1. Prove the Mittag - Leffler theorem: For any sequence of points $\left(z_{n}\right)$ in \mathbb{C} that converge to ∞ and any polynomials $\left(p_{n}\right)$ (with zero constant terms), there is a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{P}$ with poles only at the points z_{n} and the principal part of f at each z_{n} being $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$.
[Write $f(z)=\sum p_{n}(z)-q_{n}(z)$ and choose the polynomials q_{n} so that the series converges locally uniformly.]
2. Show that the product

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges and satisfies

$$
g^{\prime}(z)=g(z) \sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right) .
$$

Deduce that $g(z+1)=-z g(z) e^{\gamma}$ for some constant γ and prove that

$$
\gamma=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n}-\log N
$$

(This is Euler's constant.)
3. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is periodic with period p if $f(z+p)=f(z)$ for every $z \in \mathbb{C}$. Show that the set of periods of a holomorphic function f is either a lattice in \mathbb{C} or else all of \mathbb{C}.
4. Show that every holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ which is periodic with a period $p \neq 0$ has a Fourier expansion $f(z)=\sum_{n=-\infty}^{\infty} a_{n} \exp (2 \pi i n z / p)$ convergent everywhere.
5. Show that for any subset E of $\mathbb{C} \backslash\{0\}$ which has no accumulation points except possibly 0 or ∞ there is a holomorphic function on $\mathbb{C} \backslash\{0\}$ with zeros precisely at the points of E.
6. Show that $z \mapsto \omega\left(z-z_{0}\right) /\left(1-\overline{z_{0}} z\right)$ is in Aut \mathbb{D} for ω with $|\omega|=1$ and $z_{o} \in \mathbb{D}$. Conversely every map in Aut \mathbb{D} is of this form.
7. Find Aut \mathbf{H}^{+}for the upper half plane $\mathbf{H}^{+}=\{z \in \mathbb{C}: \Im z>0\}$.
8. Consider \mathbb{D} as the subset

$$
\left\{\left[z_{1}: z_{2}\right]:\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}<0\right\} \quad \text { of } \quad \mathbb{P}\left(\mathbb{C}^{2}\right)
$$

Show that an invertible linear map $T:\binom{z_{1}}{z_{2}} \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{z_{1}}{z_{2}}$ with determinant 1 induces a conformal $\operatorname{map} \mathcal{T}: \mathbb{D} \rightarrow \mathbb{D}$ if, and only if,
(a) T preserves the indefinite form

$$
\beta:\left(\binom{z_{1}}{z_{2}},\binom{w_{1}}{w_{2}}\right) \mapsto \overline{z_{1}} w_{1}-\overline{z_{2}} w_{2}
$$

(That is $\beta(T \mathbf{z}, T \mathbf{w})=\beta(\mathbf{z}, \mathbf{w})$.
and
(b) $\mathcal{T}(0) \in \mathbb{D}$. (That is $|b|<|d|$.)
9. Let $T \in$ Aut \mathbb{D}. Show that
(a) if T is elliptic, it has exactly one fixed point in \mathbb{D}.
(b) if T is hyperbolic, it has two fixed points both on $\partial \mathbb{D}$.
(c) if T is parabolic, it has one fixed point on $\partial \mathbb{D}$.

Find the conjugacy classes in Aut \mathbb{D}.
10. Prove directly that a loxodromic Möbius transformation cannot map any disc in \mathbb{P} onto itself.
11. Show that the hyperbolic metric on \mathbb{D} is complete.
12. (This requires the definition of a Riemannian metric.) Show that the only Riemannian metrics on \mathbb{D} which are invariant under Aut \mathbb{D} are the multiples of the hyperbolic metric. Show that there are no Riemannian metrics on \mathbb{P} or \mathbb{C} which are invariant under Aut \mathbb{P} or Aut \mathbb{C}.
13. Let z_{1}, z_{2}, w_{1} and w_{2} be four points in \mathbb{D}. Show that there is a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{D}$ with $f\left(z_{1}\right)=w_{1}$ and $f\left(z_{2}\right)=w_{2}$ if, and only if, $\rho\left(w_{1}, w_{2}\right) \leqslant \rho\left(z_{1}, z_{2}\right)$.
14. Let C be the unique circle through the two points $z_{0}, z_{1} \in \mathbb{D}$ which is orthogonal to $\partial \mathbb{D}$. Then C meets $\partial \mathbb{D}$ at the points w_{0}, w_{1} with $w_{0}, z_{0}, z_{1}, w_{1}$ in that order on C. Express the cross ratios of $w_{0}, z_{0}, z_{1}, w_{1}$ and of $J\left(z_{0}\right), z_{0}, z_{1}, J\left(z_{1}\right)$ in terms of $\rho\left(z_{0}, z_{1}\right)$.
[Here J is inversion in the unit circle: $J: z \mapsto 1 / \bar{z}$.]
15. Prove that

$$
\left|\frac{z_{0}-z_{1}}{1-\overline{z_{0}} z_{1}}\right|=\tanh \frac{1}{2} \rho\left(z_{0}, z_{1}\right) .
$$

Does the left side of this equation define a metric on \mathbb{D} ? Find similar formulae for $\sinh \rho\left(z_{0}, z_{1}\right)$ and $\cosh \rho\left(z_{0}, z_{1}\right)$.
16. A Blaschke product on a finite set of points in \mathbb{D} is called a finite Blaschke product. (This includes the constant maps $z \mapsto \omega$ for $|\omega|=1$.) Prove that a continuous function $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ is a finite Blashke product if, and only if, it is holomorphic on \mathbb{D} and maps $\partial \mathbb{D}$ into itself.
What are the continuous maps $f: \mathbb{D} \rightarrow \mathbb{P}$ which are meromorphic on \mathbb{D} and map $\partial \mathbb{D}$ into itself?
17. Let B be the Blaschke product for a sequence $\left(z_{n}\right)$ in \mathbb{D} which satisfies $\sum 1-\left|z_{n}\right|<\infty$. Show that the Blaschke product converges not only on \mathbb{D} but also on $\{z \in \mathbb{P}:|z|>1\}$ giving a meromorphic function with poles at the points $\left(J\left(z_{n}\right)\right)$. Prove that $J B(z)=B J(z)$ for $z \in \mathbb{D}$.
If $z \in \partial \mathbb{D}$ is not the limit point of a sequence $\left(z_{n}\right)$ then prove that the Blaschke product converges at z, is holomorphic on a neighbourhood, and satisfies $|B(z)|=1$.
18. Let G be the group generated by a single Möbius transformation $T \in \operatorname{Möb}(\mathbb{D})$. When is G a discrete group? In each case where it is a discrete group, describe a Dirichlet domain for G and the quotient \mathbb{D} / G.
19. Let G be a discrete subgroup of $\operatorname{Möb}(\mathbb{D})$ and $z_{o} \in \mathbb{D}$ with trivial stablizer. Suppose that $w \in \mathbb{D}$ has a non-trivial stabilizer S of order N. Show that N points of the orbit $G w$ lie on the boundary of the Dirichlet domain $D\left(z_{o}\right)$. How many of the Dirichlet domains $D\left(T\left(z_{o}\right)\right)$ for $T \in G$ meet at w ?
20. Let D be a proper subdomain of the complex plane and $\left(z_{n}\right)$ a sequence of points in D. The sequence $\left(z_{n}\right)$ converges to ∂D if, for every compact subset K of D, only a finite number of the points z_{n} lie in K.
Show that the zeros of a non-constant holomorphic function $f: D \rightarrow \mathbb{C}$ are either finite in number or else form a sequence that tends to ∂D.
For $z_{n} \in D$, show that there is a point $w_{n} \in \mathbb{C} \backslash D$ with

$$
\left|z_{n}-w_{n}\right|=\inf \left\{\left|z_{n}-w\right|: w \in \mathbb{C} \backslash D\right\}
$$

Then

$$
\frac{z-z_{n}}{z-w_{n}}=1-\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)
$$

and the power series for the principal branch

$$
\log \left(\frac{z-z_{n}}{z-w_{n}}\right)
$$

converges uniformly on $\left\{z \in \mathbb{C}:\left|z-w_{n}\right| \geqslant 2\left|z_{n}-w_{n}\right|\right\}$. Deduce that a suitable product of terms

$$
\left(\frac{z-z_{n}}{z-w_{n}}\right) \exp \left(\sum_{k=1}^{K_{n}} \frac{1}{k}\left(\frac{z_{n}-w_{n}}{z-w_{n}}\right)^{k}\right)
$$

converges locally uniformly on D to give a holomorphic function $f: D \rightarrow \mathbb{C}$ with zeros precisely at the points $\left(z_{n}\right)$.

