
8 8 THE RIEMANN MAPPING THEOREM

8.1 Simply Connected Surfaces

Our aim is to prove the Riemann Mapping Theorem which states that every simply connected
Riemann surface R is conformally equivalent to D, C or P. If R is hyperbolic it must be conformally
equivalent to D. Similarly, if R is parabolic or elliptic it must be conformally equivalent to C or P
respectively.

Theorem 8.1.1

Let R be a simply connected Riemann surface and zo ∈ R. If g : R \ {zo} → R is harmonic and has a
logarithmic singularity at zo with coefficient −1, then there is a holomorphic function G : R → C with
g(z) = − log |G(z)| for z ∈ R.

Proof:

Let φα : Uα → φαUα be an atlas of charts for R with each Uα simply connected. If zo /∈ Uα then
there is a holomorphic function Fα : Uα → C with g = <Fα. So we can set Gα = exp−Fα : Uα → C. If
zo ∈ Uα then z 7→ g(z) + log |φα(z)− φα(zo)| is harmonic on Uα so it is the real part of a holomorphic
function Fα. Set Gα(z) = (φα(z)− φα(zo)) expFα(z). The functions Gα : Uα → C satisfy g(z) =
− log |Gα(z)| for z ∈ Uα.

Note that the functions Gα are only determined up to a scalar multiple of modulus 1. Suppose that
Uα ∩ Uβ 6= ∅. Then |Gα(z)| = |Gβ(z)| on the intersection. Hence, Gα/Gβ is equal to a constant ω of
modulus 1 on a component of Uα∩Uβ and therefore ωGβ is a holomorphic continuation of Gα. It follows
that we can continue Gα analytically along any path in R. Since R is simply connected, the Monodromy
theorem shows that there is a single holomorphic function G : R → C with g(z) = − log |G(z)|. �
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8.2 Hyperbolic Surfaces

Theorem 8.2.1 The Riemann Mapping Theorem for Hyperbolic Surfaces

A simply connected, hyperbolic Riemann surface R is conformally equivalent to the unit disc.

Proof:

Let gzo
be the Green’s function for R with pole at zo. Then Proposition 8.1.1 shows that there is

a holomorphic function Gzo
: R → D with gzo

(w) = − log |Gzo
(w)|. Choose one particular value for zo

and let G = Gzo . We will prove that G is conformal by proving a series of intermediate results A – F.

First observe that the minimality property of the Green’s function implies a similar property for
G.

A If F : R → D is any holomorphic function with a zero at zo, then |F (z)| 6 |G(z)| for each z ∈ R.

For, if we set f(z) = − log |F (z)|, then f is positive and harmonic on R \ F−1(0) and has a
logarithmic singularity at each zero z of F with coefficient deg F (z). If u ∈ F(zo) then v = u − f is
subharmonic on R \ F−1(0). Also v is negative outside the support of u and tends to −∞ at each
point of F−1(0) except zo. At zo we also have v tending to −∞ unless deg F (zo) = 1 in which case v is
subharmonic on a neighbourhood of zo. The maximum principle for subharmonic functions (Proposition
8.1.3) implies that v 6 0 and so u 6 f . Consequently gzo

6 f and |G| > |F |, as required.

We can also say exactly when we get equality:

B |G(z)| = |F (z)| at some z ∈ R \ {zo} if, and only if, F = ωG for some complex number ω of unit
modulus.

For the function a : R → C, w 7→ F (w)/G(w) is holomorphic but achieves its maximum modulus
at the point z. Hence a is a constant with modulus 1.

Now we can adapt this to holomorphic functions which do not have zeros at zo:

C For any holomorphic function F : R → D we have∣∣∣∣∣ F (z)− F (zo)
1− F (zo)F (z)

∣∣∣∣∣ 6 |G(z)| .

If equality holds at one point z ∈ R\{zo}, then F = TG for some Möbius transformation T ∈ Aut D
and equality holds everywhere.

For we can apply the previous results to z 7→ (F (z)− F (zo))/(1− F (zo)F (z)).

D For each w ∈ R we have Gw = TG for some T ∈ Aut D.

We apply C to the holomorphic function Gw to obtain:∣∣∣∣∣ Gw(z)−Gw(zo)
1−Gw(zo)Gw(z)

∣∣∣∣∣ 6 |G(z)|.

For z = w we obtain, |Gw(zo)| 6 |Gzo
(w)|. Interchanging the rôles of w and zo we see that |Gw(zo)| =

|Gzo(w)| so equality holds for this particular value of z. Hence Gw = TGzo for some T ∈ Aut D.

E G is injective.

Suppose that G(w) = G(w′). Then, by D, we also have 0 = Gw(w) = Gw(w′). The only zero of
Gw is at w so w = w′.
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F G is surjective.

Suppose that a ∈ D \ Im G. Then z 7→ (G(z) − a)/(1 − aG(z)) maps R into D \ {0}. Since R is
simply connected this map has a holomorphic square root σ : R → D \ {0}. Thus

G(z) =
σ(z)2 − σ(zo)2

1− σ(zo)
2
σ(z)2

=

(
σ(z)− σ(zo)
1− σ(zo)σ(z)

)(
σ(z) + σ(zo)
1 + σ(zo)σ(z)

)
.

We know from C that ∣∣∣∣∣ σ(z)− σ(zo)
1− σ(zo)σ(z)

∣∣∣∣∣ 6 |G(z)|.

So, we see that

1 6

∣∣∣∣∣ σ(z) + σ(zo)
1 + σ(zo)σ(z)

∣∣∣∣∣ .

However, the map

w 7→ w + σ(zo)
1 + σ(zo)w

maps the unit disc into itself, so the last inequality is impossible.

We have now shown that G : R → D is injective and surjective, so it is bijective and gives a
conformal map of R onto the unit disc. �

Corollary 8.2.2

Every Riemann surface has a countable dense subset.

Proof:

Let ∆ be a compact disc in the Riemann surface R. Then Corollary 8.3.3 shows that R \ ∆ is
hyperbolic. Let π : S → R \∆ be its universal cover. If f is a positive superharmonic function on R \∆
then fπ is a positive superharmonic function on S. Thus S is a simply connected hyperbolic Riemann
surface. By the theorem, S is conformally equivalent to D, so S has a countable dense set. Consequently
π(S) = R \∆ has a countable dense set and so does R. �

It follows immediately from this that every Riemann surface has a compact exhaustion, that is an
increasing sequence of compact subsets whose union is the entire surface. Indeed, with a little care we
can ensure that each of the compact sets has a real analytic boundary.

Exercises

1. Let K be a compact subset of the non-compact Riemann surface R. Prove that we can cover
K by finitely many discs so that the union of the discs is a domain Ω which is regular for the
Dirichlet problem. Let g be a Green’s function for Ω. Show that, for suitable small ε > 0, the set
{z ∈ Ω : g(z) > ε} contains K and has a real analytic boundary.

Hence every Riemann surface has a compact exhaustion by sets with real analytic boundaries.
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Recall that, if π : D → R is a universal covering of a Riemann surface R, then R is conformally
equivalent to the quotient of D by the subgroup Aut(π) of Aut(D). This subgroup is a discrete subgroup
of Aut(D) or, equivalently, it acts discontinuously on D. We call such a subgroup a Fuchsian group.
When G is a Fuchsian group, the quotient D/G is a Riemann surface. The following theorem shows
when the quotient D/G is hyperbolic. Note that it can also be elliptic or parabolic.

Let R be a hyperbolic Riemann surface. Then there is a non-constant, positive, continuous, super-
harmonic map s : R → R+. There is a universal covering π : R̂ → R and sπ is a non-constant, positive,
continuous, superharmonic map on R̂. So R̂ is hyperbolic and hence conformally equivalent to D. Thus
every hyperbolic Riemann surface is conformally equivalent to a quotient of D by a Fuchsian group.

Theorem 8.2.3

The quotient D/G by a Fuchsian group G is hyperbolic if, and only if,
∑

(exp−ρ(0, T (0)) : T ∈ G)
converges. If q : D → D/G is the quotient map then the Green’s function gqw for D/G with pole at qw
satisfies

gqw(qz) = −
∑
T∈G

log
∣∣∣∣ z − Tw

1− Twz

∣∣∣∣ .
Proof:

First note that, as |z| → 1 we have:

|z| = tanh 1
2ρ(0, z) =

1− e−ρ(0,z)

1 + e−ρ(0,z)
∼ 1− 2e−ρ(0,z) .

Therefore,
1− |z| ∼ − log |z| ∼ 2e−ρ(0,z) .

This shows that the three series
∑

1 − |T (0)|,
∑
− log |T (0)| and

∑
exp−ρ(0, T (0)) all converge or

diverge together. The triangle inequality shows that

e−ρ(0,w)
(∑

e−ρ(0,z)
)

6
∑

e−ρ(w,z) 6 eρ(0,w)
(∑

e−ρ(0,z)
)

so we deduce that if the series
∑

e−ρ(w,T (0)) converges for one value of w ∈ D, then it converges for all
w ∈ D locally uniformly.

Suppose that
∑

(exp−ρ(0, T (0)) : T ∈ G) converges. Then
∑

exp−ρ(w, T (0)) converges and hence

h(w) =
∑

− log

∣∣∣∣∣ w − T (0)
1− T (0)w

∣∣∣∣∣
converges locally uniformly on D by comparison with it. This gives a harmonic function with logarithmic
singularities, coefficient −1, at each point of G(0). Furthermore, h(T (w)) is simply a re-arrangement
of the series for h(w), so h(Tw) = h(w) for w ∈ D. Hence, there is a function h̃ : D/G → R which
is positive harmonic with a logarithmic singularity at q(0). Consequently, D/G is hyperbolic and its
Green’s function g with a pole at q(0) satisfies g 6 h̃.

For the converse, we will adapt the Poisson – Jensen formula (Theorem 5.2.1) to harmonic functions.

Lemma 8.2.4 Poisson-Jensen formula

Let S be a finite subset of D and u : D \ S → R a continuous function which is harmonic on D \ S with
logarithmic singularities at each s ∈ S with coefficient c(s). Then

u(z) =
∑
s∈S

c(s) log
∣∣∣∣ z − s

1− sz

∣∣∣∣+ ∫ 2π

0

1− |z|2

|z − eiθ|2
u(eiθ) dθ

for each z ∈ D \ S.
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Proof:

For the function

v(z) = u(z)−
∑

c(s) log
∣∣∣∣ z − s

1− sz

∣∣∣∣
is continuous on D and harmonic on all of D. Its boundary values are v(eiθ) = u(eiθ). We apply
Poisson’s formula to v to obtain:

v(z) =
∫ 2π

0

1− |z|2

|z − eiθ|2
u(eiθ) dθ

which is the required formula. �

Suppose that g is the Green’s function with pole at q(0) for D/G. Then u : D → R, w 7→ g(q(w))
is positive harmonic on D with logarithmic singularities, coefficient −1, at each point of G(0). For each
r < 1 (with r 6= |T (0)|) we can apply the lemma to the function z 7→ u(rz) to obtain:

u(z) =
∑

|T (0)|<r

− log

∣∣∣∣∣ z − r−1T (0)
1− r−1T (0)z

∣∣∣∣∣+
∫ 2π

0

1− |z|2

|z − eiθ|2
u(reiθ) dθ .

Since u > 0 this implies that

u(z) >
∑

|T (0)|<r

− log

∣∣∣∣∣ z − r−1T (0)
1− r−1T (0)z

∣∣∣∣∣
and, letting r increase to 1, we obtain

u(z) >
∑
T∈G

− log

∣∣∣∣∣ z − T (0)
1− T (0)z

∣∣∣∣∣ = h(z) .

Since u is finite on D \G(0), the series on the right must converge. In particular,∑
T∈G\{I}

log |T (0)|

converges. Therefore,
∑

exp−ρ(0, T (0)) converges.

Furthermore, we have shown in the first part of the proof that g(q(z)) > h(z) and in the second
part that g(q(z)) 6 h(z). Therefore g(q(z)) = h(z).

For any w ∈ D the map S : z 7→ (z + w)/(1 + wz) is in Aut D. So the map

q̃ : D → D/G ; z 7→ q(Sz)

is another universal covering with q̃0 = qw and Aut q̃ = {S−1TS : T ∈ G}. Since gqw = g
q̃0

, we obtain
the desired result. �

Note that we can write the formula for the Green’s function in the invariant form:

gqw(qz) = −
∑
T∈G

log tanh 1
2ρ(z, Tw).

Corollary 8.2.5

If R is a hyperbolic Riemann surface then the Green’s function is symmetric:

gw(z) = gz(w) for w, z ∈ R.
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This is usually proved by using Stokes’ theorem. That approach has the advantage of applying to the
Green’s function on an arbitrary manifold. The symmetry of the Green’s function reflects the fact that
the Laplacian is self-adjoint. Because of this symmetry we often write gw(z) as g(w, z). Then g is a
smooth function on the set where w 6= z.

Proof:

Let q : D → D/G ∼= R be the quotient map. Then each T ∈ G is an isometry for the hyperbolic
metric so

gqw(qz) = −
∑
T∈G

log tanh 1
2ρ(z, Tw) = −

∑
T∈G

log tanh 1
2ρ(T−1z, w) = gqz(qw).

�
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8.3 Parabolic Surfaces

Let R be a non-compact Riemann surface and ∆ a disc in R. Corollary 8.2.2 implies that there is an
increasing sequence (Ωn) of relatively compact domains in R with ∆ ⊂ Ω0,

⋃
Ωn = R and each Ωn

regular for the Dirichlet problem. By Corollary 7.3.3, each Ωn has a Green’s function with a pole at
w ∈ ∆ which extends continuously to ∂Ωn and is 0 there. Let gn(w, ·) denote this Green’s function. The
maximum principle shows that gn(w, z) increases with n. If the supremum is finite, it is the Green’s
function for R and so R is hyperbolic. Hence, when R is parabolic, the sequence must tend to infinity.
However, we will show that we can choose the domains Ωn and constants Mn so that gn(w, z) − Mn

converges to a finite harmonic function of z. This will be an analogue of the Green’s function for the
parabolic surface.

Proposition 8.3.1

Let Mn = sup{gn(w, z) : z ∈ ∂∆} then the sequence of functions (gn(w, ·) − Mn) has a subsequence
which converges locally uniformly on R \ {w} to a function q(w, ·) : R \ {w} → R which is harmonic
with a logarithmic singularity at w having coefficient −1, and satisfies q(w, z) 6 0 for w ∈ R \∆.

(If R is parabolic, then q can not be bounded below.)

Proof:

Set un(z) = Mn − gn(w, z). Then each un is a positive harmonic function on Ωn \ ∆. Let K be
a compact subset of R \ ∆ which, for convenience, we will assume contains ∂Ω0. Then K ⊂ Ωn for n
sufficiently large, say n > N(K). Harnack’s inequality gives a constant c(K) with

un(z) 6 c(K)un(z′) for n > N(K) and z, z′ ∈ K (1)

We will show that there is a z′ ∈ ∂Ω0 with un(z′) 6 M0.

Set hn(z) = gn(w, z)− g0(w, z). Then hn has a removable singularity at w and gives a continuous
function on Ω0 which is harmonic on Ω0. At some point ζ ∈ ∂∆ we have gn(w, ζ) = Mn, so hn(ζ) = Mn−
g0(w, ζ) > Mn −M0. The maximum principle implies that there is a z′ ∈ ∂Ω0 with hn(z′) > Mn −M0.
However, hn(z′) = gn(w, z′)− g0(w, z′) = gn(w, z′), so

un(z′) = Mn − gn(w, z′) 6 M0 .

Putting this into (1) above gives:

un(z) 6 c(K)M0 for n > N(K) and z ∈ K .

This shows that the functions (un) are a normal family on R \ ∆. Therefore, there is a subsequence
which converges locally uniformly on R \ ∆. By discarding some of the terms of the sequence we can
suppose that

gn(w, z)−Mn → q(w, z) locally uniformly on R \∆ .

In particular, gn(w, z) → q(w, z) uniformly on ∂Ω0. The functions hn(z)−Mn = gn(w, z)−Mn −
g0(w, z) are continuous on Ω0 and harmonic on Ω0. On the boundary ∂Ω0 they equal gn(w, z)−Mn so
they converge uniformly there. By the maximum principle, they converge uniformly on all of Ω0. The
limit is a harmonic function which extends q(w, ·)− g0(w, ·). Therefore,

gn(w, z)−Mn → q(w, z) locally uniformly on R \ {w}

and q(w, ·) has the same singularity at w as does g0(w, ·). We chose Mn so that gn(w, z)−Mn 6 0 for
z ∈ R \∆. Therefore, q(w, z) 6 0 for z ∈ R \∆. �
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We need to apply the previous result at two different point w and w′ in ∆. We will write M ′
n for

the supremum sup{gn(w′, z) : z ∈ ∂∆}. We can find a subsequence giving convergence for w and then
a subsequence of that which gives convergence for w′. Thus, we may assume that both

gn(w, z)−Mn → q(w, z) locally uniformly on R \ {w}, and
gn(w′, z)−M ′

n → q(w′, z) locally uniformly on R \ {w′} .

However, Corollary 8.2.4 shows that gn(w,w′) = gn(w′, w). So we see that the sequence (M ′
n − Mn)

converges to q(w,w′)− q(w′, w). It is therefore bounded.

The functions
kn(z) = (gn(w, z)−Mn)− (gn(w′, z)−M ′

n)

converge uniformly to q(w, z)− q(w′, z) on ∂∆, so they are uniformly bounded there. On ∂Ωn we have
kn(z) = M ′

n − Mn, so they are also uniformly bounded there. Since they are harmonic we find that
there is a constant S with

|kn(z)| 6 S for all z ∈ Ωn \∆ .

Taking the limit as n →∞ we obtain:

Proposition 8.3.2

We may choose the functions q(w, ·) in Proposition 8.3.1 so that

a(z) = q(w, z)− q(w′, z)

is bounded on R \∆.

�

We can now prove the Riemann Mapping Theorem for parabolic Riemann surfaces. First note that

Proposition 8.3.3

Let R be a parabolic Riemann surface. A bounded holomorphic function f : R → C must be constant.

Proof:

The real part (or imaginary part) of f is a bounded harmonic function, say u. So u − inf u is a
positive, bounded, (super)harmonic function on R. Since R is parabolic, this must be constant. �

Theorem 8.3.4 The Riemann Mapping Theorem for parabolic surfaces

A simply connected, parabolic Riemann surface R is conformally equivalent to the complex plane.

Proof:

Let w be a fixed point in a disc ∆ ⊂ R. Construct the function q(w, ·) as above. Theorem 8.1.1
shows that there is a holomorphic function Qw : R → C with q(w, z) = − log |Qw(z)|. The properties of
q(w, ·) imply that:

(a) Qw has exactly one zero, at w;

(b) |Qw(z)| > 1 for z ∈ R \∆.
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For any other point w′ ∈ ∆ we can construct a similar holomorphic function Qw′ : R → C with a
single zero at w′ and there is a constant S with:

(c) e−S |Qw(z)| 6 |Qw′(z)| 6 eS |Qw(z)| for z ∈ R \∆.

We will prove that Qw : R → C is conformal.

The function z 7→ Qw′(z) − Qw′(w) has a zero at w so F : z 7→ (Qw′(z) − Qw′(w))/Qw(z) is an
holomorphic function. Properties (b) and (c) above show that

|F (z)| 6 eS + |Qw′(w)| for z ∈ R \∆ .

Therefore, F is bounded on all of R. By Theorem 8.3.3, it is constant, c. This proves that, Qw′ =
cQw + Qw′(w). Thus Qw′ is T ◦Ww for some Euclidean similarity T . This is true for all choices of w′

within the disc ∆. By covering a path from w to w′ by a finite number of such discs, we see that it
holds for any w′ ∈ R.

If Qw(z1) = Qw(z2) then Qz1 = T ◦Qw for some Euclidean similarity T . Therefore 0 = Qz1(z1) =
Qz1(z2). But Qz1 has only one zero, at z1, so z1 = z2. Thus Qw is injective.

Suppose that a ∈ C\ Im Qw. Then Qw−a would have a holomorphic square root σ : R → C. Since
Qw is injective, σ(z1) 6= −σ(z2) for z1, z2 ∈ R. Hence, σ cannot take values in the open set −σ(∆) and
so z 7→ 1/(σ(z) + σ(w)) would be a bounded holomorphic function. Because R is parabolic, this must
be constant and so Qw must be constant. This is impossible, so Qw must be surjective.

Thus Qw : R → C is holomorphic and bijective, so it is conformal. �
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8.4 Elliptic Surfaces

Let R be an elliptic Riemann surface and ζ ∈ R. Then R \ {ζ} can not be hyperbolic or its Green’s
function would have a removable singularity at ζ. So R \ {ζ} is parabolic. As in the previous section
we can choose a disc ∆ in R \ {ζ} and, for each w ∈ ∆, a harmonic function

q(w, ·) : R \ {w, ζ} → R

which has a logarithmic singularity at w with coefficient −1. For w,w′ ∈ ∆ we can choose these
functions so that a(z) = q(w, z)− q(w′, z) is bounded outside ∆. Then a has a removable singularity at
ζ. Removing it we obtain a harmonic function a : R \ {w,w′} → R which has logarithmic singularities
at w and w′ with coefficients −1 and +1 respectively.

Theorem 8.4.1 The Riemann Mapping Theorem for Elliptic surfaces

A simply connected, elliptic Riemann surface R is conformally equivalent to the Riemann sphere.

Proof:

By mimicing the proof of Theorem 8.1.1 we can construct a meromorphic function F : R → P
with f = − log |F |. Then F has precisely one zero, at w, so it is of degree 1. Hence F is bijective and
therefore conformal. �

Exercises

2. Show that, for any distinct points zo, w in any Riemann surface R there is a harmonic function
f : R \ {zo, w} → R which has logarithmic singularities at zo and w with coefficients +1 and −1
respectively.

3. Let R be an elliptic Riemann surface and zo, ζ distinct points of R. Show that the function
q(zo, ·) : R \ {zo, ζ} → R on the parabolic surface R \ {ζ} has a logarithmic singularity at ζ with
coefficient −1 (and at zo with coefficient +1).
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8.5 Meromorphic Functions

Let R be a hyperbolic or parabolic Riemann surface. For each zo ∈ R there is a harmonic function

qzo
: R \ {zo} → R

which has a logarithmic singularity at zo with coefficient −1. The derivative ∂qzo is then a meromorphic
1-form on R which has a single pole at zo. If zo 6= z1 then the 1-forms ∂qzo

and ∂qz1 have their poles
at different places, so ∂qzo

/∂qz1 is a non-constant meromorphic function on R by Proposition 2.4.2.

Similarly, if R is an elliptic Riemann surface, then we have constructed harmonic functions

fzoz1 : R \ {zo, z1} → R

which have logarithmic singularities at zo and z1 with coefficients +1 and −1 respectively. So ∂fzoz1 is
a meromorphic 1-form with exactly two poles, at zo and z1. The ratio ∂fzoz1/∂fz2z3 is a non-constant
meromorphic function on R.

Theorem 8.5.1

Every Riemann surface R has a non-constant meromorphic function. �

Exercises

4. Show that every Riemann surface is triangulable.

Let R be any Riemann surface. Then we know that it has a universal covering π : R̂ → R and R̂
is conformally equivalent to P, C or D. Thus every Riemann surface is conformally equivalent to the
quotient of P, C or D by a subgroup of their automorphism group. We know which groups can arise for
P or C (Theorem 3.3.3 and 4.3.2). So:

Theorem 8.5.2 The uniformization theorem

A Riemann surface is conformally equivalent to one of the following:

P;

C, C/Z ∼= C \ {0}, C/(Z + Zτ) with =τ > 0;

D/G for G a Fuchsian group.

�
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We have shown that there are natural metrics on each of the surfaces P, C and D and the groups
which we quotient out by in the above theorem are all isometries for these metrics. Hence every Riemann
surface inherits a natural metric from its universal cover.

For example, the map
R2

+ → D \ {0} ; z 7→ exp iz

is the universal cover for the punctured disc D \ {0}. So we see that the hyperbolic metric on the
punctured disc is

ds =
1

|z| log 1
|z|
|dz| .

Theorem 8.5.3 Little Picard theorem

A non-constant meromorphic function f : C → P takes every value in P with at most two exceptions.

The exponential function shows that two exceptional values can occur.

Proof:

Suppose that f does not take three values w1, w2, w3. Then P \ {w1, w2, w3} is a Riemann surface.
By Theorem 8.5.2 its universal cover is D. Let π : D → P \ {w1, w2, w3} be a universal covering. The
monodromy theorem enables us to construct a lift of f , that is a holomorphic map F : C → D with
πF = f . Liouville’s theorem shows that F , and hence f , is constant. �

Theorem 8.5.4 Picard’s Great Theorem

Let f : {z ∈ C : |z| > R} → P be an analytic function that never takes the three distinct values
w1, w2, w3. Then f has either a removable singularity or a pole at ∞.

Proof:

The map φ : D \ {0} → {z ∈ C : |z| > R} which sends z to R/z is conformal. So we may consider
g = f ◦ φ : D \ {0} → P instead of f and show that g has a removable singularity or a pole at 0.

Both D\{0} and P\{w1, w2, w3} have the disc as their universal cover and so they have hyperbolic
metrics. The Schwarz – Pick lemma shows that the analytic map g : D \ {0} → P \ {w1, w2, w3} is a
contraction for these hyperbolic metrics.

We found the hyperbolic metric on D \ {0} above. For this metric, the circle C(r) = {z : |z| = r}
has hyperbolic length L(C(r)) = 2π/ log(1/r), which decreases to 0 as r decreases to 0.

Let ∆j be disjoint closed neighbourhoods of the points wj in P. The there is a δ > 0 such that any
pair of points chosen from different sets ∆j must be distance at least δ apart. For r sufficiently small,
we have L(C(r)) < δ, so the hyperbolic length of g(C(r)) is also less than δ. This means the g(C(r))
can not meet more than one of the sets ∆1,∆2,∆3.

At least one of the sets ∆k must have g(Cr) disjoint from ∆k for arbitrarily small r. So we can
choose a sequence of radii rn tending to 0 with each g(C(rn)) not meeting ∆k. By composing g with
a Möbius transformation we may make wk = ∞. Then the complement of ∆k is bounded within some
disc D(0,K). For each rn, the curve g(C(n)) does not meet ∆k so it lies in D(0,K).

By the maximum modulus principle, g is bounded by K on the entire annulus {z : rm < |z| < rn}.
This implies that g is bounded on all of {z : 0 < |z| < r1}. Consequently, g has a removable singularity
at 0.

It follows that g has a removable singularity or a pole at 0, and f has a removable singularity or a
pole at ∞. �
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