
4 4 THE COMPLEX PLANE

4.1 Meromorphic functions.

A entire function is an analytic function from the complex plane to itself. Suppose that f : C → C∞ is
a meromorphic function. Then it will have a finite or infinite sequence of poles (zn). These are isolated
so, if there are infinitely many, they must converge to ∞. The following theorem shows that any such
sequence of poles can occur.

Theorem 4.1.1 Mittag-Leffler expansions

Let (zn) be a sequence of points in C which is either finite or else converges to ∞. For each n let pn

be a polynomial. Then there is a meromorphic function f : C → C∞ which has a pole at each zn with
principal part pn((z − zn)−1) and no other poles. Any two such functions differ by an entire function.

Proof:

For any polynomial qn the function pn((z − zn)−1) − qn(z) has the same principal part at zn as
pn((z − zn)−1). We will show that we can choose the qn so that the series

∑
pn((z − zn)−1) − qn(z)

converges locally uniformly. The function it converges to will then have the required properties. If two
functions f1 and f2 have these properties then their difference has no poles and so is entire.

If there are only finitely many poles then we can take each qn equal to 0. The finite sum
∑

pn((z−
zn)−1) − qn(z) clearly gives a rational function with the desired behaviour at each pole. From now on
we will assume that the sequence (zn) is infinite and converges to ∞. Let (Mn) be a sequence of positive
numbers with

∑
Mn finite. For each n the function pn((z−zn)−1) is analytic on the disc {z : |z| < |zn|}

so its Taylor series converges uniformly on the disc {z : |z| 6 1
2 |zn|}. Take qn to be a partial sum of this

Taylor series with
|pn((z − zn)−1)− qn(z)| 6 Mn for |z| 6 1

2 |zn|.

For each R > 0 there are only finitely many n with |zn| < R. The finite sum∑(
pn((z − zn)−1)− qn(z) : |zn| < R

)
therefore gives a rational function which has the correct principal

parts at each zn with |zn| < R and no other poles. The sum∑(
pn((z − zn)−1)− qn(z) : |zn| > R

)
converges uniformly on {z : |z| 6 1

2R} by comparison with
∑

Mn.
So it gives an analytic function on {z : |z| 6 1

2R}. Since R is arbitrary, the full series
∑

pn((z−zn)−1)−
qn(z) converges giving a meromorphic function with poles at each zn having principal part pn((z−zn)−1)
and no other poles. �

Exercises

-1. Give an example to show that the series
∑

pn((z − zn)−1) in the theorem need not converge.
2. Show that any sequence of points (zn) in D with |zn| → 1− as n →∞ is the sequence of poles of a

meromorphic function f : D → C∞.
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4.2 Entire functions.

Let f : C → C be an entire function. If f has no zeros then the monodromy theorem 2.3.2 shows that we
may find an entire function g with f = exp g. If f has finitely many zeros z1, z2, . . . , zN , each repeated
according to its multiplicity, then

f(z) = F (z)
N∏

n=1

(z − zn)

for an entire function F with no zeros. We wish to find a similar formula when f has infinitely many
zeros. To do this we will need to consider functions defined by infinite products.

Let (un) be a sequence of non-zero complex numbers. We will say that the infinite product
∏∞

n=1 un

converges to L 6= 0 if the sequence of partial products LN =
∏N

n=1 un con-verges to L as N →∞. For
this to happen we must have un → 1 so it is convenient to write un = 1 + an. If an → 0 then there will
be a No with |an| < 1 for n > No. Let Log : C \ (−∞, 0] → C be the principal branch of the logarithm.
Then

LN = LNo

N∏
n=No+1

(1 + an) = exp
N∑

n=No+1

Log(1 + an)

for N > No. Hence the product
∏∞

n=1(1 + an) converges if, and only if, an → 0 and the series∑∞
n=No

Log(1 + an) converges. This enables us to transfer results about series to products. For any
sequence of complex numbers un, including 0 , we say that the product

∏
un converges if there exists

no with un 6= 0 for n > no and
∏∞

n=no
un converges.

Note in particular that Log(1 + a) is asymptotic to a as a → 0 so the series∑∞
n=No

Log(1 + an) converges absolutely if, and only if, the series
∑
|an| converges. Suppose that

(an : Ω → C) is a sequence of analytic functions on the domain Ω and that
∑

Mn is a convergent series.
If |an(z)| < Mn for z ∈ Ω , then the series

∑
|an(z)| converges uniformly and an(z) converges uniformly

to 0. Consequently the series
∑∞

n=no
Log(1 + an(z)) will converge uniformly to an analytic function for

no large enough. This proves that the product
∏

(1 + an(z)) converges on Ω to an analytic function
which has zeros at the points where (1 + an(z)) = 0 for some n.

If (zn) is an infinite sequence of points in C which converges to ∞ then the product

∞∏
n=1

(
1− z

zn

)

need not converge. However, if
∑
|zn|−1 converges, then the product will converge to an entire function

with zeros precisely at the points zn. To deal with sequences (zn) which have
∑
|zn|−1 divergent we

need to introduce exponential factors into the product.

Theorem 4.2.1 Weierstrass products

Let (zn) be a sequence of points in C which is either finite or else tends to ∞. Then there is an entire
function f which has a zero at each point ζ in the sequence with order equal to the number of times that
it occurs in the sequence, and no other zeros. If g is another such function then f(z) = g(z) exph(z)
for some entire function h.

Proof:

Choose positive numbers Mn for which
∑

Mn converges. The function
z 7→ Log

(
1− z

zn

)
is analytic on {z : |z| < |zn|} so its Taylor series

− z

zn
− 1

2

(
z

zn

)2

− 1
3

(
z

zn

)3

− . . .
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converges uniformly on {z : |z| 6 1
2 |zn|}. Hence we can choose natural numbers N(n) so that

qn(z) =
z

zn
+

1
2

(
z

zn

)2

+
1
3

(
z

zn

)3

+ . . . +
1

N(n)

(
z

zn

)N(n)

satisfies ∣∣∣∣Log
(

1− z

zn

)
+ qn(z)

∣∣∣∣ 6 Mn for |z| 6 1
2 |zn|.

Therefore, the series
∞∑

n=1

(
Log

(
1− z

zn

)
+ qn(z)

)
will converge locally uniformly. Hence,

f(z) =
∞∏

n=1

(
1− z

zn

)
exp qn(z)

converges and gives an entire function f with the desired properties.

If g were another such function then g/f would be an entire function with no zeros and therefore
equal to exph for some entire function h. �

Corollary 4.2.2

Every meromorphic function f : C → C∞ is the quotient a/b of two entire functions a and b.

Proof:

The theorem enables us to construct an entire function b whose zeros are poles of f . Then a = b.f
is also entire. �

As an example, let us try to construct a entire function with zeros at the integer points. The series∑
n−2 converges so the proof of Weierstrass theorem shows that

f(z) = z
∏
n 6=0

(
1− z

n

)
ez/n

converges to the desired entire function. We can rewrite this series as

f(z) = z
∞∏

n=1

(
1− z2

n2

)
.

Because of the locally uniform convergence we can differentiate the product to obtain

f ′(z) = f(z)

1
z

+
∑
n 6=0

(
1

z − n
+

1
n

)
= f(z)

{
1
z

+
∞∑

n=1

(
2z

z2 − n2

)}

Hence f ′(z) = f(z)ε1(z) = f(z)π cot πz. We also have f ′(0) = 1 so we can solve this differential equation
to obtain

z
∞∏

n=1

(
1− z2

n2

)
= f(z) =

sinπz

π
.
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Exercises

3. Show that the product

g(z) =
∞∏

n=1

(
1− z

n

)
ez/n

converges and satisfies

g′(z) = g(z)
∞∑

n=1

(
1

z − n
+

1
n

)
.

Deduce that g(z + 1) = −zg(z)eγ for some constant γ and prove that

γ = lim
N→∞

N∑
n=1

1
n
− log N.

(This is Euler’s constant.)
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4.3 Quotients of the complex plane.

Theorem 4.3.1

The group Aut C consists of the maps z 7→ az + b for a ∈ C \ {0} and b ∈ C.

Proof:

Suppose that T : C → C is conformal. Then we can consider it acting on C∞ with an isolated
singularity at ∞ and show that it has a removable singularity there. The set U = T−1(D) is open in C
and T maps every point of C \ U into {z ∈ C : |z| > 1}. Hence the map S : z 7→ 1/T (z−1) is bounded
on a neighbourhood of 0 and so must have a removable singularity there. Consequently T extends to
an analytic map T : C∞ → C∞. We know from Theorem 3.2.1 that T must be a rational function and
the only ones which restrict to give a conformal map C → C are those of the form z 7→ az + b with
a ∈ C \ {0}, b ∈ C. �

Suppose that G is a subgroup of Aut C for which the quotient C/G is a Riemann surface. Then
Theorem 2.3.6 shows that every element of G \ {I} has no fixed points. The only maps z 7→ az + b
which have this property are those with a = 1; the translations. Thus G is a subgroup of the group
of translations: {z 7→ z + b : b ∈ C}. The set Λ = {T (0) : T ∈ G} is then an additive subgroup of C
isomorphic to G. For C/G to be a Riemann surface we certainly need 0 ∈ C to be isolated in Λ = G(0)
so there is a δ > 0 with |λ| > 2δ for each λ ∈ Λ\{0}. Conversely, if this is true, then the neighbourhood
U = {z ∈ C : |z − w| < δ} of any point w ∈ C has all the sets T (U) for T ∈ G disjoint, so C/G is a
Riemann surface by Theorem 2.3.6.

We will often identify G with Λ and write C/Λ for C/G. We have shown that this quotient is a
Riemann surface if inf(|λ| : λ ∈ Λ \ {0}) > 0. Any additive subgroup of C with this property is called a
lattice in C.

Theorem 4.3.2

A subset Λ of C is a lattice if, and only if, it is of one of the three forms:

(a) {0}.

(b) Zω1 = {nω1 : n ∈ Z} for some ω1 ∈ C \ {0}.

(c) Zω1 + Zω2 = {nω1 + mω2 : n, m ∈ Z} for some ω1, ω2 ∈ C which are linearly independent over R.

In these three cases we have:

(a) C/{0} = C.

(b) C/Zω1 is conformally equivalent to the infinite cylinder C \ {0}.

(c) C/(Zω1 + Zω2) is a compact Riemann surface homeomorphic to a torus.

In case (c) we call C/(Zω1 +Zω2) an analytic torus. There are many conformally different analytic tori.

Proof:

If Λ = {0} then (a) holds and C/{0} is clearly C. Otherwise we can choose ω ∈ Λ \ {0} with |ω|
smallest. Let this be ω1. If Λ = Zω1 then (b) holds and the mapping

C/Zω1 → C \ {0} ; [z] 7→ exp(2πiz/ω1)
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is conformal. Otherwise we can choose ω ∈ Λ \ Zω1 with |ω| smallest. Let this be ω2.

Suppose that ω1, ω2 were not linearly independent over R. Then ω2 = xω1 for some x ∈ R. We
can write x = n + q with n ∈ Z and 0 6 q < 1. Then ω2 − nω1 = qω1 ∈ Λ. The definition of ω1

implies that q must be zero and then this contradicts ω2 /∈ Zω1. Hence ω1, ω2 are linearly independent.
If Λ = Zω1 + Zω2 then (c) holds. The space C/(Zω1 + Zω2) is easily seen to be homeomorphic to the
space obtained by identifying the opposite sides of the fundamental parallelogram P = {xω1 + yω2 : 0 6
x, y 6 1}. This is clearly a torus.

It remains to show that we cannot have any elements ω ∈ Λ \ (Zω1 + Zω2). Suppose that we did,
then ω = xω1 + yω2 for some x, y ∈ R. We can choose n, m ∈ Z with |x− n|, |y −m| 6 1

2 . Then

|ω − (nω1 + mω2)| = |(x− n)ω1 + (y −m)ω2|.

The triangle inequality shows that this is less than

1
2 |ω1|+ 1

2 |ω2| 6 |ω1|.

and the inequality must be strict because ω1, ω2 are linearly independent over R. This contradicts the
definition of ω1. �

Exercises

4. A function f : C → C is periodic with period p if f(z + p) = f(z) for every z ∈ C. Show that the
set of periods of an analytic function f is either a lattice in C or else all of C.

5. Show that every analytic function f : C → C which is periodic with a period p 6= 0 has a Fourier
expansion f(z) =

∑∞
n=−∞ an exp(2πinz/p) convergent everywhere.

6. Show that for any subset E of C \ {0} which has no accumulation points except possibly 0 or ∞
there is a meromorphic function on C \ {0} with poles precisely at the points of E.
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