77 CONSTRUCTING HARMONIC FUNCTIONS

7.1 Subharmonic Functions

Let u : R — R be a continuous function on the Riemann surface R. A disc A in R is ¢~ 'D when
¢:U — oU D D is a chart for R. Then

D —R ; zr—u(p '2)

is a continuous function so its Poisson integral gives a continuous function v : D — R which is harmonic

on D. Define ua : R — R by
Julz) iftz¢gA
ualz) = {U(¢z) if ze A

Then ua is continuous on R and harmonic on A.

The function w is clearly harmonic if, and only if, ua = u for every disc. It is difficult to construct
harmonic functions directly so we introduce a weaker condition which is easier to work with. The
continuous function u : R — R is subharmonic if ua > u for every disc A in R. Similarly, u is
superharmonic if uan < u for every disc A. We will usually prove results for subharmonic functions
and tacitly assume the corresponding results for superharmonic functions. The following properties are
elementary:

Proposition 7.1.1
A continuous function u : R — R is subharmonic if, and only if, —u is superharmonic.
A continuous function u : R — R is harmonic if, and only if, it is both subharmonic and superharmonic.
If f:S — R is conformal and v : R — R is continuous and subharmonic then uf : S — R is
subharmonic.
Let (uy) be continuous subharmonic functions on R.

A1 + Asus is subharmonic for \i, Ao > 0.

max(uy, ug) Is subharmonic.
If u, — w locally uniformly then w is subharmonic.

To obtain further examples of subharmonic functions we prove:

Proposition 7.1.2

A C? function u : R — R is subharmonic if, and only if, the Laplacian Aug of ug = ud,' : ¢poUs — R
is non-negative for every chart ¢, : Uy — ¢poUy C C.

Note that ug = uqtag for the analytic transition map .3, so

Dup(2) = Dtta (tap(2)) |t ()]
Hence, Auq(¢az) = 0 at a point z € U, NUg if, and only if, Aug(pgz) > 0.
Proof:

It is sufficient to prove this when R is a domain in C.
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Suppose first that Au > € >0 on R and A is a disc in R. The continuous function v — ua attains
its supremum s at some point z, in the compact set A. If s > 0 then z, € A. Now u — ua has a Taylor
expansion

(u —up)(2o +2) = A+ Bz + Bz + C2? + CZ* 4+ D2z + o(|2]?).
If this has a local maximum at z, then we must have B = C' =0 and D < 0. Since D = 9%u(z,)/0z0z =
LAu(z,) we see that Au(z,) < 0 which is a contradiction. Therefore, s = 0 and so u < ua.

If Au > 0 then u.(2) = u(z) + €2Z satisfies Aue > 4e > 0. So u. < ue ao. As € — 0 the functions
u. converge locally uniformly to u, so u < ua and w is subharmonic.

Conversely, suppose that « is subharmonic and z, € R C C. Let A be the disc {z : |z — z,| < r}.
Then

do

27
ua(zo) = / u(zo + 1"619) 7
0

If u has a Taylor expansion
u(zo + 2) = u(2o) + Bz + BZ + C2* + CZ* + D2z + o(|2]?)
then
ua(20) = u(2o) + Dr? + o(r?).
By hypothesis ua(zo) = u(z,) so 1Au(z,) =D > 0. O

Proposition 7.1.3 The maximum principle for subharmonic functions
If u : R — R is a continuous subharmonic function which attains its maximum value then it is constant.
Proof:

Let S = sup(u(z) : z € R) and A = u~*(S). Since u is continuous, A is closed. We will show that
A is also open.

Suppose that z, € A and let ¢ : U — V be a chart with ¢(z,) = 0. Then v =uo¢~!:V — R
is continuous and subharmonic with a maximum value S attained at 0. Hence, for each r > 0 with

{z:|z] <r} CV, we have
27 27
SZU(O)é/ v(re'?) d9</ SdH—S
0 0

o o
by Poisson’s formula. Thus equality must hold throughout. Since v is continuous, v(re’?) = S for all 6.
This shows that v is constant on a neighbourhood of 0, so w is constant on a neighbourhood of z,.

Thus A is both open and closed. Since R is connected we must have A =0 or A = R. |

Note that the Proposition actually gives a little more. A function u : R — R is locally subharmonic
if it is subharmonic on a neighbourhood of each point. The proof shows that locally subharmonic
functions satisfy the maximum principle. Now suppose that A is any disc in R and consider u — ua.
This is locally subharmonic and 0 outside A. So it must attain its maximum value and this must be 0.
Consequently, u < ua. So we have shown that every locally subharmonic function is subharmonic.

Exercises

1. A continuous function u : 2 — R on a domain €2 C C has the property S if, for each z, € €2, there
is a p > 0 such that

2m
0\ do
/ u(zo +7¢%) — >u(z,) for 0<r <p.
0 2w

Prove that
(a) if uw has property S and attains its maximum value then it is constant.
(b) w has the property S if, and only if, w is subharmonic.
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2. Let u : © — R be a continuous subharmonic function on a domain 2 C C. Show that, for r > 0,
the function fo% u(z, + re'?) df /27 is continuous and increasing.

Let ¢ : C — [0,00) be a smooth function with
d(w) = ¢(|w|) for all w € C.
¢(w) =0 for |w| > 1.
Jod(w) dundv = [;° ¢(r)2m rdr = 1 where w = u + iv.
For € > 0 set ¢.(w) = £2¢(w/e), and Q. = {z € Q : D(z,¢) C Q}. Define u. : Q. — R by

ue(2) = /w|<e u(z + w)pe(w) du A dv.

Prove that

(a)

%(2) = % Cu(w)¢s(w —2z)duNdv= —/Cu(w)aaqia (w—2z) du A dv.

(b) we is a smooth function on €.
(¢) Each u, is subharmonic and u. — u locally uniformly as ¢ — 0.

Thus each continuous subharmonic function is the locally uniform limit of smooth (and hence C?)
subharmonic functions.

* The most useful definition of subharmonic functions is that they are distributions 6 on R with
AO > 0 in the sense that
(00, f) = (0,Af) > 0

for every test function f which is smooth and has compact support in R. It can then be proved that
there is an upper semi-continuous function u : R — [—o00,00) with (0, f) = fR wf. The function u need
not be continuous. Hence the most common definition of subharmonic functions only requires that they
are upper semi-continuous. Because we will only use them to construct harmonic functions from their
limits, we never need this extra generality. *

A Perron family on R is a family F of subharmonic functions on R which satisfy:
(a) if u e F and A is a disc in R then up € F.
(b) if u1,us € F then max(uj,us) € F.

The purpose of the definition is:

Theorem 7.1.4  Perron families.
If F is a Perron family on R then sup F is either +o00 on all of R or else it is a harmonic function on R.
Proof:

Let h(z) = sup(u(z) : uw € F) and choose z, € R. Let A be a disc containing z,. Then there
exist a, € F with a,(2,) /" h(z,). So u, = max(ay,as,...,a,) form an increasing sequence in F with
Uun(2o) /" h(20). Also, v, = u, o will be an increasing sequence in F with v,(z,) /" h(z,). Each v, is
harmonic on A so Harnack’s theorem shows that v = sup(v,, : n € N) is either identically +o00 on A or
else it is harmonic on A. Clearly v < h with equality at z,.

Suppose that v(z) < h(z) at some z € A. Then we can find b, € F with b,(z) / h(z). Set
ap = max(an,b,) € F and define i, v,, and ¥ as above using a,, in place of a,,. Then ¢ is harmonic on
A with v > v and

0(20) = h(2p) = v(20) ; 0(2) =h(z) > v(2).



So the function v — v is harmonic on A, not constant and has a minimum at z,. This is impossible, so
v(z) = h(z) throughout A. In particular, h is harmonic on A.

Hence the set h=1(+00) is both open and closed in R so it is either R or else ). In the first case h
is identically +o0o. In the second h is finite and so is harmonic. O

A harmonic magjorant for a family F of functions on R is a harmonic function h : R — R with
h > u for each u € F.

Corollary 7.1.5

If F is a family of continuous, subharmonic functions on R which has a harmonic majorant, then there
is an unique least harmonic majorant.

Proof:

Let
H ={h:R— R:his harmonic and h > u for all u € F}

and
F ={u: R — R:uis continuous, subharmonic and h > u for all h € H}.

Then F C F. It is apparent that F is a Perron family so k = sup F is _either +o0 or else harmonic. It
can not be +oo since H is not empty. So k is harmonic. Then k € HNF so k must be the unique least
element of H. O

Exercises

3. Let u : D — R be continuous and subharmonic. Show that the least harmonic majorant of u is
given by

2 2 2 27 2 2
) o TS — |z do / o0 TC— |z* do
sl 0 ulre )|z—re”’|2 27 e 0 ulre )|z—re“9|2 2m

7.2 Dirichlet’s Problem

We will now show how to construct harmonic functions with specified properties by taking the suprema
of suitable Perron families. As a first example we will try to solve Dirichlet’s problem:

Let 2 be a relatively compact domain in R and b : 92 — R a continuous function. Find a continuous
function B : 2 — R which is harmonic on 2 and has B|0Q2 = b.

There need not be a solution to the Dirichlet problem. For example, if @ = {z:0 < |z| <1} C C and

1 ifz=0
b:02—=R ZH{O if |2 = 1
then any solution B would have a removable singularity at 0. Then B would be harmonic on D and 0
on 0D so it would be identically 0, which was forbidden. If there is a solution it is unique because of
the maximum principle. The domain 2 is reqular for the Dirichlet problem if there is a solution to the
Dirichlet problem for every continuous function b : 92 — R.
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Let F = {u: Q — R : u is continuous, subharmonic on Q and u|0Q < b}. This is a Perron family
on §2 which contains the constant function inf b and is bounded above by supb. So its supremum is a
harmonic function h : 2 — R. If there is a solution B to the Dirichlet problem, then each u € F satisfies
u< Bon Soh<B. Also B € F so B < h. Therefore, if there is a solution, it is h. We will show
that h is indeed a solution when the boundary 02 is sufficiently regular.

A barrier at ¢ € 0 is a continuous function 3 : @ — R which is subharmonic on € and has
B(z) < 0 on Q with equality if, and only if, z = (. If 3 is a barrier at ¢ and U is an open neighbourhood
of ¢ then |2 N U is obviously a barrier at ¢ for Q N U. Conversely, suppose that 7 is a barrier at ¢ for
QN U. Then v is bounded on QN AU, say v(z) < —m < 0 for z € QN OU. Set

_ J max(y(z),-m) for z€ QNU
6(2)_{m for 2€ Q\ U .

Then 3 is easily seen to be continuous on € and subharmonic on €2, so it is a barrier at ¢ for Q. Thus
the existence of a barrier depends only on the shape of €2 in the neighbourhood of (.

Theorem 7.2.1

A relatively compact domain ) in R is regular for the Dirichlet problem if, and only if, there is a barrier
at each point of 0f2.

Proof:

Suppose that Q is regular. For ¢ € 02 we can certainly find a continuous function b : 9Q — R
with b(z) < 0 and equality if, and only if, 2 = (. Let B : Q@ — R be the corresponding solution to the
Dirichlet problem. Then B is continuous on ) and harmonic on ). Since b is not constant, neither is
B, and so the maximum principle shows that B(z) < 0 for every z € Q except (. Thus B is a barrier
at C.

For the converse, suppose that b : 9Q — R is continuous and let h = sup F as above. We will show
that h(z) — b(¢) as z € 2 tends to any boundary point ¢ € 912, so h will be the desired solution of the
Dirichlet problem.

Let v be a barrier at ¢ € 99Q. Consider ¢, ¢ with ¢; < b({) < ¢o. There is an open neighbourhood
U of ¢ with ¢1 < b(2z) < ¢g for all z € UNIN. Since v < 0 we have ¢; + Ky(z) < b(z) < ¢a — Kv(z) for

each z € 9Q NU and any positive K. Since 7 is bounded away from 0 on Q \ U, we can choose K so
large that
a1+ Kv(z) <b(z) <co— Kvy(z) for z e 00

This implies that z — ¢; + K7(z) is a member of F so
1+ Kvy(z) <h(z) forzeQ.
Taking the limit as z — ¢ gives ¢; < liminf, ¢ h(z) . Similarly, s : 2+ ¢z — K(2) is superharmonic
on (2. If u € F then u — s is subharmonic on 2, continuous on ) and negative on 9. The maximum
principle shows that u — s is negative on all of 2 so u < s. Therefore
h(z) <co— Kvy(z) forzeQ
and so limsup,_, h(z) < ca.
Together these inequalities show that h(z) tends to b(¢) as z — ¢ from within Q. So the function
which is b on 02 and h on € is the desired solution for the Dirichlet problem. O
For domains with suitably smooth boundaries it is easy to construct barriers. As a simple but

useful example, suppose that there is a chart ¢ : U — V C C at ¢ € 92 with ¢(¢) = 0 and ¢(9Q) disjoint
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from the strictly negative real axis. Then the principle branch o of the square root is continuous on
QNU and analytic on QNU. Its real part 3 is 0 at ¢ and strictly positive at every other point of QN U.
So f3 is a barrier at ¢ for QN U. If 9N is piecewise C'' then we can certainly find such charts at each
boundary point.

We can readily adapt these results to domains 2 C R which are not relatively compact provided
the boundary values are bounded, continuous functions. We say that € is regular for the Dirichlet
problem if, for each bounded, continuous function b : 92 — R there is a bounded, continuous function
B : Q — R which is harmonic on € and agrees with b on the boundary 9. Then

Theorem 7.2.1°

A domain ) in R is regular for the Dirichlet problem if, and only if, there is a barrier at each point of

of.

Note that the function B need no longer be uniquely determined by b.

Exercises

4. Prove that a relatively compact domain with piecewise smooth boundary is regular for the Dirichlet
problem.

-5. Show that there cannot be a barrier at an isolated boundary point.

6. Show that every relatively compact domain €2 in R is contained within another relatively compact
domain Q" which is regular for the Dirichlet problem.

7.3 Green’s Functions

We will now consider the related problem of constructing the Green’s function for a Riemann surface
R.

Let u: R\ {z,} — R be a harmonic function and ¢ : U — ¢(U) = D a chart with ¢(z,) = 0. We
want u(z) to behave like clog |¢(z)| for z near z,. More formally, we will say that u has a logarithmic
singularity with coefficient ¢ at z, if there is a harmonic function h on a neighbourhood of z, with

u(z) = clog|6(2)] + h(z) .

The crucial part of this is that A is harmonic at z,. The value of ¢ does not depend on which chart we

choose. (Indeed,

1
c=— | Ou
i J,

for a small closed curve v winding once around z,.) We will sometimes write “u(z) ~ clog|¢(z)| near

b2

z,” as an abbreviation for “u has a logarithmic singularity with coefficient ¢ at z,”.

Let G(2,) be the set of all positive harmonic functions g : R\ {z,} — R™ which have a logarithmic
singularity at z, with coefficient —1. The least element of G(z,) is called the Green’s function for R
with a pole at z,. For this definition to make sense we need:
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Proposition 7.3.1
If G(z,) is non-empty, then it has a least element.
Proof:

Let F(z,) be the set of continuous subharmonic functions u : R\ {z,} — R which have compact
support and
z — u(z) + log |pz| (z€U)

continuous and subharmonic on U. This is clearly a Perron family on R\ {z,}. It contains

Z'_){—log|¢(z)| %fzeU
0 ifz¢U.

so it is non-empty.

Let u € F(z,) and g € G(25). Then u is zero outside some compact set K. The difference u — g is
continuous and subharmonic on all of R, including z,. It is negative outside K and, by the maximum
principle (Proposition 7.1.3), it must be negative within K. Therefore u < g. The Perron family F(z,)
is thus bounded above and so its supremum s: R\ {z,} — R is harmonic. We also have

s(z) +log|opz| = sup(u(z) + log|oz| 1 u € F(z,))

so s has a logarithmic singularity at z, with coefficient —1. Thus s € G(z,) and s < g. O
We will denote the Green’s function for R with a pole at z, by g, (or g if there is no possibility of
confusion). If inf g = m > 0, then g — m would be a smaller element of G(z,). So inf g must be 0. The

following result shows that, if the Green’s function with a pole at z, exists, then so does the Green’s
function with pole at any other point of R.

Theorem 7.3.2
The following conditions on the Riemann surface R are equivalent.

(a) There is a function s : R — [0,00) which is non-constant, positive, continuous and superhar-
monic .

(b) For z, € R there is a Green’s function g on R with pole at z,.
Proof:

If (b) holds, then set s(z) = min(g(z),1). Since g(z) takes values close to 0 and oo, the function s
is not constant. It is certainly continuous, superharmonic and positive, so (a) holds.

Now suppose that (a) holds. Let A = ¢~ 'D and A" = ¢~ !{z: |2| < 3}. We will first construct the
harmonic measure of A’, that is a continuous function w : R — R which is 1 on A’, harmonic on R\ A’
and not constant. The collection

A= {u: R — R :u continuous with compact support, subharmonic on R\ A’ and u < 1}

is a Perron family on R\ A’. The function

1 if z € A
uo(z) =< —logle(z)]/log2 if z€ A\ A’
0 if 2€ R\ A



is in A. Also, every u € A satisfies u < 1. So the supremum w = sup A is harmonic on R\ A’ with
U, < w < 1. Tt follows that w(z) — 1 as z — 9A’ so we can extend w continuously to all of R by
setting w(z) = 1 for z € A’. We may assume that inf s = 0 for otherwise we could replace s by s —inf s.
Since s is superharmonic it cannot attain this infimum, so inf(s(z) : 2 € A’) = m > 0. The maximum
principle for subharmonic functions shows that each u € A satisfies u < s/m so w < s/m. In particular,
inf(w(z) : 2 € R) = 0. Hence w is not constant. By the maximum principle for harmonic functions,
0<w(z)<1lforze R\A

Now that we have the harmonic measure we can construct a positive superharmonic function v on
R\ {z,} with v(z) ~ —log|®(z)] as z — z,. We can choose ¢ with sup(w(z) : z € 0A) < ¢ < 1. Define
v by

Ac —log |p(2)] if z € A/
v(z) = < min(Ac — log|o(2)], Aw(z)) if z € A\ A’
Aw(z) ifze R\ A

for some A > log2/(1 — ¢). It is apparent that v is continuous and superharmonic on the interiors of
the three regions A, A\ A’, and R\ A. The only difficulty is at the boundaries. If z € A’ then

Ac —log|¢p(z)] = Ac+1og2 < A = Aw(z)
so v is continuous and superharmonic at z because Ac — log |¢(z)| is. If z € A then
Ac —log|p(z)| = Ac > Asup(w(w) : w € IA) > Aw(z)
so v is continuous and superharmonic at z because Aw(z) is.

If u € F(z,) then u — v is subharmonic on all of R (even near z, where it is h(z) — Ac). Outside
of the compact support of u it is negative. The maximum principle then shows that © — v < 0 on all of
R. So sup F(z,) < v. Hence sup F(z,) is finite and so it is the desired Green’s function. O

We will call R hyperbolic if it has a Green’s function. For example, the disc D has a Green’s function

2 —log|z|
with pole at 0, so it is hyperbolic.

We will call R elliptic if it is compact. An elliptic surface can not be hyperbolic, for if g were
a Green’s function it would attain its infimum and that would contradict the minimum principle for
harmonic functions. Hence the classes of elliptic and hyperbolic surfaces are disjoint. The Riemann
sphere C, is an example of an elliptic Riemann surface.

We will call R parabolic if it is neither elliptic nor hyperbolic. The complex plane C is parabolic.

For it is certainly not compact and, if g were a Green’s function, it would have a removable singularity
at oo and so give a Green’s function for C.

Corollary 7.3.3

If Q is a domain in R and there is a barrier at one point ¢ € 0f2 then ) is hyperbolic and the Green’s
function g satisfies g(z) — 0 as z — ¢ with z € Q.

Proof:

Let 8 be the barrier at (. Then —/ is a non-constant, positive, superharmonic function on 2 so
Q) is certainly hyperbolic and has a Green’s function g with pole at z,. Recall from Proposition 7.3.1
that g is the supremum of F(z,) which consists of continuous subharmonic functions « which are zero
outside some compact subset of 2. We will extend any such function u continuously to 92 by setting
it equal to O there. Let V be a compact neighbourhood of z, contained in 2. Then JV is compact so

8



we can find K with g(z) < K for z € 9V. This implies that u(z) < K for z € 9V. However, u is 0 on
0f) so the maximum principle for subharmonic functions gives

u(z) < K for zeQ\V.
The barrier 3 has 3(z) < 0 for z € Q and 3(z) = 0 if, and only if, z = ¢. Hence, we can find m > 0 with
B(z) < —m for z € V. Tt follows that the subharmonic function z — wu(z) + (K/m)3(z) is at most 0
on 9N U JV. So the maximum principle gives
u(z) + (K/m)B(z) <0 for zeQ\V.
Taking the supremum over all u gives

9(z) < —(K/m)B(2) for 2eQ\WV.

Hence g(z) — 0 as z — ¢ with z € (. O

Exercises

-7. If g is the Green’s function for R with pole at z, and f : S — R is a conformal equivalence, then
gf is the Green’s function on S with pole at f~1(z,).

8. Find the Green’s function on the unit disc with a pole at any specified point (and prove that it is
the Green’s function).

9. Let g be the Green’s function on a domain 2 C C with a pole at z, and let f be a smooth function
on 2 with compact support within €2. Prove that

/QAf(z)g(z) dzZ Ndz = —4mig(z,).

Hint: Stokes’ Theorem.

(This means that g defines a distribution with Ag = —4mid,, . In partial differential equations and
applied mathematics this is often taken as the definition of the Green’s function.)
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