs so that the union of the discs is a domain Ω which is regular for the Dirichlet problem. Let g be a Green's function for Ω . Show that, for suitable small $\varepsilon > 0$, the set $\{z \in \Omega : g(z) > \varepsilon\}$ contains K and has a real analytic boundary.

Hence every Riemann surface has a compact exhaustion by sets with real analytic boundaries.

- 11. Show that, for any distinct points z_o, w in any Riemann surface R there is a harmonic function $f: R \setminus \{z_o, w\} \to \mathbb{R}$ which has logarithmic singularities at z_o and w with coefficients +1 and -1 respectively.
- 12. Let R be an elliptic Riemann surface and z_o, ζ distinct points of R. Show that the function $q(z_o, \cdot) : R \setminus \{z_o, \zeta\} \to \mathbb{R}$ on the parabolic surface $R \setminus \{\zeta\}$ has a logarithmic singularity at ζ with coefficient -1 (and at z_o with coefficient +1).
- 13. Show that every Riemann surface is triangulable.