4 4 THE COMPLEX PLANE

4.1 Meromorphic functions.

A entire function is an analytic function from the complex plane to itself. Suppose that f: C — C is
a meromorphic function. Then it will have a finite or infinite sequence of poles (z;,). These are isolated
so, if there are infinitely many, they must converge to co. The following theorem shows that any such
sequence of poles can occur.

Theorem 4.1.1 Mittag-Leffler expansions

Let (z,) be a sequence of points in C which is either finite or else converges to oo. For each n let p,
be a polynomial. Then there is a meromorphic function f : C — C,, which has a pole at each z, with
principal part p,,((z — z,)~') and no other poles. Any two such functions differ by an entire function.

Proof:

For any polynomial ¢, the function p,((z — z,)~!) — ¢.(2) has the same principal part at z, as
pn((z — 2,)71). We will show that we can choose the ¢, so that the series > pn((z — 2z,) 1) — qu(2)
converges locally uniformly. The function it converges to will then have the required properties. If two
functions f; and f; have these properties then their difference has no poles and so is entire.

If there are only finitely many poles then we can take each ¢, equal to 0. The finite sum Y p,,((z —
2n) 1) — qn(2) clearly gives a rational function with the desired behaviour at each pole. From now on
we will assume that the sequence (z,) is infinite and converges to co. Let (M,,) be a sequence of positive
numbers with Y~ M,, finite. For each n the function p,,((z —2,) 1) is analytic on the disc {2 : 2| < |z,|}
so its Taylor series converges uniformly on the disc {z : |z| < 3|2,|}. Take g, to be a partial sum of this
Taylor series with

lpn((2 — Zn)_l) —qn(2)| < M, for [z] < %|Zn‘

For each R > 0 there are only finitely many n with |z, | < R. The finite sum

> (Pn((z = 20) ™) — gn(2) : |2n| < R) therefore gives a rational function which has the correct principal
parts at each z, with |z,| < R and no other poles. The sum

> (Pn((z = 20) ™) — @n(2) ¢ |2a| = R) converges uniformly on {z : |z| < 3 R} by comparison with }_ M,.
So it gives an analytic function on {z : [z| < £ R}. Since R is arbitrary, the full series Y p,((z—z,) 1) —
qn(2) converges giving a meromorphic function with poles at each z,, having principal part p,, ((z—z,)~!)
and no other poles. [

Exercises
-1. Give an example to show that the series > p,((z — 2,)™!) in the theorem need not converge.

2. Show that any sequence of points (z,,) in D with |z,| — 1— as n — oo is the sequence of poles of a
meromorphic function f: D — C.




4.2 Entire functions.

Let f : C — C be an entire function. If f has no zeros then the monodromy theorem 2.3.2 shows that we
may find an entire function g with f = exp g. If f has finitely many zeros z1, 22, ..., zn , each repeated

according to its multiplicity, then
N

f(z)=F(2) [[(z = 2zn)
n=1
for an entire function F' with no zeros. We wish to find a similar formula when f has infinitely many
zeros. To do this we will need to consider functions defined by infinite products.

Let (uy,) be a sequence of non-zero complex numbers. We will say that the infinite product [[)2 | u,
converges to L # 0 if the sequence of partial products Ly = HTJ:]:1 U, con-verges to L as N — oo. For
this to happen we must have u,, — 1 so it is convenient to write u,, = 1 4+ a,,. If a,, — 0 then there will
be a N, with |a,| < 1 for n > N,. Let Log : C\ (—o00,0] — C be the principal branch of the logarithm.
Then

N N
Ly=Ly, [] (+an)=exp > Log(l+a,)
n=N,+1 n=N,+1

for N > N,. Hence the product []°~,(1 + a,) converges if, and only if, a, — 0 and the series
S N, Log(1 + a,) converges. This enables us to transfer results about series to products. For any
sequence of complex numbers u,,, including 0 , we say that the product []u, converges if there exists
ne with u, # 0 for n > n, and HZO:"O Uy converges.
Note in particular that Log(1 + a) is asymptotic to a as a — 0 so the series

>y, Log(1 + a,) converges absolutely if, and only if, the series Y |a,| converges. Suppose that
(an : @ — C) is a sequence of analytic functions on the domain  and that > M,, is a convergent series.
If |an(2)| < M, for z € Q , then the series Y |a,(2)| converges uniformly and a,,(z) converges uniformly
to 0. Consequently the series -7 Log(1 + an(z)) will converge uniformly to an analytic function for
n, large enough. This proves that the product [[(1 + a,(z)) converges on € to an analytic function
which has zeros at the points where (1 + a,,(z)) = 0 for some n.

If (z,,) is an infinite sequence of points in C which converges to oo then the product

(=)

n=1

need not converge. However, if >_ |z,| ! converges, then the product will converge to an entire function
with zeros precisely at the points z,. To deal with sequences (z,) which have Y |z,|~! divergent we
need to introduce exponential factors into the product.

Theorem 4.2.1 Weierstrass products

Let (z,) be a sequence of points in C which is either finite or else tends to co. Then there is an entire
function f which has a zero at each point ( in the sequence with order equal to the number of times that
it occurs in the sequence, and no other zeros. If g is another such function then f(z) = g(z)exp h(2)
for some entire function h.

Proof:

Choose positive numbers M,, for which Y M,, converges. The function

z — Log (1 — = ) is analytic on {z : |z| < |z,|} so its Taylor series

Zn



converges uniformly on {z : |z| < 3|z,|}. Hence we can choose natural numbers N(n) so that
(2) z n 1/2\° n 1/2\° I 1 2\
n(z)=—+=(— e it —— | —
4 Zn 2 \zn 3\ zn N(n) \ z,

Log (1 - Z) + ¢n(2)

satisfies
<M, for 2| < Lzl

n

ﬁ_’j (Lot (1-2) + )

will converge locally uniformly. Hence,

Therefore, the series

= f[l (1 - ;) exp qn(2)

converges and gives an entire function f with the desired properties.

If g were another such function then g/f would be an entire function with no zeros and therefore
equal to exp h for some entire function h. O

Corollary 4.2.2
Every meromorphic function f : C — C is the quotient a/b of two entire functions a and b.
Proof:

The theorem enables us to construct an entire function b whose zeros are poles of f. Then a = b.f
is also entire. (]

As an example, let us try to construct a entire function with zeros at the integer points. The series
>~ n~2 converges so the proof of Weierstrass theorem shows that

fz)==2 H (1 — %) e*/m
n#£0

converges to the desired entire function. We can rewrite this series as

_2H<1—>.

Because of the locally uniform convergence we can differentiate the product to obtain

Hence f'(z) = f(2)e1(z) = f(z)m cot mz. We also have f/(0) = 1 so we can solve this differential equation

to obtain
i 22 sinmz
1-— | = = .
11 (1-%) -1 ==




Exercises

3. Show that the product

converges and satisfies

Deduce that g(z 4+ 1) = —zg(z)e” for some constant v and prove that

Y1
v = lim Z——logN.
n

N—o0
n=1

(This is Euler’s constant.)




4.3 Quotients of the complex plane.

Theorem 4.3.1
The group Aut C consists of the maps z +— az + b for a € C\ {0} and b € C.
Proof:

Suppose that T : C — C is conformal. Then we can consider it acting on C,, with an isolated
singularity at oo and show that it has a removable singularity there. The set U = T~1(D) is open in C
and T maps every point of C\ U into {z € C: |z] > 1}. Hence the map S : 2z — 1/T(z7!) is bounded
on a neighbourhood of 0 and so must have a removable singularity there. Consequently T extends to
an analytic map T : C,, — C,. We know from Theorem 3.2.1 that 7" must be a rational function and
the only ones which restrict to give a conformal map C — C are those of the form z — az + b with
acC\{0}, beC. O

Suppose that G is a subgroup of AutC for which the quotient C/G is a Riemann surface. Then
Theorem 2.3.6 shows that every element of G\ {I} has no fixed points. The only maps z — az + b
which have this property are those with a = 1; the translations. Thus G is a subgroup of the group
of translations: {z +— z+b:b € C}. The set A = {T(0) : T € G} is then an additive subgroup of C
isomorphic to G. For C/G to be a Riemann surface we certainly need 0 € C to be isolated in A = G(0)
so there is a ¢ > 0 with |A\| > 2 for each A € A\ {0}. Conversely, if this is true, then the neighbourhood
U={z2€C:|z—w| < d} of any point w € C has all the sets T(U) for T € G disjoint, so C/G is a
Riemann surface by Theorem 2.3.6.

We will often identify G with A and write C/A for C/G. We have shown that this quotient is a

Riemann surface if inf(|]\| : A € A\ {0}) > 0. Any additive subgroup of C with this property is called a
lattice in C.

Theorem 4.3.2
A subset A of C is a lattice if, and only if, it is of one of the three forms:

(a) {0}.

(b) Zwy = {nw;y : n € Z} for some wy € C\ {0}.

(¢) Zwy + Zws = {nwy + mws : n,m € Z} for some wy,ws € C which are linearly independent over R.
In these three cases we have:

(a) C/{0} =C.

(b) C/Zuw, is conformally equivalent to the infinite cylinder C \ {0}.

(¢) C/(Zwy + Zws) is a compact Riemann surface homeomorphic to a torus.

In case (¢) we call C/(Zwy 4+ Zws) an analytic torus. There are many conformally different analytic tori.
Proof:

If A = {0} then (a) holds and C/{0} is clearly C. Otherwise we can choose w € A \ {0} with |w|
smallest. Let this be wy. If A = Zw; then (b) holds and the mapping

C/Zwy — C\ {0} ; [2] — exp(2miz/wy)



is conformal. Otherwise we can choose w € A \ Zw; with |w| smallest. Let this be ws.

Suppose that wi,ws were not linearly independent over R. Then wy = zw; for some xz € R. We
can write x = n+ ¢ withn € Z and 0 < ¢ < 1. Then wy — nwi; = qw; € A. The definition of wq
implies that ¢ must be zero and then this contradicts we ¢ Zw;. Hence wy,wy are linearly independent.
If A = Zw;y + Zws then (c¢) holds. The space C/(Zwy + Zws) is easily seen to be homeomorphic to the
space obtained by identifying the opposite sides of the fundamental parallelogram P = {zw; + yws : 0 <
x,y < 1}. This is clearly a torus.

It remains to show that we cannot have any elements w € A\ (Zw; + Zws). Suppose that we did,
then w = zwy + yws for some z,y € R. We can choose n,m € Z with |z — n|, |y — m| < % Then

|w — (nwy + mws)| = |(z — n)wi + (y — m)wa|.
The triangle inequality shows that this is less than
slwi] + 3 lwa| < Jwrl.

and the inequality must be strict because wi,ws are linearly independent over R. This contradicts the
definition of wj. O

Exercises
4. A function f : C — C is periodic with period p if f(z + p) = f(z) for every z € C. Show that the
set of periods of an analytic function f is either a lattice in C or else all of C.
5. Show that every analytic function f : C — C which is periodic with a period p # 0 has a Fourier
expansion f(z) =Y o2 anexp(2minz/p) convergent everywhere.

6. Show that for any subset E of C\ {0} which has no accumulation points except possibly 0 or oo
there is a meromorphic function on C\ {0} with poles precisely at the points of E.
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