1. Let $f: \Omega \rightarrow \mathbb{C}$ be a k-times continuously differentiable function on a domain $\Omega \subset \mathbb{C}$. Show that, for $z_{o} \in \Omega$, there are complex numbers $\left(a_{r, s}\right)$ with

$$
f\left(z_{o}+w\right)=\sum_{r+s \leqslant k} a_{r, s} w^{r} \bar{w}^{s}+o\left(|w|^{k}\right)
$$

as $w \rightarrow 0$. Find the corresponding formulae for $\partial f / \partial z$ and $\partial f / \partial \bar{z}$. Show that when $\partial f / \partial \bar{z}=0$ on Ω then $a_{r, s}=0$ for $s>0$ (so " f is a function of w alone").
2. Let $f: \Omega \rightarrow \Omega^{\prime} ; z \mapsto f(z)=w$ and $g: \Omega^{\prime} \rightarrow \mathbb{C}$ be smooth functions. Prove the chain rule:

$$
\frac{\partial(g f)}{\partial z}=\frac{\partial g}{\partial w} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial \bar{w}} \overline{\left(\frac{\partial f}{\partial \bar{z}}\right)}
$$

3. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence $R>0$. Show that the partial sums converge locally uniformly to f on $\{z \in \mathbb{C}:|z|<R\}$ but need not converge uniformly.
4. Let Ω be a domain in \mathbb{C}. For a compact set $K \subset \Omega$ and an open set $U \subset \mathbb{C}$ set

$$
M(K, U)=\{f \in \mathcal{O}(\Omega): f(K) \subset U\}
$$

These sets form a sub-basis for a topology on $\mathcal{O}(\Omega)$ called the compact-open topology. Show that this co-incides with the topology of locally uniform convergence.
5. Every harmonic function $u: A \rightarrow \mathbb{R}$ on the annulus $A=\{z \in \mathbb{C}: r<|z|<R\} \quad 0 \leqslant r<R \leqslant \infty)$ can be expressed as

$$
u(z)=b \log |z|+\operatorname{Re} a(z)
$$

for some $b \in \mathbb{R}$ and some analytic function $a: A \rightarrow \mathbb{C}$.
6. Every harmonic function on a domain Ω is the real part of an analytic function if, and only if, Ω is simply connected.
7. Use Cauchy's representation theorem (Cauchy's Integral Formula) to prove that

$$
u(0)=\int_{0}^{2 \pi} u\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

for each function $u \in \mathcal{H}(\mathbb{D})$. Let T be the Möbius transformation $z \mapsto\left(z+z_{o}\right) /\left(1+\overline{z_{o}} z\right)$. Show that $z \mapsto u(T z)$ is in $\mathcal{H}(\mathbb{D})$ and hence deduce the Poisson integral formula.
8. Use the residue theorem (or Cauchy's representation formula) to prove that a function f analytic on a domain containing $\overline{\mathbb{D}}$ satisfies

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}} \operatorname{Re} f(w) \frac{w+z}{w(w-z)} d w+i \operatorname{Im} f(0)
$$

for $z \in \mathbb{D}$. (This is due to Schwarz, 1870.) Deduce the Poisson integral formula.
9. A continuous function $u: \Omega \rightarrow \mathbb{R}$ on a domain $\Omega \subset \mathbb{C}$ has the mean value property if, for each $z \in \Omega$ there exists $r(z)>0$ with $\{w:|w-z|<r(z)\} \subset \Omega$ and

$$
u(z)=\int_{0}^{2 \pi} u\left(z+r e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

for $0<r<r(z)$. Prove that if such a function has a local maximum at $z \in \Omega$ then it is constant on a neighbourhood of z. Prove that u has the mean value property if, and only if, u is harmonic.
10. For $z \in \mathbb{D}$ find

$$
\sup \left(u(z): u: \mathbb{D} \rightarrow \mathbb{R}^{+} \text {is harmonic, } u(0)=1\right)
$$

$\left[\operatorname{Try} u \in \mathcal{H}(\mathbb{D})\right.$ first.] Which functions attain the supremum? For $z_{1}, z_{2} \in \mathbb{D}$ find

$$
\sup \left(u\left(z_{2}\right): u: \mathbb{D} \rightarrow \mathbb{R}^{+} \text {is harmonic, } u\left(z_{1}\right)=1\right)
$$

and

$$
\inf \left(u\left(z_{2}\right): u: \mathbb{D} \rightarrow \mathbb{R}^{+} \text {is harmonic, } u\left(z_{1}\right)=1\right)
$$

11. Show that Harnack's theorem fails if we do not demand that the sequence of harmonic functions is increasing. That is, find a sequence of harmonic functions which converge at each point of a domain to a limit function which is not harmonic.
12. Let p be a polynomial in one complex variable which has no repeated zeros. Show that

$$
\left\{(w, z): w^{2}=p(z)\right\}
$$

is a (connected) Riemann surface. What happens if p does have repeated zeros?
13. Show that

$$
R=\left\{(w, z) \in \mathbb{C}^{2}: w^{2}=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\right\}
$$

is a Riemann surface provided that the four complex numbers are distinct. Prove that it may be made into a compact Riemann surface by adjoining two points. Prove that this compact surface is homeomorphic to a torus (i.e. $S^{1} \times S^{1}$).
14. Prove that $\pi_{1}\left(R, z_{0}\right)$ is a group. Show that $\pi_{1}(R, z)$ is isomorphic to $\pi_{1}\left(R, z_{o}\right)$ for any $z \in R$. (The isomorphism is not natural.) Calculate $\pi_{1}\left(R, z_{o}\right)$ for the following Riemann surfaces: (a) \mathbb{D}, (b) an annulus, (c) a torus, (d) $\mathbb{C} \backslash\{0,1\}$.
15. Let $\psi:\left(M, w_{o}\right) \rightarrow\left(R, z_{o}\right)$ be a regular covering of R and $\pi:\left(\hat{R}, \hat{z}_{o}\right) \rightarrow\left(R, z_{o}\right)$ a universal covering. Then there is a covering $f:\left(\hat{R}, \hat{z}_{o}\right) \rightarrow\left(M, w_{o}\right)$. Prove that the following two conditions are equivalent.
(a) If $T \in$ Aut π then there is an unique $S \in$ Aut ψ with $S f=f T$.
(b) Aut $f=\{T \in$ Aut $\pi: f T=f\}$ is a normal subgroup of Aut π and the quotient Aut $\pi /$ Aut f is isomorphic to Aut ψ.
16. Show that \mathbb{P}, \mathbb{C} and \mathbb{D} are all simply connected and that no two of them are conformally equivalent.
17. Exhibit explicitly a universal covering $\pi: \mathbb{D} \rightarrow\{z \in \mathbb{C}: r<|z|<1\}$ for each $0 \leqslant r<1$. Identify the group Aut π. [Hint: exp.]
18. Exhibit explicitly a universal covering $\pi: \mathbb{C} \rightarrow\{z \in \mathbb{C}: 0<|z|<\infty\}$. Identify the group Aut π.
19. Prove that the Study metric is indeed a metric.
20. Show that for $T \in \mathrm{GL}(2, \mathbb{C})$ the map $[\mathbf{z}] \mapsto[T \mathbf{z}]$ is a continuous map from $\mathbb{P}\left(\mathbb{C}^{2}\right)$ to itself. When is it an isometry?
21. If \mathbf{u}, \mathbf{v} is an orthogonal basis for \mathbb{C}^{2} prove that the map

$$
\theta: \mathbb{P}\left(\mathbb{C}^{2}\right) \backslash[\mathbf{u}] ;[\mathbf{z}] \mapsto \frac{\langle\mathbf{u}, \mathbf{z}\rangle}{\langle\mathbf{v}, \mathbf{z}\rangle}
$$

is a chart for the Riemann surface $\mathbb{P}\left(\mathbb{C}^{2}\right)$. What are the transition maps for two such charts?
22. [This assumes a little knowledge of algebraic geometry.] Let $\mathbf{z} \in \mathbb{C}^{N}$ be a row vector. Then $\mathbf{z}^{*} \mathbf{z}=\overline{\mathbf{z}}^{t} \mathbf{z}$ is in the real vector space $\operatorname{Her}(N)$ of Hermitian matrices. What is the dimension of the real projective space $\mathbb{P}(\operatorname{Her}(N))$? Show that

$$
J: \mathbb{P}\left(\mathbb{C}^{N}\right) \rightarrow \mathbb{P}(\operatorname{Her}(N)) ;[\mathbf{z}] \mapsto\left[\mathbf{z}^{*} \mathbf{z}\right]
$$

is a well defined, injective map and that its image is a projective variety (i.e. the set where a collection of homogeneous polynomials vanish). When $N=2$, the image is a conic in $\mathbb{P}\left(\mathbb{R}^{4}\right)$ isomorphic to the sphere. [Thus J generalizes the identification of $\mathbb{P}\left(\mathbb{C}^{2}\right)$ with S^{2}.]
23. A divisor on a compact Riemann surface is a function $d: R \rightarrow \mathbb{Z}$ which is zero except at a finite set of points. These form a commutative group \mathcal{D}. The map

$$
\delta: \mathcal{D} \rightarrow \mathbb{Z} \quad ; \quad d \mapsto \sum(d(z): z \in R)
$$

is a homomorphism. Let \mathcal{D}_{0} be its kernel.
(a) Let f be a meromorphic function on R which is not identically zero, so $f \in \mathcal{M}(R)^{\times}$. Then f has finitely many zeros and poles. Let (f) be the divisor which is $\operatorname{deg} f(z)$ at any zero $z,-\operatorname{deg} f(z)$ at any pole z, and zero elsewhere. Show that this gives a homomorphism of commutative groups

$$
\mathcal{M}(R)^{\times} \rightarrow \mathcal{D}_{0} \quad ; \quad f \mapsto(f)
$$

Find the kernel of this homomorphism. The quotient $\mathcal{D}_{0} /\left\{(f): f \in \mathcal{M}(R)^{\times}\right\}$is called the divisor class group of R.
(b) Show that the divisor class group of \mathbb{P} is trivial.

Let $T: z \mapsto(a z+b) /(c z+d)$ be a Möbius transformation.
24. Consider the chordal metric on \mathbb{P} and show that T multiplies the length of an infinitesimally short curve at z by the factor

$$
\frac{\left|T^{\prime}(z)\right|\left(1+|z|^{2}\right)}{1+|T(z)|^{2}}=\frac{|a d-b c|\left(1+|z|^{2}\right)}{|a z+b|^{2}+|c z+d|^{2}}
$$

Show that the maximum and minimum values of this quantity are

$$
s+\sqrt{s^{2}-1} \quad \text { and } \quad s-\sqrt{s^{2}-1}
$$

where

$$
s=\frac{|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}}{2|a d-b c|}
$$

[Hint: Think about \mathbb{P} as $\mathbf{P}\left(\mathbb{C}^{2}\right)$.]
25. Let $Z(T)=\{S \in$ Möb : $S T=T S\}$.
(a) Show that $Z(T)$ is a subgroup of Möb.
(b) Find which groups (up to isomorphism) can arise as $Z(T)$ for some Möbius transformation T.
26. Let A be a 2×2 complex matrix with trace equal to 0 . Show that the series

$$
\exp A=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

converges and prove the following properties.
(a) If $A B=B A$ then $\exp (A+B)=\exp A \exp B$.
(b) $\{\exp t A: t \in \mathbb{R}\}$ is a commutative group under multiplication of matrices.
(c) The function $f(t)=\operatorname{det} \exp t A$ satisfies $f^{\prime}(t)=f(t) \operatorname{tr} A=0$. Hence $\exp t A \in S L(2, \mathbb{C})$.

Let $\exp t A$ now denote the Möbius transformation determined by the matrix $\exp t A$. Show that every Möbius transformation is equal to $\exp A$ for some matrix A. Is the choice of A unique? For $z \in \mathbb{P}$ the images of z under the Möbius transformations $\exp t A$ for $t \in \mathbb{R}$ trace out a curve. Which curves can arise in this way? Sketch examples. (The groups $\{\exp t A: t \in \mathbb{R}\}$ for some A are the 1-parameter subgroups of the Lie group Möb.)

