- 1. Prove the Mittag Leffler theorem: For any sequence of points (z_n) in \mathbb{C} that converge to ∞ and any polynomials (p_n) (with zero constant terms), there is a meromorphic function $f : \mathbb{C} \to \mathbb{P}$ with poles only at the points z_n and the principal part of f at each z_n being $p_n((z-z_n)^{-1})$. [Write $f(z) = \sum p_n(z) - q_n(z)$ and choose the polynomials q_n so that the series converges locally
- 2. Show that the product

uniformly.]

$$g(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{n}\right) e^{z/n}$$

converges and satisfies

$$g'(z) = g(z) \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{n}\right).$$

Deduce that $g(z+1) = -zg(z)e^{\gamma}$ for some constant γ and prove that

$$\gamma = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n} - \log N.$$

(This is Euler's constant.)

- 3. A function $f : \mathbb{C} \to \mathbb{C}$ is *periodic with period* p if f(z+p) = f(z) for every $z \in \mathbb{C}$. Show that the set of periods of a holomorphic function f is either a lattice in \mathbb{C} or else all of \mathbb{C} .
- 4. Show that every holomorphic function $f : \mathbb{C} \to \mathbb{C}$ which is periodic with a period $p \neq 0$ has a Fourier expansion $f(z) = \sum_{n=-\infty}^{\infty} a_n \exp(2\pi i n z/p)$ convergent everywhere.
- 5. Show that for any subset E of $\mathbb{C} \setminus \{0\}$ which has no accumulation points except possibly 0 or ∞ there is a holomorphic function on $\mathbb{C} \setminus \{0\}$ with zeros precisely at the points of E.
- 6. Show that $z \mapsto \omega(z z_0)/(1 \overline{z_0}z)$ is in Aut \mathbb{D} for ω with $|\omega| = 1$ and $z_o \in \mathbb{D}$. Conversely every map in Aut \mathbb{D} is of this form.
- 7. Find Aut \mathbf{H}^+ for the upper half plane $\mathbf{H}^+ = \{z \in \mathbb{C} : \Im z > 0\}.$
- 8. Consider \mathbb{D} as the subset

$$\{[z_1:z_2]: |z_1|^2 - |z_2|^2 < 0\}$$
 of $\mathbb{P}(\mathbb{C}^2)$.

Show that an invertible linear map $T : \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ with determinant 1 induces a conformal map $\mathcal{T} : \mathbb{D} \to \mathbb{D}$ if, and only if,

(a) T preserves the indefinite form

$$\beta: \left(\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \right) \mapsto \overline{z_1} w_1 - \overline{z_2} w_2.$$

(That is $\beta(T\mathbf{z}, T\mathbf{w}) = \beta(\mathbf{z}, \mathbf{w})$.)

and

- (b) $\mathcal{T}(0) \in \mathbb{D}$. (That is |b| < |d|.)
- 9. Let $T \in \operatorname{Aut} \mathbb{D}$. Show that
 - (a) if T is elliptic, it has exactly one fixed point in \mathbb{D} .
 - (b) if T is hyperbolic, it has two fixed points both on $\partial \mathbb{D}$.
 - (c) if T is parabolic, it has one fixed point on $\partial \mathbb{D}$.

Find the conjugacy classes in $\operatorname{Aut} \mathbb{D}$.

- 10. Prove directly that a loxodromic Möbius transformation cannot map any disc in \mathbb{P} onto itself.
- 11. Show that the hyperbolic metric on \mathbb{D} is complete.

- 12. (This requires the definition of a Riemannian metric.) Show that the only Riemannian metrics on \mathbb{D} which are invariant under Aut \mathbb{D} are the multiples of the hyperbolic metric. Show that there are no Riemannian metrics on \mathbb{P} or \mathbb{C} which are invariant under Aut \mathbb{P} or Aut \mathbb{C} .
- 13. Let z_1, z_2, w_1 and w_2 be four points in \mathbb{D} . Show that there is a holomorphic function $f : \mathbb{D} \to \mathbb{D}$ with $f(z_1) = w_1$ and $f(z_2) = w_2$ if, and only if, $\rho(w_1, w_2) \leq \rho(z_1, z_2)$.
- 14. Let C be the unique circle through the two points $z_0, z_1 \in \mathbb{D}$ which is orthogonal to $\partial \mathbb{D}$. Then C meets $\partial \mathbb{D}$ at the points w_0, w_1 with w_0, z_0, z_1, w_1 in that order on C. Express the cross ratios of w_0, z_0, z_1, w_1 and of $J(z_0), z_0, z_1, J(z_1)$ in terms of $\rho(z_0, z_1)$. [Here J is inversion in the unit circle: $J : z \mapsto 1/\overline{z}$.]
- 15. Prove that

$$\left|\frac{z_0 - z_1}{1 - \overline{z_0} z_1}\right| = \tanh \frac{1}{2}\rho(z_0, z_1).$$

Does the left side of this equation define a metric on \mathbb{D} ? Find similar formulae for sinh $\rho(z_0, z_1)$ and $\cosh \rho(z_0, z_1)$.

16. A Blaschke product on a finite set of points in \mathbb{D} is called a *finite Blaschke product*. (This includes the constant maps $z \mapsto \omega$ for $|\omega| = 1$.) Prove that a continuous function $f : \overline{\mathbb{D}} \to \mathbb{C}$ is a finite Blashke product if, and only if, it is holomorphic on \mathbb{D} and maps $\partial \mathbb{D}$ into itself.

What are the continuous maps $f : \mathbb{D} \to \mathbb{P}$ which are meromorphic on \mathbb{D} and map $\partial \mathbb{D}$ into itself?

17. Let B be the Blaschke product for a sequence (z_n) in \mathbb{D} which satisfies $\sum 1 - |z_n| < \infty$. Show that the Blaschke product converges not only on \mathbb{D} but also on $\{z \in \mathbb{P} : |z| > 1\}$ giving a meromorphic function with poles at the points $(J(z_n))$. Prove that JB(z) = BJ(z) for $z \in \mathbb{D}$.

If $z \in \partial \mathbb{D}$ is not the limit point of a sequence (z_n) then prove that the Blaschke product converges at z, is holomorphic on a neighbourhood, and satisfies |B(z)| = 1.

- 18. Let G be the group generated by a single Möbius transformation $T \in \text{Möb}(\mathbb{D})$. When is G a discrete group? In each case where it is a discrete group, describe a Dirichlet domain for G and the quotient \mathbb{D}/G .
- 19. Let G be a discrete subgroup of $\text{M\"ob}(\mathbb{D})$ and $z_o \in \mathbb{D}$ with trivial stabilizer. Suppose that $w \in \mathbb{D}$ has a non-trivial stabilizer S of order N. Show that N points of the orbit Gw lie on the boundary of the Dirichlet domain $D(z_o)$. How many of the Dirichlet domains $D(T(z_o))$ for $T \in G$ meet at w?
- 20. Let D be a proper subdomain of the complex plane and (z_n) a sequence of points in D. The sequence (z_n) converges to ∂D if, for every compact subset K of D, only a finite number of the points z_n lie in K.

Show that the zeros of a non-constant holomorphic function $f: D \to \mathbb{C}$ are either finite in number or else form a sequence that tends to ∂D .

For $z_n \in D$, show that there is a point $w_n \in \mathbb{C} \setminus D$ with

$$|z_n - w_n| = \inf\{|z_n - w| : w \in \mathbb{C} \setminus D\}$$

Then

$$\frac{z - z_n}{z - w_n} = 1 - \left(\frac{z_n - w_n}{z - w_n}\right)$$

and the power series for the principal branch

$$\log\left(\frac{z-z_n}{z-w_n}\right)$$

converges uniformly on $\{z \in \mathbb{C} : |z - w_n| \ge 2|z_n - w_n|\}$. Deduce that a suitable product of terms

$$\left(\frac{z-z_n}{z-w_n}\right)\exp\left(\sum_{k=1}^{K_n}\frac{1}{k}\left(\frac{z_n-w_n}{z-w_n}\right)^k\right)$$

converges locally uniformly on D to give a holomorphic function $f: D \to \mathbb{C}$ with zeros precisely at the points (z_n) .