66 DISCRETE GROUPS

6.1 Discontinuous Group Actions

Let G be a subgroup of $\operatorname{Möb}(\mathbb{D})$. This group acts discontinuously on \mathbb{D} if, for every compact subset K of \mathbb{D}, the set $\{T \in G: T(K) \cap K \neq \emptyset\}$ is finite.

Proposition 6.1.1

Let G be a subgroup of $\operatorname{Möb}(\mathbb{D})$ and $z_{o} \in \mathbb{D}$. Then G acts discontinuously on \mathbb{D} if and only if

$$
\left\{T \in G: \rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant r\right\}
$$

is finite for every $r<\infty$.
Proof:
The closed disc $C=\left\{z \in \mathbb{D}: \rho\left(z_{o}, z\right) \leqslant r\right\}$ is compact and

$$
\begin{aligned}
T(C) \cap C \neq \emptyset & \Leftrightarrow \quad \text { there exists } w \in \mathbb{D} \text { with } \rho\left(z_{o}, w\right) \leqslant r \text { and } \rho\left(T\left(z_{o}\right), w\right) \leqslant r \\
& \Leftrightarrow \quad \rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant 2 r
\end{aligned}
$$

Suppose first that G acts discontinuously on \mathbb{D}. Then the set $\{T \in G: C \cap T(C) \neq \emptyset\}$ is finite and hence $\left\{T \in G: \rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant 2 r\right\}$ is also finite.

Now suppose that $\left\{T \in G: \rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant r\right\}$ is finite for every $r<\infty$. Any compact subset K of \mathbb{D} must lie within some closed ball $C=\left\{z \in \mathbb{D}: \rho\left(z_{o}, z\right) \leqslant r\right\}$. Then

$$
\{T \in G: K \cap T(K) \neq \emptyset\} \subset\{T \in G: C \cap T(C) \neq \emptyset\}=\left\{T \in G: \rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant 2 r\right\}
$$

So G acts discontinuously on \mathbb{D}.

Proposition 6.1.2

Let G act discontinuously on \mathbb{D} and let $z_{o} \in \mathbb{D}$. Then
The stabilizer $\operatorname{Stab}\left(z_{o}\right)=\left\{T \in G: T\left(z_{o}\right)=z_{o}\right\}$ is a finite, cyclic subgroup of G.
The orbit $G\left(z_{o}\right)$ is a closed, discrete subset of \mathbb{D}. So there is a $\delta>0$ with

$$
\rho\left(z_{o}, T\left(z_{o}\right)\right)>4 \delta \quad \text { for all } T \in G \backslash \operatorname{Stab}\left(z_{o}\right) .
$$

Proof:
The stabilizer $\operatorname{Stab}\left(z_{o}\right)=\left\{T \in G:\left\{z_{o}\right\} \cap T\left(\left\{z_{o}\right\}\right) \neq \emptyset\right\}$ is certainly finite and a subgroup of $\left\{T \in \operatorname{Möb}(\mathbb{D}): T\left(z_{o}\right)=z_{o}\right\}$. Hence it is conjugate to a finite subgroup of

$$
\{T \in \operatorname{Möb}(\mathbb{D}): T(0)=0\}=\{z \mapsto \omega z:|\omega|=1\} .
$$

Such a subgroup must be cyclic since it is generated by the rotation through the smallest positive angle. Hence $\operatorname{Stab}\left(z_{o}\right)$ is generated by an elliptic transformation of finite order that fixes z_{o}.

For $w \in \mathbb{D}$ we have

$$
\rho\left(z_{o}, T\left(z_{o}\right)\right) \leqslant \rho\left(w, z_{o}\right)+\rho\left(w, T\left(z_{o}\right)\right) .
$$

So Proposition 6.1.1 shows that $\rho\left(w, T\left(z_{o}\right)\right) \leqslant r$ for only a finite number of $T \in G$. Consequently, the orbit $G(w)$ is closed and discrete in \mathbb{D}.

For the remainder of this section G will be a subgroup of Möb(\mathbb{D}) that acts discontinuously on \mathbb{D}. The quotient \mathbb{D} / G is the set of all G-orbits in \mathbb{D} and $q: \mathbb{D} \rightarrow \mathbb{D} / G$ is the quotient map, which sends a point z to the orbit $G(z)$. We wish to show that the quotient can be made into a Riemann surface in such a way that the quotient map is holomorphic.

Example:

First consider the example where G is the cyclic group

$$
\left\{z \mapsto e^{2 \pi i k / N} z: k=0,1,2, \ldots, N-1\right\}
$$

of order N that fixes 0 . The map

$$
\pi: \mathbb{D} \rightarrow \mathbb{D} ; \quad z \mapsto z^{N}
$$

is constant on each orbit and maps each orbit to a distinct point. Hence it induces a bijection

$$
\phi: \mathbb{D} / G \rightarrow \mathbb{D} ; \quad q(z) \mapsto z^{N} .
$$

We could then make \mathbb{D} / G into a Riemann surface by insisting that ϕ is conformal. The quotient map will then be holomorphic since $z \mapsto z^{N}$ is.

A very similar example is when G is the cyclic group of order N that fixes another point $z_{o} \in \mathbb{D}$. We may conjugate by the Möbius transformation

$$
z \mapsto \frac{z-z_{o}}{1-\overline{z_{o}} z}
$$

to reduce this to the previous example. Hence we see that the quotient is identified with \mathbb{D} by taking the quotient mapping to be

$$
q: \mathbb{D} \rightarrow \mathbb{D} ; \quad z \mapsto\left(\frac{z-z_{o}}{1-\overline{z_{o}} z}\right)^{N} .
$$

The general case arises by using these examples to construct charts on \mathbb{D} / G that make it into a Riemann surface.

First we will define a metric $\widetilde{\rho}$ on the quotient. For orbits $p_{j}=q\left(z_{j}\right)$ set

$$
\begin{aligned}
\widetilde{\rho}\left(p_{1}, p_{2}\right) & =\inf \left\{\rho\left(w_{1}, w_{2}\right): w_{1} \in p_{1}, w_{2} \in p_{2}\right\} \\
& =\inf \left\{\rho\left(T_{1}\left(z_{1}\right), T_{2}\left(z_{2}\right)\right): T_{1}, T_{2} \in G\right\}
\end{aligned}
$$

It is simple to see that $\widetilde{\rho}$ is non-negative, symmetric and satisfies the triangle inequality. Since each $T \in G \subset \operatorname{Möb}(\mathbb{D})$ is an isometry for the hyperbolic metric ρ, we have

$$
\widetilde{\rho}\left(p_{1}, p_{2}\right)=\inf \left\{\rho\left(z_{1}, T\left(z_{2}\right)\right): T \in G\right\} .
$$

Now Proposition 6.1 .2 shows that the orbit $G\left(z_{2}\right)$ is closed, so we see that $\widetilde{\rho}\left(p_{1}, p_{2}\right)=0$ only when $p_{1}=p_{2}$. Hence, $\tilde{\rho}$ is a metric on the quotient \mathbb{D} / G. It gives the quotient topology on \mathbb{D} / G, which is therefore Hausdorff.

Lemma 6.1.3

Let G be a subgroup of $\operatorname{Möb}(\mathbb{D})$ that acts discontinuously on \mathbb{D} and let $z_{o} \in \mathbb{D}$ be fixed by only the identity transformation in G. Then there is a $\delta=\delta_{z_{o}}>0$ so the quotient map restricts to give an isometry

$$
q \mid: \mathbb{D}\left(z_{o}, \delta\right) \rightarrow \widetilde{\mathbb{D}}\left(q\left(z_{o}\right), \delta\right)
$$

from the disc $\mathbb{D}\left(z_{o}, \delta\right)$ of radius δ about z_{o} in \mathbb{D} onto the disc $\widetilde{\mathbb{D}}\left(q\left(z_{o}\right), \delta\right)$ of radius δ about $q\left(z_{o}\right)$ in \mathbb{D} / G.
Proof:
Choose δ as in Proposition 6.1.2 so that $\rho\left(z_{o}, T\left(z_{o}\right)\right)>4 \delta$ for each $T \in G \backslash\{I\}$.
If $p \in \widetilde{\mathbb{D}}\left(q\left(z_{o}\right), \delta\right)$, then $\widetilde{\rho}\left(q\left(z_{o}\right), p\right)<\delta$. Hence, there is a $z \in \mathbb{D}\left(z_{o}, \delta\right)$ with $q(z)=p$. If z^{\prime} is any other point of the orbit p, then $z^{\prime}=T(z)$ for some $T \in G \backslash\{I\}$. Hence,

$$
\rho\left(z_{o}, z^{\prime}\right) \geqslant \rho\left(z_{o}, T\left(z_{o}\right)\right)-\rho\left(T\left(z_{o}\right), T(z)\right)=\rho\left(z_{o}, T\left(z_{o}\right)\right)-\rho\left(z_{o}, z\right)>4 \delta-\delta
$$

and so $z^{\prime} \notin \mathbb{D}\left(z_{o}, \delta\right)$. Therefore, the restriction

$$
q \mid: \mathbb{D}\left(z_{o}, \delta\right) \rightarrow \widetilde{\mathbb{D}}\left(q\left(z_{o}\right), \delta\right)
$$

is bijective.
Now suppose that $z_{1}, z_{2} \in \mathbb{D}\left(z_{o}, \delta\right)$. For each $T \in G \backslash\{I\}$ we have

$$
\begin{aligned}
\rho\left(z_{1}, T\left(z_{2}\right)\right) & \geqslant \rho\left(z_{o}, T\left(z_{o}\right)\right)-\rho\left(z_{o}, z_{1}\right)-\rho\left(T\left(z_{o}\right), T\left(z_{2}\right)\right) \\
& =\rho\left(z_{0}, T\left(z_{o}\right)\right)-\rho\left(z_{o}, z_{1}\right)-\rho\left(z_{o}, z_{2}\right) \\
& >4 \delta-\delta-\delta=2 \delta .
\end{aligned}
$$

Hence,

$$
\widetilde{\rho}\left(q\left(z_{1}\right), q\left(z_{2}\right)\right)=\inf \left\{\rho\left(z_{1}, T\left(z_{2}\right)\right): T \in G\right\}=\rho\left(z_{1}, z_{2}\right)
$$

and the restriction of q is an isometry.

This lemma deals with the case where the stabilizer of a point z_{o} is trivial. Otherwise, the stabilizer of z_{o} is a cyclic group of some order $N \in \mathbb{N}$. Note that, when G acts properly discontinuously on \mathbb{D}, then $N=1$ for every orbit. In this case the lemma shows that there is a neighbourhood of every point $p=q\left(z_{o}\right)$ homeomorphic to a neighbourhood of z_{o} in \mathbb{D}. These neighbourhoods readily give us charts that make the quotient \mathbb{D} / G into a Riemann surface with $q: \mathbb{D} \rightarrow \mathbb{D} / G$ holomorphic.

Suppose that z_{o} has a stabilizer in G of order N. The stabilizer is a cyclic group generated by an elliptic transformation fixing z_{o}. Proposition 6.1 .2 gives a number $\delta=\delta\left(p_{o}\right)>0$ such that the discs $\mathbb{D}(w, \delta)=\{z \in \mathbb{D}: \rho(w, z)<\delta\}$ for $w \in p_{o}$ are either disjoint or identical. For $T \in G$ we have

$$
\begin{aligned}
T\left(\mathbb{D}\left(z_{o}, \delta\right)\right)=\mathbb{D}\left(z_{o}, \delta\right) & \text { when } T \in \operatorname{Stab}\left(z_{o}\right) ; \\
T\left(\mathbb{D}\left(z_{o}, \delta\right)\right) \cap \mathbb{D}\left(z_{o}, \delta\right)=\emptyset & \text { for } T \in G \backslash \operatorname{Stab}\left(z_{o}\right) .
\end{aligned}
$$

Set $\Delta=\Delta\left(p_{o}\right)=\left\{p \in \mathbb{D} / G: \widetilde{\rho}\left(p_{o}, p\right)<\delta\right\}$. Then the quotient map sends $\mathbb{D}\left(z_{o}, \delta\right)$ onto Δ. Each value in Δ is taken exactly N times in $\mathbb{D}\left(z_{o}, \delta\right)$ except for p_{o}, which is only taken at z_{o}. The points $z, z^{\prime} \in \mathbb{D}\left(z_{o}, \delta\right)$ have $q(z)=q\left(z^{\prime}\right)$ if and only if $z^{\prime}=T(z)$ for some $T \in \operatorname{Stab}\left(z_{o}\right)$.

The map

$$
\beta: z \mapsto\left(\frac{z-z_{o}}{1-\overline{z_{o}} z}\right)^{N}
$$

maps the disc $\mathbb{D}\left(z_{o}, \delta\right)$ onto another disc $\mathbb{D}\left(0, \delta^{\prime}\right)$ (where δ^{\prime} is given by $\left.\tanh \frac{1}{2} \delta^{\prime}=\left(\tanh \frac{1}{2} \delta\right)^{N}\right)$. This map also has the property that $\beta(z)=\beta\left(z^{\prime}\right)$ if and only if $z^{\prime}=T(z)$ for some $T \in \operatorname{Stab}\left(z_{o}\right)$. Therefore, there is an unique map

$$
\phi: \Delta \rightarrow \mathbb{D}\left(0, \delta^{\prime}\right) \quad \text { with } \quad \phi(q(z))=\left(\frac{z-z_{o}}{1-\overline{z_{o}} z}\right)^{N}
$$

for each $z \in \mathbb{D}\left(z_{o}, \delta\right)$.
Take these maps β as charts for \mathbb{D} / G. The transition maps are clearly Möbius transformations and so we see that the quotient is a Riemann surface with the quotient map holomorphic.

Note that the critical points of the quotient map $q: \mathbb{D} \rightarrow \mathbb{D} / G$ are those that have non-trivial stabilizers. These points are a discrete subset of \mathbb{D}. So, in particular, the stabilizer is trivial for all but a countable number of points in \mathbb{D}.

6.2 Discrete Groups

Möbius transformations in $\operatorname{Möb}(\mathbb{D})$ are represented by 2×2 complex matrices. This set of matrices has a natural Euclidean topology. Hence we can define a subgroup G of $\operatorname{Möb}(\mathbb{D})$ to be a discrete group if it is a discrete subset of $\operatorname{Möb}(\mathbb{D})$.

Proposition 6.2.1

A subgroup G of $\operatorname{Möb}(\mathbb{D})$ is a discrete group if and only if the identity I is isolated in G.

Proof:

For each $T \in G$ the left multiplication $L_{T}: G \rightarrow G ; A \mapsto T A$ is a homeomorphism. Hence I is an isolated point of G if and only if every $T \in G$ is isolated, that is G is discrete.

This proposition shows that a group $G \leqslant \operatorname{Möb}(\mathbb{D})$ is a discrete subgroup of $\operatorname{Möb}(\mathbb{D})$ if and only if there is no sequence $\left(T_{n}\right)$ of non-identity elements of G that converges to I.

The main aim of this section is to prove that discreteness and acting discontinuously on \mathbb{D} are equivalent.

Theorem 6.2.2

Let G be a subgroup of $\operatorname{Möb}(\mathbb{D})$. Then G acts discontinuously on \mathbb{D} if and only if G is a discrete subgroup of $\operatorname{Möb}(\mathbb{D})$.

Proof:
Suppose first that G is not a discrete subgroup of $\operatorname{Möb}(\mathbb{D})$. Then there is a sequence $\left(T_{n}\right)$ of non-identity elements of G with $T_{n} \rightarrow I$ as $n \rightarrow \infty$. Choose any point $z_{o} \in \mathbb{D}$. Then $T_{n}\left(z_{o}\right) \rightarrow z_{o}$ as $n \rightarrow \infty$. By Proposition 6.1.1 now shows that G can not act discontinuously on \mathbb{D}. Thus, if G does act discontinuously on \mathbb{D}, then G must be a discrete subgroup of Möb(\mathbb{D}).

For the converse, suppose that G is a discrete subgroup of Möb($\mathbb{D})$ but G does not act discontinuously on \mathbb{D}. By Proposition 6.1.1, there are infinitely many elements $T \in G$ with

$$
\rho(0, T(0)) \leqslant r \quad \text { for some } r<\infty .
$$

The disc $\{z \in \mathbb{D}: \rho(0, z) \leqslant r\}$ is compact, so there is a sequence of non-identity element $\left(T_{n}\right)$ in G with

$$
T_{n}(0) \rightarrow w_{o} \quad \text { as } n \rightarrow \infty
$$

and w_{o} some point of \mathbb{D} with $\rho\left(0, w_{o}\right) \leqslant r$.
For each $w \in \mathbb{D}$, let

$$
S_{w}: z \mapsto \frac{z-w}{1-\bar{w} z} .
$$

This is a Möbius transformation and $S_{w} \rightarrow S_{w_{o}}$ as $w \rightarrow w_{o}$. For each $n \in \mathbb{N}$, set

$$
S_{n}=S_{T_{n}(0)} \quad \text { and } \quad R_{n}=S_{n} \circ T_{n}
$$

Then, as $n \rightarrow \infty$, we have $S_{n} \rightarrow S_{w_{o}}$. Each R_{n} is a Möbius transformation of \mathbb{D} that fixes 0 , so it lies in the compact group of rotations

$$
\{z \mapsto \omega z:|\omega|=1\} \leqslant \operatorname{Möb}(\mathbb{D}) .
$$

Consequently, there is a subsequence $\left(R_{n^{\prime}}\right)$ that converges to some rotation R_{o}. Therefore,

$$
T_{n^{\prime}}=S_{n^{\prime}}^{-1} \circ R_{n^{\prime}} \rightarrow S_{w_{o}}^{-1} \circ R_{o} \quad \text { as } n \rightarrow \infty
$$

This proves that G is a not a discrete subgroup of $\operatorname{Möb}(\mathbb{D})$. For, if G were discrete, then there would be an $\varepsilon>0$ with the Euclidean distance $d(T, I)>\varepsilon$ for every $T \in G \backslash\{I\}$. This implies that $d\left(T, T^{\prime}\right)>\varepsilon$ for every pair of distinct elements $T, T^{\prime} \in G$. Hence the sequence $\left(T_{n}\right)$ from G can only converge when it is ultimately constant.

6.3 Dirichlet Domains

Let G be a discrete group acting on \mathbb{D}. Then we have shown that the quotient \mathbb{D} / G is a Riemann surface. To identify it, it is often useful to find a fundamental domain for G. This is a subdomain F of \mathbb{D} such that no two points of F are in the same orbit and every orbit meets the closure \bar{F} in a finite number of points. Then, we can identify the quotient \mathbb{D} / G with the space obtained from \bar{F} by identifying points on ∂F that lie in the same orbit. Dirichlet showed that we could always find such a fundamental domain.

Let z_{o} be a point \mathbb{D} that has trivial stabilizer. The Dirichlet domain with centre z_{o} is the set

$$
D\left(z_{o}\right)=\left\{z \in \mathbb{D}: \rho\left(z, z_{o}\right)<\rho\left(z, T\left(z_{o}\right)\right) \text { for all } T \in G \backslash\{I\}\right\}
$$

Proposition 6.3.1 Dirichlet domains

For each point z_{0} with trivial stabilizer the Dirichlet domain $D\left(z_{o}\right)$ with centre z_{0} is a fundamental domain for G.

Proof:
For any two distinct points $z_{o}, z_{1} \in \mathbb{D}$, the set

$$
\gamma\left(z_{1}\right)=\left\{z \in \mathbb{D}: \rho\left(z, z_{o}\right)=\rho\left(z, z_{1}\right)\right\}
$$

is the perpendicular bisector of the hyperbolic geodesic from z_{o} to z_{1}. Hence, it is itself a hyperbolic geodesic. The set

$$
H\left(z_{1}\right)=\left\{z \in \mathbb{D}: \rho\left(z, z_{o}\right)<\rho\left(z, z_{1}\right)\right\}
$$

is then the half-plane bounded by this geodesic that contains z_{o}. Each such half-plane is open, so the intersection

$$
D\left(z_{o}\right)=\bigcap\left\{H\left(T\left(z_{o}\right)\right): T \in G \backslash\{I\}\right\}
$$

is an open set containing z_{o}.
Note that the distance from z_{o} to $\gamma\left(z_{1}\right)$ is $\frac{1}{2} \rho\left(z_{o}, z_{1}\right)$. The orbit $G\left(z_{o}\right)$ is a discrete subset of \mathbb{D}, so only finitely many points of this orbit can lie within a finite distance of any point w. This means that only finitely many of the geodesics $\gamma\left(T\left(z_{o}\right)\right)$ meet any disc about z_{o} with finite hyperbolic radius. It is now simple to see that the closure of $D\left(z_{o}\right)$ is the intersection of the closed half-planes

$$
\overline{H\left(z_{1}\right)}=\left\{z \in \mathbb{D}: \rho\left(z, z_{o}\right) \leqslant \rho\left(z, z_{1}\right)\right\}
$$

This closure is bounded by arcs of the geodesics $\gamma\left(T\left(z_{o}\right)\right)$.
Consider a point $w \in \mathbb{D}$. The orbit $G\left(z_{o}\right)$ is discrete, so only finitely many points of the orbit lie within any fixed hyperbolic distance of w. Consequently, there is a point $T\left(z_{o}\right)$ in this orbit with $\rho\left(w, T\left(z_{o}\right)\right)$ minimal. This means that $T^{-1}(w)$ lies in $\overline{D\left(z_{o}\right)}$.

Suppose another point in the orbit of w also lay in $\overline{D\left(z_{o}\right)}$, say $S^{-1}(w)$. Then

$$
\rho\left(z_{o}, S^{-1}(w)\right) \leqslant \rho\left(S^{-1} T\left(z_{o}\right), S^{-1}(w)\right)=\rho\left(z_{o}, T^{-1}(w)\right)
$$

and so we must have equality with

$$
\rho\left(z_{o}, S^{-1}(w)\right)=\rho\left(S^{-1} T\left(z_{o}\right), S^{-1}(w)\right)=\rho\left(z_{o}, T^{-1}(w)\right)
$$

Since $S^{-1} T \neq I$, we see that $S^{-1}(w)$ lies on the boundary of the Dirichlet domain $D\left(z_{o}\right)$. This shows that no two points of the open Dirichlet domain can lie in the same orbit.

It also shows that, if $S^{-1}(w)$ and $T^{-1}(w)$ both lie in the closure of the Dirichlet domain, then they are at the same distance from z_{0}. Only a finite number of points in the orbit $G(w)$ can lie at this distance from z_{o}. So the orbit $G(w)$ meets $\overline{D\left(z_{o}\right)}$ in finitely many points.

