
7 7 CONSTRUCTING HARMONIC FUNCTIONS

7.1 Subharmonic Functions

Let u : R → R be a continuous function on the Riemann surface R. A disc ∆ in R is φ−1D when
φ : U → φU ⊃ D is a chart for R. Then

∂D → R ; z 7→ u(φ−1z)

is a continuous function so its Poisson integral gives a continuous function v : D → R which is harmonic
on D. Define u∆ : R → R by

u∆(z) =
{

u(z) if z /∈ ∆
v(φz) if z ∈ ∆ .

Then u∆ is continuous on R and harmonic on ∆.

The function u is clearly harmonic if, and only if, u∆ = u for every disc. It is difficult to construct
harmonic functions directly so we introduce a weaker condition which is easier to work with. The
continuous function u : R → R is subharmonic if u∆ > u for every disc ∆ in R. Similarly, u is
superharmonic if u∆ 6 u for every disc ∆. We will usually prove results for subharmonic functions
and tacitly assume the corresponding results for superharmonic functions. The following properties are
elementary:

Proposition 7.1.1

A continuous function u : R → R is subharmonic if, and only if, −u is superharmonic.
A continuous function u : R → R is harmonic if, and only if, it is both subharmonic and superharmonic.
If f : S → R is conformal and u : R → R is continuous and subharmonic then uf : S → R is
subharmonic.
Let (un) be continuous subharmonic functions on R.

λ1u1 + λ2u2 is subharmonic for λ1, λ2 > 0.
max(u1, u2) is subharmonic.
If un → u locally uniformly then u is subharmonic.

�

To obtain further examples of subharmonic functions we prove:

Proposition 7.1.2

A C2 function u : R → R is subharmonic if, and only if, the Laplacian 4uα of uα = uφ−1
α : φαUα → R

is non-negative for every chart φα : Uα → φαUα ⊂ C.

Note that uβ = uαtαβ for the analytic transition map tαβ , so

4uβ(z) = 4uα(tαβ(z))|t′αβ(z)|2.

Hence, 4uα(φαz) > 0 at a point z ∈ Uα ∩ Uβ if, and only if, 4uβ(φβz) > 0.

Proof:

It is sufficient to prove this when R is a domain in C.
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Suppose first that 4u > ε > 0 on R and ∆ is a disc in R. The continuous function u− u∆ attains
its supremum s at some point zo in the compact set ∆. If s > 0 then zo ∈ ∆. Now u− u∆ has a Taylor
expansion

(u− u∆)(zo + z) = A + Bz + Bz + Cz2 + Cz2 + Dzz + o(|z|2).
If this has a local maximum at zo then we must have B = C = 0 and D 6 0. Since D = ∂2u(zo)/∂z∂z =
1
44u(zo) we see that 4u(zo) 6 0 which is a contradiction. Therefore, s = 0 and so u 6 u∆.

If 4u > 0 then uε(z) = u(z) + εzz satisfies 4uε > 4ε > 0. So uε 6 uε ∆. As ε → 0 the functions
uε converge locally uniformly to u, so u 6 u∆ and u is subharmonic.

Conversely, suppose that u is subharmonic and zo ∈ R ⊂ C. Let ∆ be the disc {z : |z − zo| < r}.
Then

u∆(zo) =
∫ 2π

0

u(zo + reiθ)
dθ

2π
.

If u has a Taylor expansion

u(zo + z) = u(zo) + Bz + Bz + Cz2 + Cz2 + Dzz + o(|z|2)

then
u∆(zo) = u(zo) + Dr2 + o(r2).

By hypothesis u∆(zo) > u(zo) so 1
44u(zo) = D > 0. �

Proposition 7.1.3 The maximum principle for subharmonic functions

If u : R → R is a continuous subharmonic function which attains its maximum value then it is constant.

Proof:

Let S = sup(u(z) : z ∈ R) and A = u−1(S). Since u is continuous, A is closed. We will show that
A is also open.

Suppose that zo ∈ A and let φ : U → V be a chart with φ(zo) = 0. Then v = u ◦ φ−1 : V → R
is continuous and subharmonic with a maximum value S attained at 0. Hence, for each r > 0 with
{z : |z| 6 r} ⊂ V , we have

S = v(0) 6
∫ 2π

0

v(reiθ)
dθ

2π
6

∫ 2π

0

S
dθ

2π
= S

by Poisson’s formula. Thus equality must hold throughout. Since v is continuous, v(reiθ) = S for all θ.
This shows that v is constant on a neighbourhood of 0, so u is constant on a neighbourhood of zo.

Thus A is both open and closed. Since R is connected we must have A = ∅ or A = R. �

Note that the Proposition actually gives a little more. A function u : R → R is locally subharmonic
if it is subharmonic on a neighbourhood of each point. The proof shows that locally subharmonic
functions satisfy the maximum principle. Now suppose that ∆ is any disc in R and consider u − u∆.
This is locally subharmonic and 0 outside ∆. So it must attain its maximum value and this must be 0.
Consequently, u 6 u∆. So we have shown that every locally subharmonic function is subharmonic.

Exercises
1. A continuous function u : Ω → R on a domain Ω ⊂ C has the property S if, for each zo ∈ Ω, there

is a ρ > 0 such that ∫ 2π

0

u(zo + reiθ)
dθ

2π
> u(zo) for 0 6 r < ρ.

Prove that
(a) if u has property S and attains its maximum value then it is constant.
(b) u has the property S if, and only if, u is subharmonic.
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2. Let u : Ω → R be a continuous subharmonic function on a domain Ω ⊂ C. Show that, for r > 0,
the function

∫ 2π

0
u(zo + reiθ) dθ/2π is continuous and increasing.

Let φ : C → [0,∞) be a smooth function with
φ(w) = φ(|w|) for all w ∈ C.
φ(w) = 0 for |w| > 1.∫

C φ(w) du ∧ dv =
∫∞
0

φ(r)2π rdr = 1 where w = u + iv.
For ε > 0 set φε(w) = ε2φ(w/ε), and Ωε = {z ∈ Ω : D(z, ε) ⊂ Ω}. Define uε : Ωε → R by

uε(z) =
∫
|w|6ε

u(z + w)φε(w) du ∧ dv.

Prove that
(a)

∂uε

∂z
(z) =

∂

∂z

∫
C

u(w)φε(w − z) du ∧ dv = −
∫

C
u(w)

∂φε

∂z
(w − z) du ∧ dv.

(b) uε is a smooth function on Ωε.
(c) Each uε is subharmonic and uε → u locally uniformly as ε → 0.
Thus each continuous subharmonic function is the locally uniform limit of smooth (and hence C2)
subharmonic functions.

* The most useful definition of subharmonic functions is that they are distributions θ on R with
4θ > 0 in the sense that

〈4θ, f〉 = 〈θ,4f〉 > 0

for every test function f which is smooth and has compact support in R. It can then be proved that
there is an upper semi-continuous function u : R → [−∞,∞) with 〈θ, f〉 =

∫
R

uf . The function u need
not be continuous. Hence the most common definition of subharmonic functions only requires that they
are upper semi-continuous. Because we will only use them to construct harmonic functions from their
limits, we never need this extra generality. *

A Perron family on R is a family F of subharmonic functions on R which satisfy:

(a) if u ∈ F and ∆ is a disc in R then u∆ ∈ F .

(b) if u1, u2 ∈ F then max(u1, u2) ∈ F .

The purpose of the definition is:

Theorem 7.1.4 Perron families.

If F is a Perron family on R then supF is either +∞ on all of R or else it is a harmonic function on R.

Proof:

Let h(z) = sup(u(z) : u ∈ F) and choose zo ∈ R. Let ∆ be a disc containing zo. Then there
exist an ∈ F with an(zo) ↗ h(zo). So un = max(a1, a2, . . . , an) form an increasing sequence in F with
un(zo) ↗ h(zo). Also, vn = un ∆ will be an increasing sequence in F with vn(zo) ↗ h(zo). Each vn is
harmonic on ∆ so Harnack’s theorem shows that v = sup(vn : n ∈ N) is either identically +∞ on ∆ or
else it is harmonic on ∆. Clearly v 6 h with equality at zo.

Suppose that v(z) < h(z) at some z ∈ ∆. Then we can find bn ∈ F with bn(z) ↗ h(z). Set
ãn = max(an, bn) ∈ F and define ũn, ṽn and ṽ as above using ãn in place of an. Then ṽ is harmonic on
∆ with ṽ > v and

ṽ(zo) = h(zo) = v(zo) ; ṽ(z) = h(z) > v(z).
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So the function ṽ − v is harmonic on ∆, not constant and has a minimum at zo. This is impossible, so
v(z) = h(z) throughout ∆. In particular, h is harmonic on ∆.

Hence the set h−1(+∞) is both open and closed in R so it is either R or else ∅. In the first case h
is identically +∞. In the second h is finite and so is harmonic. �

A harmonic majorant for a family F of functions on R is a harmonic function h : R → R with
h > u for each u ∈ F .

Corollary 7.1.5

If F is a family of continuous, subharmonic functions on R which has a harmonic majorant, then there
is an unique least harmonic majorant.

Proof:

Let
H = {h : R → R : h is harmonic and h > u for all u ∈ F}

and
F = {u : R → R : u is continuous, subharmonic and h > u for all h ∈ H}.

Then F ⊂ F . It is apparent that F is a Perron family so k = supF is either +∞ or else harmonic. It
can not be +∞ since H is not empty. So k is harmonic. Then k ∈ H∩F so k must be the unique least
element of H. �

Exercises

3. Let u : D → R be continuous and subharmonic. Show that the least harmonic majorant of u is
given by

lim
r→1−

∫ 2π

0

u(reiθ)
r2 − |z|2

|z − reiθ|2
dθ

2π
= sup

r<1

∫ 2π

0

u(reiθ)
r2 − |z|2

|z − reiθ|2
dθ

2π
.

7.2 Dirichlet’s Problem

We will now show how to construct harmonic functions with specified properties by taking the suprema
of suitable Perron families. As a first example we will try to solve Dirichlet’s problem:

Let Ω be a relatively compact domain in R and b : ∂Ω → R a continuous function. Find a continuous
function B : Ω → R which is harmonic on Ω and has B|∂Ω = b.

There need not be a solution to the Dirichlet problem. For example, if Ω = {z : 0 < |z| < 1} ⊂ C and

b : ∂Ω → R ; z 7→
{

1 if z = 0
0 if |z| = 1

then any solution B would have a removable singularity at 0. Then B would be harmonic on D and 0
on ∂D so it would be identically 0, which was forbidden. If there is a solution it is unique because of
the maximum principle. The domain Ω is regular for the Dirichlet problem if there is a solution to the
Dirichlet problem for every continuous function b : ∂Ω → R.
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Let F = {u : Ω → R : u is continuous, subharmonic on Ω and u|∂Ω 6 b}. This is a Perron family
on Ω which contains the constant function inf b and is bounded above by sup b. So its supremum is a
harmonic function h : Ω → R. If there is a solution B to the Dirichlet problem, then each u ∈ F satisfies
u 6 B on Ω. So h 6 B. Also B ∈ F so B 6 h. Therefore, if there is a solution, it is h. We will show
that h is indeed a solution when the boundary ∂Ω is sufficiently regular.

A barrier at ζ ∈ ∂Ω is a continuous function β : Ω → R which is subharmonic on Ω and has
β(z) 6 0 on Ω with equality if, and only if, z = ζ. If β is a barrier at ζ and U is an open neighbourhood
of ζ then β|Ω ∩ U is obviously a barrier at ζ for Ω ∩ U . Conversely, suppose that γ is a barrier at ζ for
Ω ∩ U . Then γ is bounded on Ω ∩ ∂U , say γ(z) < −m < 0 for z ∈ Ω ∩ ∂U . Set

β(z) =
{

max(γ(z),−m) for z ∈ Ω ∩ U
−m for z ∈ Ω \ U .

Then β is easily seen to be continuous on Ω and subharmonic on Ω, so it is a barrier at ζ for Ω. Thus
the existence of a barrier depends only on the shape of Ω in the neighbourhood of ζ.

Theorem 7.2.1

A relatively compact domain Ω in R is regular for the Dirichlet problem if, and only if, there is a barrier
at each point of ∂Ω.

Proof:

Suppose that Ω is regular. For ζ ∈ ∂Ω we can certainly find a continuous function b : ∂Ω → R
with b(z) 6 0 and equality if, and only if, z = ζ. Let B : Ω → R be the corresponding solution to the
Dirichlet problem. Then B is continuous on Ω and harmonic on Ω. Since b is not constant, neither is
B, and so the maximum principle shows that B(z) < 0 for every z ∈ Ω except ζ. Thus B is a barrier
at ζ.

For the converse, suppose that b : ∂Ω → R is continuous and let h = supF as above. We will show
that h(z) → b(ζ) as z ∈ Ω tends to any boundary point ζ ∈ ∂Ω, so h will be the desired solution of the
Dirichlet problem.

Let γ be a barrier at ζ ∈ ∂Ω. Consider c1, c2 with c1 < b(ζ) < c2. There is an open neighbourhood
U of ζ with c1 < b(z) < c2 for all z ∈ U ∩ ∂Ω. Since γ 6 0 we have c1 + Kγ(z) < b(z) < c2 −Kγ(z) for
each z ∈ ∂Ω ∩ U and any positive K. Since γ is bounded away from 0 on Ω \ U , we can choose K so
large that

c1 + Kγ(z) < b(z) < c2 −Kγ(z) for z ∈ ∂Ω.

This implies that z 7→ c1 + Kγ(z) is a member of F so

c1 + Kγ(z) 6 h(z) for z ∈ Ω.

Taking the limit as z → ζ gives c1 6 lim infz→ζ h(z) . Similarly, s : z 7→ c2 −Kγ(z) is superharmonic
on Ω. If u ∈ F then u − s is subharmonic on Ω, continuous on Ω and negative on ∂Ω. The maximum
principle shows that u− s is negative on all of Ω so u 6 s. Therefore

h(z) 6 c2 −Kγ(z) for z ∈ Ω

and so lim supz→ζ h(z) 6 c2.

Together these inequalities show that h(z) tends to b(ζ) as z → ζ from within Ω. So the function
which is b on ∂Ω and h on Ω is the desired solution for the Dirichlet problem. �

For domains with suitably smooth boundaries it is easy to construct barriers. As a simple but
useful example, suppose that there is a chart φ : U → V ⊂ C at ζ ∈ ∂Ω with φ(ζ) = 0 and φ(Ω) disjoint
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from the strictly negative real axis. Then the principle branch σ of the square root is continuous on
Ω∩U and analytic on Ω∩U . Its real part β is 0 at ζ and strictly positive at every other point of Ω∩U .
So β is a barrier at ζ for Ω ∩ U . If ∂Ω is piecewise C1 then we can certainly find such charts at each
boundary point.

We can readily adapt these results to domains Ω ⊂ R which are not relatively compact provided
the boundary values are bounded, continuous functions. We say that Ω is regular for the Dirichlet
problem if, for each bounded, continuous function b : ∂Ω → R there is a bounded, continuous function
B : Ω → R which is harmonic on Ω and agrees with b on the boundary ∂Ω. Then

Theorem 7.2.1’

A domain Ω in R is regular for the Dirichlet problem if, and only if, there is a barrier at each point of
∂Ω.

�

Note that the function B need no longer be uniquely determined by b.

Exercises

4. Prove that a relatively compact domain with piecewise smooth boundary is regular for the Dirichlet
problem.

-5. Show that there cannot be a barrier at an isolated boundary point.

6. Show that every relatively compact domain Ω in R is contained within another relatively compact
domain Ω′ which is regular for the Dirichlet problem.

7.3 Green’s Functions

We will now consider the related problem of constructing the Green’s function for a Riemann surface
R.

Let u : R \ {zo} → R be a harmonic function and φ : U → φ(U) = D a chart with φ(zo) = 0. We
want u(z) to behave like c log |φ(z)| for z near zo. More formally, we will say that u has a logarithmic
singularity with coefficient c at zo if there is a harmonic function h on a neighbourhood of zo with

u(z) = c log |φ(z)|+ h(z) .

The crucial part of this is that h is harmonic at zo. The value of c does not depend on which chart we
choose. (Indeed,

c =
1
πi

∫
γ

∂u

for a small closed curve γ winding once around zo.) We will sometimes write “u(z) ∼ c log |φ(z)| near
zo” as an abbreviation for “u has a logarithmic singularity with coefficient c at zo”.

Let G(zo) be the set of all positive harmonic functions g : R \ {zo} → R+ which have a logarithmic
singularity at zo with coefficient −1. The least element of G(zo) is called the Green’s function for R
with a pole at zo. For this definition to make sense we need:
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Proposition 7.3.1

If G(zo) is non-empty, then it has a least element.

Proof:

Let F(zo) be the set of continuous subharmonic functions u : R \ {zo} → R which have compact
support and

z 7→ u(z) + log |φz| (z ∈ U)

continuous and subharmonic on U . This is clearly a Perron family on R \ {zo}. It contains

z 7→
{− log |φ(z)| if z ∈ U

0 if z /∈ U .

so it is non-empty.

Let u ∈ F(zo) and g ∈ G(zo). Then u is zero outside some compact set K. The difference u− g is
continuous and subharmonic on all of R, including zo. It is negative outside K and, by the maximum
principle (Proposition 7.1.3), it must be negative within K. Therefore u 6 g. The Perron family F(zo)
is thus bounded above and so its supremum s : R \ {zo} → R is harmonic. We also have

s(z) + log |φz| = sup(u(z) + log |φz| : u ∈ F(zo))

so s has a logarithmic singularity at zo with coefficient −1. Thus s ∈ G(zo) and s 6 g. �

We will denote the Green’s function for R with a pole at zo by gzo (or g if there is no possibility of
confusion). If inf g = m > 0, then g −m would be a smaller element of G(zo). So inf g must be 0. The
following result shows that, if the Green’s function with a pole at zo exists, then so does the Green’s
function with pole at any other point of R.

Theorem 7.3.2

The following conditions on the Riemann surface R are equivalent.

(a) There is a function s : R → [0,∞) which is non-constant, positive, continuous and superhar-
monic .

(b) For zo ∈ R there is a Green’s function g on R with pole at zo.

Proof:

If (b) holds, then set s(z) = min(g(z), 1). Since g(z) takes values close to 0 and ∞, the function s
is not constant. It is certainly continuous, superharmonic and positive, so (a) holds.

Now suppose that (a) holds. Let ∆ = φ−1D and ∆′ = φ−1{z : |z| < 1
2}. We will first construct the

harmonic measure of ∆′, that is a continuous function ω : R → R which is 1 on ∆′, harmonic on R \∆′

and not constant. The collection

A = {u : R → R : u continuous with compact support, subharmonic on R \∆′ and u 6 1}

is a Perron family on R \∆′. The function

uo(z) =

 1 if z ∈ ∆′

− log |φ(z)|/ log 2 if z ∈ ∆ \∆′

0 if z ∈ R \∆

7



is in A. Also, every u ∈ A satisfies u 6 1. So the supremum ω = supA is harmonic on R \ ∆′ with
uo 6 ω 6 1. It follows that ω(z) → 1 as z → ∂∆′ so we can extend ω continuously to all of R by
setting ω(z) = 1 for z ∈ ∆′. We may assume that inf s = 0 for otherwise we could replace s by s− inf s.
Since s is superharmonic it cannot attain this infimum, so inf(s(z) : z ∈ ∆′) = m > 0. The maximum
principle for subharmonic functions shows that each u ∈ A satisfies u 6 s/m so ω 6 s/m. In particular,
inf(ω(z) : z ∈ R) = 0. Hence ω is not constant. By the maximum principle for harmonic functions,
0 < ω(z) < 1 for z ∈ R \∆′.

Now that we have the harmonic measure we can construct a positive superharmonic function v on
R \ {zo} with v(z) ∼ − log |φ(z)| as z → zo. We can choose c with sup(ω(z) : z ∈ ∂∆) < c < 1. Define
v by

v(z) =

 Ac− log |φ(z)| if z ∈ ∆′

min(Ac− log |φ(z)|, Aω(z)) if z ∈ ∆ \∆′

Aω(z) if z ∈ R \∆

for some A > log 2/(1 − c). It is apparent that v is continuous and superharmonic on the interiors of
the three regions ∆′,∆ \∆′, and R \∆. The only difficulty is at the boundaries. If z ∈ ∂∆′ then

Ac− log |φ(z)| = Ac + log 2 < A = Aω(z)

so v is continuous and superharmonic at z because Ac− log |φ(z)| is. If z ∈ ∂∆ then

Ac− log |φ(z)| = Ac > A sup(ω(w) : w ∈ ∂∆) > Aω(z)

so v is continuous and superharmonic at z because Aω(z) is.

If u ∈ F(zo) then u − v is subharmonic on all of R (even near zo where it is h(z) − Ac). Outside
of the compact support of u it is negative. The maximum principle then shows that u− v 6 0 on all of
R. So supF(zo) 6 v. Hence supF(zo) is finite and so it is the desired Green’s function. �

We will call R hyperbolic if it has a Green’s function. For example, the disc D has a Green’s function

z 7→ − log |z|

with pole at 0, so it is hyperbolic.

We will call R elliptic if it is compact. An elliptic surface can not be hyperbolic, for if g were
a Green’s function it would attain its infimum and that would contradict the minimum principle for
harmonic functions. Hence the classes of elliptic and hyperbolic surfaces are disjoint. The Riemann
sphere C∞ is an example of an elliptic Riemann surface.

We will call R parabolic if it is neither elliptic nor hyperbolic. The complex plane C is parabolic.
For it is certainly not compact and, if g were a Green’s function, it would have a removable singularity
at ∞ and so give a Green’s function for C∞.

Corollary 7.3.3

If Ω is a domain in R and there is a barrier at one point ζ ∈ ∂Ω then Ω is hyperbolic and the Green’s
function g satisfies g(z) → 0 as z → ζ with z ∈ Ω.

Proof:

Let β be the barrier at ζ. Then −β is a non-constant, positive, superharmonic function on Ω so
Ω is certainly hyperbolic and has a Green’s function g with pole at zo. Recall from Proposition 7.3.1
that g is the supremum of F(zo) which consists of continuous subharmonic functions u which are zero
outside some compact subset of Ω. We will extend any such function u continuously to ∂Ω by setting
it equal to 0 there. Let V be a compact neighbourhood of zo contained in Ω. Then ∂V is compact so
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we can find K with g(z) 6 K for z ∈ ∂V . This implies that u(z) 6 K for z ∈ ∂V . However, u is 0 on
∂Ω so the maximum principle for subharmonic functions gives

u(z) 6 K for z ∈ Ω \ V.

The barrier β has β(z) 6 0 for z ∈ Ω and β(z) = 0 if, and only if, z = ζ. Hence, we can find m > 0 with
β(z) 6 −m for z ∈ ∂V . It follows that the subharmonic function z 7→ u(z) + (K/m)β(z) is at most 0
on ∂Ω ∪ ∂V . So the maximum principle gives

u(z) + (K/m)β(z) 6 0 for z ∈ Ω \ V.

Taking the supremum over all u gives

g(z) 6 −(K/m)β(z) for z ∈ Ω \ V.

Hence g(z) → 0 as z → ζ with z ∈ Ω. �

Exercises

-7. If g is the Green’s function for R with pole at zo and f : S → R is a conformal equivalence, then
gf is the Green’s function on S with pole at f−1(zo).

8. Find the Green’s function on the unit disc with a pole at any specified point (and prove that it is
the Green’s function).

9. Let g be the Green’s function on a domain Ω ⊂ C with a pole at zo and let f be a smooth function
on Ω with compact support within Ω. Prove that∫

Ω

4f(z)g(z) dz ∧ dz = −4πig(zo).

Hint: Stokes’ Theorem.
(This means that g defines a distribution with 4g = −4πiδzo

. In partial differential equations and
applied mathematics this is often taken as the definition of the Green’s function.)
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