5.1 The Hyperbolic Plane.

Lemma 5.1.1 Schwarz' lemma

If $f: \mathbb{D} \rightarrow \mathbb{D}$ is an analytic map with $f(0)=0$ then

$$
|f(w)| \leqslant|w| \quad \text { for } \quad w \in \mathbb{D} \backslash\{0\} \quad \text { and } \quad\left|f^{\prime}(0)\right| \leqslant 1
$$

Moreover, if equality holds at any point then f must be the map $z \mapsto \omega z$ for some ω of modulus 1 .
Proof:
The map

$$
g: \mathbb{D} \rightarrow \mathbb{C} \quad ; \quad w \mapsto \begin{cases}f(w) / w & \text { for } w \in \mathbb{D} \backslash\{0\} \\ f^{\prime}(0) & \text { for } w=0\end{cases}
$$

is analytic on $\mathbb{D} \backslash\{0\}$ and continuous at 0 . So it has a removable singularity at 0 and hence is analytic on all of \mathbb{D}. The maximum modulus principle shows that, for $r<1$,

$$
|g(w)| \leqslant \sup (|g(z)|:|z|=r)=\sup (|f(z)| / r:|z|=r) \quad \text { for } \quad|w| \leqslant r
$$

Hence,

$$
|g(w)| \leqslant 1 \quad \text { for } \quad w \in \mathbb{D}
$$

which is the first part of the lemma. Moreover, if there is equality at any point of \mathbb{D} then the maximum modulus principle implies that g is constant. The constant must be of modulus 1 .

This lemma will enable us to prove that the only conformal maps $f: \mathbb{D} \rightarrow \mathbb{D}$ are the Möbius transformations which do map \mathbb{D} to itself. To discover which Möbius transformations these are, consider the map $J: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty} ; z \mapsto \bar{z}^{-1}$. This is inversion in the unit circle, so $J(z)=z$ if, and only if, $z \in \partial \mathbb{D}$. Hence, a Möbius transformation $T: z \mapsto(a z+b) /(c z+d) \quad(a d-b c=1)$ will map the unit circle onto itself if, and only if,

$$
\begin{array}{ll}
& J T=T J \\
\Leftrightarrow & J T J(z)=\frac{\bar{d} z+\bar{c}}{\bar{b} z+\bar{a}}=\frac{a z+b}{c z+d}=T(z) \quad \text { for } \quad z \in \mathbb{C}_{\infty} \\
\Leftrightarrow & d= \pm \bar{a} \quad ; \quad b= \pm \bar{c} .
\end{array}
$$

The + signs give the Möbius transformations

$$
\begin{equation*}
T: z \mapsto \frac{a z+\bar{c}}{c z+\bar{a}} \quad \text { for } \quad|a|^{2}-|c|^{2}=1 \tag{*}
\end{equation*}
$$

which map \mathbb{D} onto \mathbb{D}. While the - signs give the Möbius transformations $T: z \mapsto(a z-\bar{c}) /(c z-\bar{a})$ for $|a|^{2}-|c|^{2}=-1$ which map \mathbb{D} onto $\left\{z \in \mathbb{C}_{\infty}:|z|>1\right\}$. In particular we see that the maps (*) form a group of conformal maps from \mathbb{D} onto \mathbb{D}. This group of maps is transitive on \mathbb{D}, so for every $z \in \mathbb{D}$ there is a map T with $T(0)=z$. The following result shows that there are no other conformal maps from \mathbb{D} onto itself.

Theorem 5.1.2

$$
\text { Aut } \mathbb{D}=\left\{z \mapsto \frac{a z+\bar{c}}{c z+\bar{a}}:|a|^{2}-|c|^{2}=1\right\}
$$

Proof:

Suppose that $h \in \operatorname{Aut} \mathbb{D}$. Then $h(0) \in \mathbb{D}$ so we can find $a, c \in \mathbb{C}$ with $|a|^{2}-|c|^{2}=1$ and $h(0)=-\bar{c} / a$. Let T be the Möbius transformation $z \mapsto(a z+\bar{c}) /(c z+\bar{a})$. Then $f=T h \in$ Aut \mathbb{D} and $f(0)=T h(0)=0$. By Schwarz' lemma, $\left|f^{\prime}(0)\right| \leqslant 1$. However, f^{-1} is also an automorphism of \mathbb{D} so $\left|\left(f^{-1}\right)^{\prime}(0)\right|=\left|f^{\prime}(0)\right|^{-1} \leqslant 1$. Hence equality must hold and so $f(z)=\omega z$ for some ω of modulus 1. It follows that f, and hence also h, is a Möbius transformation which maps \mathbb{D} onto itself.

If $T: z \mapsto(a z+\bar{c}) /(c z+\bar{a})\left(\right.$ with $\left.|a|^{2}-|c|^{2}=-1\right)$ is in Aut \mathbb{D} then $\tau(T)=\operatorname{tr}(T)^{2} / 4=(\Re a)^{2} \in[0, \infty)$. So T can be the identity, or elliptic, or hyperbolic, or parabolic, but not loxodromic.

Exercises

1. Show that $z \mapsto \omega\left(z-z_{0}\right) /\left(1-\overline{z_{0}} z\right)$ is in $\operatorname{Aut} \mathbb{D}$ for ω with $|\omega|=1$ and $z_{o} \in \mathbb{D}$. Conversely every map in Aut \mathbb{D} is of this form.
2. Find Aut \mathbf{H}^{+}for the upper half plane $\mathbf{H}^{+}=\{z \in \mathbb{C}: \Im z>0\}$.
3. Consider \mathbb{D} as the subset

$$
\left\{\left[z_{1}: z_{2}\right]:\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}<0\right\} \quad \text { of } \quad \mathbb{P}\left(\mathbb{C}^{2}\right)
$$

Show that an invertible linear map $T:\binom{z_{1}}{z_{2}} \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{z_{1}}{z_{2}}$ with determinant 1 induces a conformal map $\mathcal{T}: \mathbb{D} \rightarrow \mathbb{D}$ if, and only if,
(a) T preserves the indefinite form

$$
\beta:\left(\binom{z_{1}}{z_{2}},\binom{w_{1}}{w_{2}}\right) \mapsto \overline{z_{1}} w_{1}-\overline{z_{2}} w_{2}
$$

(That is $\beta(T \mathbf{z}, T \mathbf{w})=\beta(\mathbf{z}, \mathbf{w})$.
and
(b) $\mathcal{T}(0) \in \mathbb{D}$. (That is $|b|<|d|$.)
4. Let $T \in$ Aut \mathbb{D}. Show that
(a) if T is elliptic, it has exactly one fixed point in \mathbb{D}.
(b) if T is hyperbolic, it has two fixed points both on $\partial \mathbb{D}$.
(c) if T is parabolic, it has one fixed point on $\partial \mathbb{D}$.

Find the conjugacy classes in Aut \mathbb{D}.
5. Prove directly that a loxodromic Möbius transformation cannot map any disc in \mathbb{C}_{∞} onto itself.

There is a metric on \mathbb{D}, called the hyperbolic metric ρ, which is invariant under all of the maps in Aut \mathbb{D}. To define it, let $\gamma: I \rightarrow \mathbb{D}$ be a smooth curve and let its length be

$$
L_{\rho}(\gamma)=\int_{\gamma}\left(\frac{2}{1-|z|^{2}}\right)|d z|=\int_{0}^{1}\left(\frac{2}{1-|\gamma(t)|^{2}}\right)\left|\gamma^{\prime}(t)\right| d t
$$

Then define $\rho\left(z_{0}, z_{1}\right)$ to be the infimum of the lengths $L_{\rho}(\gamma)$ for all smooth paths in \mathbb{D} from z_{0} to z_{1}. This is certainly symmetric and satisfies the triangle inequality. We will see shortly that it is 0 if, and only if, $z_{0}=z_{1}$ and then we will know that it is a metric.

If $T: z \mapsto(a z+\bar{c}) /(c z+\bar{a})$ (with $|a|^{2}-|c|^{2}=-1$), then

$$
T^{\prime}(z)=\frac{1}{(c z+\bar{a})^{2}} \quad \text { and } \quad 1-|T(z)|^{2}=\frac{1-|z|^{2}}{|c z+\bar{a}|^{2}}
$$

so $L_{\rho}(T \gamma)=L_{\rho}(\gamma)$ and hence T is an isometry. Suppose that $x \in[0,1)$ and γ is a path in \mathbb{D} from 0 to x. Then the path $\Re \gamma$ is also a path in \mathbb{D} from 0 to x and, since,

$$
\left(\frac{2}{1-|\Re \gamma(t)|^{2}}\right)\left|(\Re \gamma)^{\prime}(t)\right| \leqslant\left(\frac{2}{1-|\gamma(t)|^{2}}\right)\left|\gamma^{\prime}(t)\right|
$$

it has a shorter length than γ. So the straight line path from 0 to x is the unique shortest path between these points and hence

$$
\rho(0, x)=\int_{0}^{x}\left(\frac{2}{1-|t|^{2}}\right) d t=\log \left(\frac{1+x}{1-x}\right)
$$

The invariance of ρ under Aut \mathbb{D} enables us to deduce that

$$
\rho\left(z_{0}, z_{1}\right)=\log \left(\frac{1+\left|\frac{z_{0}-z_{1}}{1-\overline{z_{0}} z_{1}}\right|}{1-\left|\frac{z_{0}-z_{1}}{1-\overline{z_{0}} z_{1}}\right|}\right)
$$

and that the unique path from z_{0} to z_{1} with shortest length is the arc of a circle orthogonal to $\partial \mathbb{D}$. In particular, $\rho\left(z_{0}, z_{1}\right)=0$ if, and only if, $z_{0}=z_{1}$ so ρ is indeed a metric.

Theorem 5.1.3 Schwarz - Pick theorem

Every analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ is a contraction for the hyperbolic metric, so

$$
\rho\left(f\left(z_{0}\right), f\left(z_{1}\right)\right) \leqslant \rho\left(z_{0}, z_{1}\right) \quad \text { for } z_{0}, z_{1} \in \mathbb{D}
$$

Proof:
Since each $T \in$ Aut \mathbb{D} is an isometry and the group acts transitively on \mathbb{D} we can assume that $z_{0}=f\left(z_{0}\right)=0$. Then the result is Schwarz' lemma.

Exercises

6. Show that the hyperbolic metric on \mathbb{D} is complete.
7. (This requires the definition of a Riemannian metric.) Show that the only Riemannian metrics on \mathbb{D} which are invariant under $A u t \mathbb{D}$ are the multiples of the hyperbolic metric. Show that there are no Riemannian metrics on \mathbb{C}_{∞} or \mathbb{C} which are invariant under Aut \mathbb{C}_{∞} or Aut \mathbb{C}.
8. Find the hyperbolic metric on the upper half plane \mathbf{H} for which any Möbius transformation mapping \mathbb{D} onto \mathbf{H} is an isometry.
9. Let z_{1}, z_{2}, w_{1} and w_{2} be four points in \mathbb{D}. Show that there is an analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ with $f\left(z_{1}\right)=w_{1}$ and $f\left(z_{2}\right)=w_{2}$ if, and only if, $\rho\left(w_{1}, w_{2}\right) \leqslant \rho\left(z_{1}, z_{2}\right)$.
10. Let C be the unique circle through the two points $z_{0}, z_{1} \in \mathbb{D}$ which is orthogonal to $\partial \mathbb{D}$. Then C meets $\partial \mathbb{D}$ at the points w_{0}, w_{1} with $w_{0}, z_{0}, z_{1}, w_{1}$ in that order on C. Express the cross ratios of $w_{0}, z_{0}, z_{1}, w_{1}$ and of $J\left(z_{0}\right), z_{0}, z_{1}, J\left(z_{1}\right)$ in terms of $\rho\left(z_{0}, z_{1}\right)$.
11. Prove that

$$
\left|\frac{z_{0}-z_{1}}{1-\overline{z_{0}} z_{1}}\right|=\tanh \frac{1}{2} \rho\left(z_{0}, z_{1}\right) .
$$

Does the left side of this equation define a metric on \mathbb{D} ? Find similar formulae for $\sinh \rho\left(z_{0}, z_{1}\right)$ and $\cosh \rho\left(z_{0}, z_{1}\right)$.

Let $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ be a continuous map which is analytic on the open disc \mathbb{D} and never 0 on $\partial \mathbb{D}$. Then f can only have finitely many zeros in \mathbb{D}, say $z_{1}, z_{2}, \ldots, z_{N}$ each repeated according to its multiplicity. Now, for $z_{1} \in \mathbb{D}$, the Möbius transformation $T: z \mapsto\left(z-z_{1}\right) /\left(1-\overline{z_{1}} z\right)$ maps $\overline{\mathbb{D}}$ continuously onto itself and its only zero is z_{1}. Hence, $f_{1}(z)=f(z) / T(z)$ is continuous on $\overline{\mathbb{D}}$, analytic on \mathbb{D} and has $\left|f_{1}(z)\right|=|f(z)|$ for $z \in \partial \mathbb{D}$. Also f_{1} has one less zero in \mathbb{D} than f. Repeating this argument we find that

$$
f(z)=\left\{\prod_{n=1}^{N}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)\right\} f_{N}(z)
$$

where $\left|f_{N}(z)\right|=|f(z)|$ for $z \in \partial \mathbb{D}$. Since f_{N} has no zeros in \mathbb{D} we can write $f_{N}=\exp g$ for a continuous map $g: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ which is analytic on \mathbb{D}.

Theorem 5.2.1 The Poisson - Jensen Formula

If $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ is continuous, analytic on \mathbb{D} and never 0 on $\partial \mathbb{D}$ then the zeros $z_{1}, z_{2}, \ldots, z_{N}$ of f satisfy

$$
\log |f(z)|=\sum_{n=1}^{N} \log \left|\frac{z-z_{n}}{1-\overline{z_{n}} z}\right|+\int_{0}^{2 \pi} \frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

for $z \in \mathbb{D}$ with $|f(z)| \neq 0$.
Proof:
As shown above, we can write

$$
f(z)=\left\{\prod_{n=1}^{N}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)\right\} \exp g(z)
$$

with $g: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ continuous and analytic on \mathbb{D}. Hence,

$$
\log |f(z)|=\sum_{n=1}^{N} \log \left|\frac{z-z_{n}}{1-\overline{z_{n}} z}\right|+\Re g(z)
$$

However, $\Re g \in \mathcal{H}(\mathbb{D})$ so Poisson's formula gives

$$
\Re g(z)=\int_{0}^{2 \pi} \frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} \Re g\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}=\int_{0}^{2 \pi} \frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Corollary 5.2.2

Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be an analytic function with $f(0) \neq 0$ and let $\left(z_{n}\right)$ be the sequence of zeros of f each repeated according to its multiplicity. For $0 \leqslant r<1$ we have

$$
\log |f(0)|=\sum\left(\log \frac{\left|z_{n}\right|}{r}:\left|z_{n}\right|<r\right)+\int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

Proof:

If f has no zeros on $\{z:|z|=r\}$ then we may obtain the desired result by applying the theorem to the function $z \mapsto f(r z)$. The two sides of the equation are clearly continuous functions of r, so equality must persist even when f has a zero on $\{z:|z|=r\}$.

A particularly important case is when $f: \mathbb{D} \rightarrow \mathbb{C}$ is a bounded analytic function. Then

$$
-\sum \log \left|z_{n}\right| \leqslant \log \|f\|_{\infty}-\log |f(0)|
$$

so $\sum \log \left|z_{n}\right|$ converges provided that $f(0) \neq 0$. If f has a zero of order k at 0 then we may apply this result to $f(z) / z^{k}$ to find that the series $\sum \log \left|z_{n}\right|$ is still convergent when we sum over all of the zeros z_{n} of f in $\mathbb{D} \backslash\{0\}$.

The converse of this is also true: if $\left(z_{n}\right)$ is a sequence of points in $\mathbb{D} \backslash\{0\}$ with $\sum \log \left|z_{n}\right|$ convergent, then there is a bounded analytic function with zeros precisely at the points $\left(z_{n}\right)$. We will prove this by constructing a product

$$
B(z)=\prod \omega_{n}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)
$$

where $\left|\omega_{n}\right|=1$. For this to converge we must have each term converging to 1 as $n \rightarrow \infty$ and $\left|z_{n}\right| \rightarrow 1$. Hence we must take $\omega_{n}=-\left|z_{n}\right| / z_{n}$ when $z_{n} \neq 0$ (and ω_{n} is arbitrary when $z_{n}=0$). For this reason we define a Blaschke product B for a discrete sequence $\left(z_{n}\right)$ in \mathbb{D} to be

$$
B(z)=\omega z^{k} \prod \frac{-\left|z_{n}\right|}{z_{n}}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)
$$

where $\omega \in \mathbb{C}$ is of modulus 1,0 occurs k times in the sequence $\left(z_{n}\right)$, and the product is over the non-zero elements of the sequence. We often set $\omega=1$ and call B the Blaschke product for $\left(z_{n}\right)$.

Lemma 5.2.3 Blaschke products

For each discrete sequence $\left(z_{n}\right)$ in \mathbb{D} for which $\sum 1-\left|z_{n}\right|$ is convergent, the Blaschke product B converges to an analytic function $B: \mathbb{D} \rightarrow \mathbb{D}$ with zeros at the points of the sequence and nowhere else.

Proof:

It is clear that the Blaschke product B, provided that it converges, has the desired properties. We can assume that the sequence $\left(z_{n}\right)$ is infinite and does not contain 0 . The condition $\sum 1-\left|z_{n}\right|<\infty$ certainly implies that the product $B(0)=\prod\left|z_{n}\right|$ converges. Hence, it will suffice to show that

$$
\prod \frac{-1}{z_{n}}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)
$$

converges (to $B(z) / B(0))$ locally uniformly on \mathbb{D}. This would certainly be implied by the locally uniform convergence of the series

$$
\begin{aligned}
& \sum\left|1-\frac{-1}{z_{n}}\left(\frac{z-z_{n}}{1-\overline{z_{n}} z}\right)\right| \\
= & \sum\left|\frac{z\left(1-\left|z_{n}\right|^{2}\right)}{z_{n}\left(1-\overline{z_{n}} z\right)}\right| \\
= & \sum \frac{\left(1-\left|z_{n}\right|^{2}\right)|z|}{\left|z_{n}\right|\left|1-\overline{z_{n}} z\right|} .
\end{aligned}
$$

This last series clearly converges locally uniformly on \mathbb{D} by comparison with $\sum 1-\left|z_{n}\right|$.

Theorem 5.2.4

The sequence of zeros $\left(z_{n}\right)$ of any bounded analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$, repeated according to their multiplicity, is discrete and has $\sum 1-\left|z_{n}\right|$ convergent. Conversely any sequence with these properties is the set of zeros of a bounded analytic function.

Note that if $f: \mathbb{D} \rightarrow \mathbb{C}$ is bounded and B is the Blaschke product on the sequence of zeros of f, then f / B is an analytic function $g: \mathbb{D} \rightarrow \mathbb{C} \backslash\{0\}$. Also, since all the partial products of the Blaschke product have modulus 1 on $\partial \mathbb{D}$, we have $\|g\|_{\infty} \leqslant\|f\|_{\infty}$.

Exercises

12. Let $\left(z_{n}\right)$ be a discrete sequence of points in \mathbb{D}. For each $w \in \mathbb{D}$ show that following conditions are equivalent.
(a) The series $\sum 1-\left|z_{n}\right|$ converges.
(b) The series $\sum \exp -\rho\left(w, z_{n}\right)$ converges.
(c) The Blaschke product for $\left(z_{n}\right)$ converges at w.
13. A Blaschke product on a finite set of points in \mathbb{D} is called a finite Blaschke product. (This includes the constant maps $z \mapsto \omega$ for $|\omega|=1$.) Prove that a continuous function $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ is a finite Blashke product if, and only if, it is analytic on \mathbb{D} and maps $\partial \mathbb{D}$ into itself.
What are the continuous maps $f: \mathbb{D} \rightarrow \mathbb{C}_{\infty}$ which are meromorphic on \mathbb{D} and map $\partial \mathbb{D}$ into itself?
14. Let B be the Blaschke product for a sequence $\left(z_{n}\right)$ in \mathbb{D} which satisfies $\sum 1-\left|z_{n}\right|<\infty$. Show that the Blaschke product converges not only on \mathbb{D} but also on $\left\{z \in \mathbb{C}_{\infty}:|z|>1\right\}$ giving a meromorphic function with poles at the points $\left(J\left(z_{n}\right)\right)$. Prove that $J B(z)=B J(z)$ for $z \in \mathbb{D}$.
If $z \in \partial \mathbb{D}$ is not the limit point of a sequence $\left(z_{n}\right)$ then prove that the Blaschke product converges at z, is analytic on a neighbourhood, and satisfies $|B(z)|=1$.

5.3 Models for the Hyperbolic Plane

We have defined the hyperbolic plane as the unit disc \mathbb{D} with the hyperbolic metric ρ. Set

$$
\kappa(w, z)=2 \sinh \frac{1}{2} \rho(w, z) .
$$

Note that

$$
\tau=\tanh \frac{1}{2} \rho(w, z)=\left|\frac{w-z}{1-\bar{w} z}\right|
$$

satisfies

$$
\sinh \frac{1}{2} \rho(w, z)=\frac{\tau}{\sqrt{ }\left(1-\tau^{2}\right)} ; \quad \cosh \frac{1}{2} \rho(w, z)=\frac{1}{\sqrt{ }\left(1-\tau^{2}\right)}
$$

Therefore,

$$
\kappa(w, z)^{2}=\frac{4 \tau^{2}}{1-\tau^{2}}=\frac{4|w-z|^{2}}{|1-\bar{w} z|^{2}-|w-z|^{2}}=\frac{4|w-z|^{2}}{\left(1-|w|^{2}\right)\left(1-|z|^{2}\right)}
$$

and consequently:

$$
\kappa(w, z)=\frac{2|w-z|}{\sqrt{ }\left(1-|w|^{2}\right) \sqrt{ }\left(1-|z|^{2}\right)} .
$$

This is the chordal distance. It should be compared to the chordal metric on the Riemann sphere.
Note that the chordal distance is not a metric on the disc. For, suppose that z_{1}, z_{2}, z_{3} are three points in order on a hyperbolic geodesic in \mathbb{D}. Then $\rho\left(z_{1}, z_{3}\right)=\rho\left(z_{1}, z_{2}\right)+\rho\left(z_{2}, z_{3}\right)$, so

$$
\kappa\left(z_{1}, z_{3}\right)=2 \sinh \frac{1}{2}\left(\rho\left(z_{1}, z_{2}\right)+\rho\left(z_{2}, z_{3}\right)\right)
$$

while

$$
\kappa\left(z_{1}, z_{2}\right)+\kappa\left(z_{2}, z_{3}\right)=\sinh \frac{1}{2} \rho\left(z_{1}, z_{2}\right)+\sinh \frac{1}{2} \rho\left(z_{2}, z_{3}\right) .
$$

Hence we can not have $\kappa\left(z_{1}, z_{3}\right) \leqslant \kappa\left(z_{1}, z_{2}\right)+\kappa\left(z_{2}, z_{3}\right)$ for all z_{1}, z_{2}, z_{3}. However, the chordal distance is a strictly increasing function of the hyperbolic distance and so the sets

$$
\{z \in \mathbb{D}: \kappa(w, z)<r\} \quad \text { for } 0<r<\infty
$$

are a basis for the neighbourhoods of w.
The group $\operatorname{Möb}(\mathbb{D})$ is the group of orientation preserving isometries for the hyperbolic metric ρ or for the chordal distance κ.

There are other models for the hyperbolic plane. Let \langle,$\rangle be the indefinite inner product (or$ sesquilinear form)

$$
\langle\boldsymbol{w}, \boldsymbol{z}\rangle=\overline{w_{0}} z_{0}-\overline{w_{1}} z_{1}
$$

Set

$$
\begin{aligned}
\mathcal{D} & =\left\{[\boldsymbol{z}] \in \mathbb{P}\left(\mathbb{C}^{2}\right):\langle\boldsymbol{z}, \boldsymbol{z}\rangle>0\right\} \\
& =\left\{\left[z_{o}: z_{1}\right] \in \mathbb{P}\left(\mathbb{C}^{2}\right):\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}>0\right\}
\end{aligned}
$$

Then the map

$$
\begin{aligned}
\alpha: \mathcal{D} & \rightarrow \mathbb{D} ; \quad\left[z_{0}: z_{1}\right] \mapsto \frac{z_{1}}{z_{0}} \\
\alpha^{-1}: \mathbb{D} \rightarrow \mathcal{D} ; & z \mapsto[1: z]
\end{aligned}
$$

is a bijection. So we may take \mathcal{D} as a model for the hyperbolic plane. The Study distance on \mathcal{D} is:

$$
d([\boldsymbol{w}],[\boldsymbol{z}])=2 \sqrt{\left(-1+\frac{|\langle\boldsymbol{w}, \boldsymbol{z}\rangle|^{2}}{\langle\boldsymbol{w}, \boldsymbol{w}\rangle\langle\boldsymbol{z}, \boldsymbol{z}\rangle}\right)}
$$

Note that
$\frac{|\langle\boldsymbol{w}, \boldsymbol{z}\rangle|^{2}}{\langle\boldsymbol{w}, \boldsymbol{w}\rangle\langle\boldsymbol{z}, \boldsymbol{z}\rangle}=\frac{\mid 1-\overline{\left.\alpha(\boldsymbol{w}) \alpha(\boldsymbol{z})\right|^{2}}}{\left(1-|\alpha(\boldsymbol{w})|^{2}\right)\left(1-|\alpha(\boldsymbol{z})|^{2}\right)}=1+\frac{|\alpha(\boldsymbol{w})-\alpha(\boldsymbol{z})|^{2}}{\left(1-|\alpha(\boldsymbol{w})|^{2}\right)\left(1-|\alpha(\boldsymbol{z})|^{2}\right)}=1+\sinh ^{2} \frac{1}{2} \rho(\alpha(\boldsymbol{w}), \alpha(\boldsymbol{z}))$.
Hence,

$$
d([\boldsymbol{w}],[\boldsymbol{z}])=\kappa(\alpha(\boldsymbol{w}), \alpha(\boldsymbol{z}))
$$

so the chordal distance on \mathbb{D} corresponds to the Study distance on \mathcal{D}.
Let $[\boldsymbol{w}]$ be a point in $\mathbb{P}\left(\mathbb{C}^{2}\right)$ with $\langle\boldsymbol{w}, \boldsymbol{w}\rangle \neq 0$. Then $[\boldsymbol{w}]$ is a complex 1-dimensional subspace of \mathbb{C}^{2} and its orthogonal complement:

$$
[\boldsymbol{w}]^{\perp}=\left\{\boldsymbol{z} \in \mathbb{C}^{2}:\langle\boldsymbol{w}, \boldsymbol{z}\rangle=0\right\}
$$

is another point in $\mathbb{P}\left(\mathbb{C}^{2}\right)$.

