44 THE COMPLEX PLANE

4.1 Meromorphic functions.

A entire function is an analytic function from the complex plane to itself. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ is a meromorphic function. Then it will have a finite or infinite sequence of poles $\left(z_{n}\right)$. These are isolated so, if there are infinitely many, they must converge to ∞. The following theorem shows that any such sequence of poles can occur.

Theorem 4.1.1 Mittag-Leffler expansions

Let $\left(z_{n}\right)$ be a sequence of points in \mathbb{C} which is either finite or else converges to ∞. For each n let p_{n} be a polynomial. Then there is a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ which has a pole at each z_{n} with principal part $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$ and no other poles. Any two such functions differ by an entire function.

Proof:

For any polynomial q_{n} the function $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-q_{n}(z)$ has the same principal part at z_{n} as $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$. We will show that we can choose the q_{n} so that the series $\sum p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-q_{n}(z)$ converges locally uniformly. The function it converges to will then have the required properties. If two functions f_{1} and f_{2} have these properties then their difference has no poles and so is entire.

If there are only finitely many poles then we can take each q_{n} equal to 0 . The finite sum $\sum p_{n}((z-$ $\left.\left.z_{n}\right)^{-1}\right)-q_{n}(z)$ clearly gives a rational function with the desired behaviour at each pole. From now on we will assume that the sequence $\left(z_{n}\right)$ is infinite and converges to ∞. Let $\left(M_{n}\right)$ be a sequence of positive numbers with $\sum M_{n}$ finite. For each n the function $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$ is analytic on the disc $\left\{z:|z|<\left|z_{n}\right|\right\}$ so its Taylor series converges uniformly on the disc $\left\{z:|z| \leqslant \frac{1}{2}\left|z_{n}\right|\right\}$. Take q_{n} to be a partial sum of this Taylor series with

$$
\left|p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-q_{n}(z)\right| \leqslant M_{n} \quad \text { for } \quad|z| \leqslant \frac{1}{2}\left|z_{n}\right|
$$

For each $R>0$ there are only finitely many n with $\left|z_{n}\right|<R$. The finite sum
$\sum\left(p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-q_{n}(z):\left|z_{n}\right|<R\right)$ therefore gives a rational function which has the correct principal parts at each z_{n} with $\left|z_{n}\right|<R$ and no other poles. The sum
$\sum\left(p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-q_{n}(z):\left|z_{n}\right| \geqslant R\right)$ converges uniformly on $\left\{z:|z| \leqslant \frac{1}{2} R\right\}$ by comparison with $\sum M_{n}$. So it gives an analytic function on $\left\{z:|z| \leqslant \frac{1}{2} R\right\}$. Since R is arbitrary, the full series $\sum p_{n}\left(\left(z-z_{n}\right)^{-1}\right)-$ $q_{n}(z)$ converges giving a meromorphic function with poles at each z_{n} having principal part $p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$ and no other poles.

Exercises

-1. Give an example to show that the series $\sum p_{n}\left(\left(z-z_{n}\right)^{-1}\right)$ in the theorem need not converge.
2. Show that any sequence of points $\left(z_{n}\right)$ in \mathbb{D} with $\left|z_{n}\right| \rightarrow 1-$ as $n \rightarrow \infty$ is the sequence of poles of a meromorphic function $f: \mathbb{D} \rightarrow \mathbb{C}_{\infty}$.

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. If f has no zeros then the monodromy theorem 2.3 .2 shows that we may find an entire function g with $f=\exp g$. If f has finitely many zeros $z_{1}, z_{2}, \ldots, z_{N}$, each repeated according to its multiplicity, then

$$
f(z)=F(z) \prod_{n=1}^{N}\left(z-z_{n}\right)
$$

for an entire function F with no zeros. We wish to find a similar formula when f has infinitely many zeros. To do this we will need to consider functions defined by infinite products.

Let $\left(u_{n}\right)$ be a sequence of non-zero complex numbers. We will say that the infinite product $\prod_{n=1}^{\infty} u_{n}$ converges to $L \neq 0$ if the sequence of partial products $L_{N}=\prod_{n=1}^{N} u_{n}$ con-verges to L as $N \rightarrow \infty$. For this to happen we must have $u_{n} \rightarrow 1$ so it is convenient to write $u_{n}=1+a_{n}$. If $a_{n} \rightarrow 0$ then there will be a N_{o} with $\left|a_{n}\right|<1$ for $n>N_{o}$. Let Log : $\mathbb{C} \backslash(-\infty, 0] \rightarrow \mathbb{C}$ be the principal branch of the logarithm. Then

$$
L_{N}=L_{N_{o}} \prod_{n=N_{o}+1}^{N}\left(1+a_{n}\right)=\exp \sum_{n=N_{o}+1}^{N} \log \left(1+a_{n}\right)
$$

for $N>N_{o}$. Hence the product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges if, and only if, $a_{n} \rightarrow 0$ and the series $\sum_{n=N_{o}}^{\infty} \log \left(1+a_{n}\right)$ converges. This enables us to transfer results about series to products. For any sequence of complex numbers u_{n}, including 0 , we say that the product Πu_{n} converges if there exists n_{o} with $u_{n} \neq 0$ for $n \geqslant n_{o}$ and $\prod_{n=n_{o}}^{\infty} u_{n}$ converges.

Note in particular that $\log (1+a)$ is asymptotic to a as $a \rightarrow 0$ so the series
$\sum_{n=N_{o}}^{\infty} \log \left(1+a_{n}\right)$ converges absolutely if, and only if, the series $\sum\left|a_{n}\right|$ converges. Suppose that $\left(a_{n}: \Omega \rightarrow \mathbb{C}\right)$ is a sequence of analytic functions on the domain Ω and that $\sum M_{n}$ is a convergent series. If $\left|a_{n}(z)\right|<M_{n}$ for $z \in \Omega$, then the series $\sum\left|a_{n}(z)\right|$ converges uniformly and $a_{n}(z)$ converges uniformly to 0 . Consequently the series $\sum_{n=n_{o}}^{\infty} \log \left(1+a_{n}(z)\right)$ will converge uniformly to an analytic function for n_{o} large enough. This proves that the product $\prod\left(1+a_{n}(z)\right)$ converges on Ω to an analytic function which has zeros at the points where $\left(1+a_{n}(z)\right)=0$ for some n.

If $\left(z_{n}\right)$ is an infinite sequence of points in \mathbb{C} which converges to ∞ then the product

$$
\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

need not converge. However, if $\sum\left|z_{n}\right|^{-1}$ converges, then the product will converge to an entire function with zeros precisely at the points z_{n}. To deal with sequences $\left(z_{n}\right)$ which have $\sum\left|z_{n}\right|^{-1}$ divergent we need to introduce exponential factors into the product.

Theorem 4.2.1 Weierstrass products

Let $\left(z_{n}\right)$ be a sequence of points in \mathbb{C} which is either finite or else tends to ∞. Then there is an entire function f which has a zero at each point ζ in the sequence with order equal to the number of times that it occurs in the sequence, and no other zeros. If g is another such function then $f(z)=g(z) \exp h(z)$ for some entire function h.

Proof:
Choose positive numbers M_{n} for which $\sum M_{n}$ converges. The function
$z \mapsto \log \left(1-\frac{z}{z_{n}}\right)$ is analytic on $\left\{z:|z|<\left|z_{n}\right|\right\}$ so its Taylor series

$$
-\frac{z}{z_{n}}-\frac{1}{2}\left(\frac{z}{z_{n}}\right)^{2}-\frac{1}{3}\left(\frac{z}{z_{n}}\right)^{3}-\ldots
$$

converges uniformly on $\left\{z:|z| \leqslant \frac{1}{2}\left|z_{n}\right|\right\}$. Hence we can choose natural numbers $N(n)$ so that

$$
q_{n}(z)=\frac{z}{z_{n}}+\frac{1}{2}\left(\frac{z}{z_{n}}\right)^{2}+\frac{1}{3}\left(\frac{z}{z_{n}}\right)^{3}+\ldots+\frac{1}{N(n)}\left(\frac{z}{z_{n}}\right)^{N(n)}
$$

satisfies

$$
\left|\log \left(1-\frac{z}{z_{n}}\right)+q_{n}(z)\right| \leqslant M_{n} \quad \text { for } \quad|z| \leqslant \frac{1}{2}\left|z_{n}\right| .
$$

Therefore, the series

$$
\sum_{n=1}^{\infty}\left(\log \left(1-\frac{z}{z_{n}}\right)+q_{n}(z)\right)
$$

will converge locally uniformly. Hence,

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \exp q_{n}(z)
$$

converges and gives an entire function f with the desired properties.
If g were another such function then g / f would be an entire function with no zeros and therefore equal to $\exp h$ for some entire function h.

Corollary 4.2.2

Every meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}_{\infty}$ is the quotient a / b of two entire functions a and b.
Proof:
The theorem enables us to construct an entire function b whose zeros are poles of f. Then $a=b . f$ is also entire.

As an example, let us try to construct a entire function with zeros at the integer points. The series $\sum n^{-2}$ converges so the proof of Weierstrass theorem shows that

$$
f(z)=z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges to the desired entire function. We can rewrite this series as

$$
f(z)=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

Because of the locally uniform convergence we can differentiate the product to obtain

$$
\begin{aligned}
f^{\prime}(z) & =f(z)\left\{\frac{1}{z}+\sum_{n \neq 0}\left(\frac{1}{z-n}+\frac{1}{n}\right)\right\} \\
& =f(z)\left\{\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{2 z}{z^{2}-n^{2}}\right)\right\}
\end{aligned}
$$

Hence $f^{\prime}(z)=f(z) \varepsilon_{1}(z)=f(z) \pi \cot \pi z$. We also have $f^{\prime}(0)=1$ so we can solve this differential equation to obtain

$$
z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)=f(z)=\frac{\sin \pi z}{\pi}
$$

Exercises

3. Show that the product

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{z / n}
$$

converges and satisfies

$$
g^{\prime}(z)=g(z) \sum_{n=1}^{\infty}\left(\frac{1}{z-n}+\frac{1}{n}\right) .
$$

Deduce that $g(z+1)=-z g(z) e^{\gamma}$ for some constant γ and prove that

$$
\gamma=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n}-\log N
$$

(This is Euler's constant.)

Theorem 4.3.1

The group Aut \mathbb{C} consists of the maps $z \mapsto a z+b$ for $a \in \mathbb{C} \backslash\{0\}$ and $b \in \mathbb{C}$.

Proof:

Suppose that $T: \mathbb{C} \rightarrow \mathbb{C}$ is conformal. Then we can consider it acting on \mathbb{C}_{∞} with an isolated singularity at ∞ and show that it has a removable singularity there. The set $U=T^{-1}(\mathbb{D})$ is open in \mathbb{C} and T maps every point of $\mathbb{C} \backslash U$ into $\{z \in \mathbb{C}:|z| \geqslant 1\}$. Hence the map $S: z \mapsto 1 / T\left(z^{-1}\right)$ is bounded on a neighbourhood of 0 and so must have a removable singularity there. Consequently T extends to an analytic map $T: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$. We know from Theorem 3.2.1 that T must be a rational function and the only ones which restrict to give a conformal map $\mathbb{C} \rightarrow \mathbb{C}$ are those of the form $z \mapsto a z+b$ with $a \in \mathbb{C} \backslash\{0\}, b \in \mathbb{C}$.

Suppose that G is a subgroup of $\operatorname{Aut} \mathbb{C}$ for which the quotient \mathbb{C} / G is a Riemann surface. Then Theorem 2.3.6 shows that every element of $G \backslash\{I\}$ has no fixed points. The only maps $z \mapsto a z+b$ which have this property are those with $a=1$; the translations. Thus G is a subgroup of the group of translations: $\{z \mapsto z+b: b \in \mathbb{C}\}$. The set $\Lambda=\{T(0): T \in G\}$ is then an additive subgroup of \mathbb{C} isomorphic to G. For \mathbb{C} / G to be a Riemann surface we certainly need $0 \in \mathbb{C}$ to be isolated in $\Lambda=G(0)$ so there is a $\delta>0$ with $|\lambda|>2 \delta$ for each $\lambda \in \Lambda \backslash\{0\}$. Conversely, if this is true, then the neighbourhood $U=\{z \in \mathbb{C}:|z-w|<\delta\}$ of any point $w \in \mathbb{C}$ has all the sets $T(U)$ for $T \in G$ disjoint, so \mathbb{C} / G is a Riemann surface by Theorem 2.3.6.

We will often identify G with Λ and write \mathbb{C} / Λ for \mathbb{C} / G. We have shown that this quotient is a Riemann surface if $\inf (|\lambda|: \lambda \in \Lambda \backslash\{0\})>0$. Any additive subgroup of \mathbb{C} with this property is called a lattice in \mathbb{C}.

Theorem 4.3.2

A subset Λ of \mathbb{C} is a lattice if, and only if, it is of one of the three forms:
(a) $\{0\}$.
(b) $\mathbb{Z} \omega_{1}=\left\{n \omega_{1}: n \in \mathbb{Z}\right\}$ for some $\omega_{1} \in \mathbb{C} \backslash\{0\}$.
(c) $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{n \omega_{1}+m \omega_{2}: n, m \in \mathbb{Z}\right\}$ for some $\omega_{1}, \omega_{2} \in \mathbb{C}$ which are linearly independent over \mathbb{R}.

In these three cases we have:
(a) $\mathbb{C} /\{0\}=\mathbb{C}$.
(b) $\mathbb{C} / \mathbb{Z} \omega_{1}$ is conformally equivalent to the infinite cylinder $\mathbb{C} \backslash\{0\}$.
(c) $\mathbb{C} /\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$ is a compact Riemann surface homeomorphic to a torus.

In case (c) we call $\mathbb{C} /\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$ an analytic torus. There are many conformally different analytic tori.

Proof:

If $\Lambda=\{0\}$ then (a) holds and $\mathbb{C} /\{0\}$ is clearly \mathbb{C}. Otherwise we can choose $\omega \in \Lambda \backslash\{0\}$ with $|\omega|$ smallest. Let this be ω_{1}. If $\Lambda=\mathbb{Z} \omega_{1}$ then (b) holds and the mapping

$$
\mathbb{C} / \mathbb{Z} \omega_{1} \rightarrow \mathbb{C} \backslash\{0\} \quad ; \quad[z] \mapsto \exp \left(2 \pi i z / \omega_{1}\right)
$$

is conformal. Otherwise we can choose $\omega \in \Lambda \backslash \mathbb{Z} \omega_{1}$ with $|\omega|$ smallest. Let this be ω_{2}.
Suppose that ω_{1}, ω_{2} were not linearly independent over \mathbb{R}. Then $\omega_{2}=x \omega_{1}$ for some $x \in \mathbb{R}$. We can write $x=n+q$ with $n \in \mathbb{Z}$ and $0 \leqslant q<1$. Then $\omega_{2}-n \omega_{1}=q \omega_{1} \in \Lambda$. The definition of ω_{1} implies that q must be zero and then this contradicts $\omega_{2} \notin \mathbb{Z} \omega_{1}$. Hence ω_{1}, ω_{2} are linearly independent. If $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ then (c) holds. The space $\mathbb{C} /\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$ is easily seen to be homeomorphic to the space obtained by identifying the opposite sides of the fundamental parallelogram $P=\left\{x \omega_{1}+y \omega_{2}: 0 \leqslant\right.$ $x, y \leqslant 1\}$. This is clearly a torus.

It remains to show that we cannot have any elements $\omega \in \Lambda \backslash\left(\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}\right)$. Suppose that we did, then $\omega=x \omega_{1}+y \omega_{2}$ for some $x, y \in \mathbb{R}$. We can choose $n, m \in \mathbb{Z}$ with $|x-n|,|y-m| \leqslant \frac{1}{2}$. Then

$$
\left|\omega-\left(n \omega_{1}+m \omega_{2}\right)\right|=\left|(x-n) \omega_{1}+(y-m) \omega_{2}\right| .
$$

The triangle inequality shows that this is less than

$$
\frac{1}{2}\left|\omega_{1}\right|+\frac{1}{2}\left|\omega_{2}\right| \leqslant\left|\omega_{1}\right| .
$$

and the inequality must be strict because ω_{1}, ω_{2} are linearly independent over \mathbb{R}. This contradicts the definition of ω_{1}.

Exercises

4. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is periodic with period p if $f(z+p)=f(z)$ for every $z \in \mathbb{C}$. Show that the set of periods of an analytic function f is either a lattice in \mathbb{C} or else all of \mathbb{C}.
5. Show that every analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ which is periodic with a period $p \neq 0$ has a Fourier expansion $f(z)=\sum_{n=-\infty}^{\infty} a_{n} \exp (2 \pi i n z / p)$ convergent everywhere.
6. Show that for any subset E of $\mathbb{C} \backslash\{0\}$ which has no accumulation points except possibly 0 or ∞ there is a meromorphic function on $\mathbb{C} \backslash\{0\}$ with poles precisely at the points of E.
