33 THE RIEMANN SPHERE

3.1 Models for the Riemann Sphere.

One dimensional projective complex space $\mathbb{P}\left(\mathbb{C}^{2}\right)$ is the set of all one-dimensional subspaces of \mathbb{C}^{2}. If $\mathbf{z}=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \backslash \mathbf{0}$ then we will denote by $[\mathbf{z}]=\left[z_{1}: z_{2}\right]$ the one-dimensional subspace

$$
\left[z_{1}: z_{2}\right]=\left\{\left(\lambda z_{1}, \lambda z_{2}\right) \in \mathbb{C}^{2}: \lambda \in \mathbb{C}\right\}
$$

through \mathbf{z}. The vector space \mathbb{C}^{2} has a standard inner product

$$
\langle\mathbf{z}, \mathbf{w}\rangle=\overline{z_{1}} w_{1}+\overline{z_{2}} w_{2}
$$

and associated norm $\|\mathbf{z}\|=\sqrt{ }\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$. If $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{2} \backslash \mathbf{0}$ then $\mathbf{z} /| | \mathbf{z} \|$ is a point of unit norm in the subspace $\left[z_{1}: z_{2}\right]$ and its distance from the subspace $\left[w_{1}: w_{2}\right]$ is

$$
d([\mathbf{z}],[\mathbf{w}])=2 \sqrt{1-\frac{|\langle\mathbf{z}, \mathbf{w}\rangle|^{2}}{\|\mathbf{z}\|^{2}\|\mathbf{w}\|^{2}}}
$$

This is a metric on $\mathbb{P}\left(\mathbb{C}^{2}\right)$ called the Study metric. With this metric $\mathbb{P}\left(\mathbb{C}^{2}\right)$ becomes a compact Hausdorff space. The two maps

$$
\begin{aligned}
& \phi: \mathbb{P}\left(\mathbb{C}^{2}\right) \backslash[1: 0] \rightarrow \mathbb{C} ;\left[z_{1}: z_{2}\right] \mapsto \frac{z_{1}}{z_{2}} \\
& \psi: \mathbb{P}\left(\mathbb{C}^{2}\right) \backslash[0: 1] \rightarrow \mathbb{C} ;\left[z_{1}: z_{2}\right] \mapsto \frac{z_{2}}{z_{1}}
\end{aligned}
$$

are bijections and have $\psi \phi^{-1}: z \mapsto z^{-1}$, so they are charts for a Riemann surface structure on $\mathbb{P}\left(\mathbb{C}^{2}\right)$. We will always assume that $\mathbb{P}\left(\mathbb{C}^{2}\right)$ is made into a Riemann surface in this way.

Exercises

1. Prove that the Study metric is indeed a metric.
2. Show that for $T \in \operatorname{GL}(2, \mathbb{C})$ the map $[\mathbf{z}] \mapsto[T \mathbf{z}]$ is a continuous map from $\mathbb{P}\left(\mathbb{C}^{2}\right)$ to itself. When is it an isometry?
3. If \mathbf{u}, \mathbf{v} is an orthogonal basis for \mathbb{C}^{2} prove that the map

$$
\theta: \mathbb{P}\left(\mathbb{C}^{2}\right) \backslash[\mathbf{u}] ;[\mathbf{z}] \mapsto \frac{\langle\mathbf{u}, \mathbf{z}\rangle}{\langle\mathbf{v}, \mathbf{z}\rangle}
$$

is a chart for the Riemann surface $\mathbb{P}\left(\mathbb{C}^{2}\right)$. What are the transition maps for two such charts?

The map

$$
\mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}_{\infty} ;\left\{\begin{array}{l}
{[\mathbf{z}] \mapsto \phi(\mathbf{z})=\frac{z_{1}}{z_{2}} \quad \text { if } \quad[\mathbf{z}] \neq[1: 0]} \\
{[0: 1] \mapsto \infty}
\end{array}\right.
$$

is a conformal map which we will use to identify $\mathbb{P}\left(\mathbb{C}^{2}\right)$ with \mathbb{C}_{∞}. The Study metric induces a metric on \mathbb{C}_{∞} called the chordal metric:

$$
\begin{aligned}
d(z, w) & =\frac{2|z-w|}{\sqrt{ }\left(1+|z|^{2}\right) \sqrt{ }\left(1+|w|^{2}\right)}, \quad \text { if } z, w \in \mathbb{C} \\
d(z, \infty)=d(\infty, z) & =\frac{2}{\sqrt{ }\left(1+|z|^{2}\right)}
\end{aligned}
$$

We can also identify \mathbb{C}_{∞} with the unit sphere S^{2} in \mathbb{R}^{3} by using stereographic projection from the point $P=(0,0,1)$. For $z=x+i y \in \mathbb{C}$ the line through P and $(x, y, 0)$ cuts the sphere at P and at the point $\hat{z}=\left(\frac{2 x}{1+|z|^{2}}, \frac{2 y}{1+|z|^{2}}, \frac{1-|z|^{2}}{1+|z|^{2}}\right)$. The map

$$
\mathbb{C}_{\infty} \rightarrow S^{2} ;\left\{\begin{array}{c}
z \mapsto \hat{z} \\
\infty \mapsto P
\end{array}\right.
$$

is then a homeomorphism. This makes S^{2} into a Riemann surface. Note that the inner product of $\hat{z}, \hat{w} \in S^{2}$ is

$$
\langle\hat{z}, \hat{w}\rangle=\frac{2(\bar{z} w+z \bar{w})+\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}=1-\frac{2|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}
$$

so

$$
\|\hat{z}-\hat{w}\|=\sqrt{ }\left(\|\hat{z}\|^{2}+\|\hat{w}\|^{2}-2\langle\hat{z}, \hat{w}\rangle\right)=\frac{2|z-w|}{\sqrt{ }\left(1+|z|^{2}\right) \sqrt{ }\left(1+|w|^{2}\right)}
$$

Thus the chordal distance $d(z, w)$ is equal to the length of the chord from \hat{z} to \hat{w} in \mathbb{R}^{3}.
Each of the models $\mathbb{P}\left(\mathbb{C}^{2}\right), \quad \mathbb{C}_{\infty}$ and S^{2} has certain merits. The most elegant theory uses $\mathbb{P}\left(\mathbb{C}^{2}\right)$; while S^{2} is easy to visualize and \mathbb{C}_{∞} is often easy for calculations. We will switch from one to another freely.

Exercises

4. [This assumes a little knowledge of algebraic geometry.] Let $\mathbf{z} \in \mathbb{C}^{N}$ be a row vector. Then $\mathbf{z}^{*} \mathbf{z}=\overline{\mathbf{z}}^{t} \mathbf{z}$ is in the real vector space $\operatorname{Her}(N)$ of Hermitian matrices. What is the dimension of the real projective space $\mathbb{P}(\operatorname{Her}(N))$? Show that

$$
J: \mathbb{P}\left(\mathbb{C}^{N}\right) \rightarrow \mathbb{P}(\operatorname{Her}(N)) ;[\mathbf{z}] \mapsto\left[\mathbf{z}^{*} \mathbf{z}\right]
$$

is a well defined, injective map and that its image is a projective variety (i.e. the set where a collection of homogeneous polynomials vanish). When $N=2$, the image is a conic in $\mathbb{P}\left(\mathbb{R}^{4}\right)$ isomorphic to the sphere. [Thus J generalizes the identification of $\mathbb{P}\left(\mathbb{C}^{2}\right)$ with S^{2}.]

If $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{C})$ then T induces a map

$$
\mathbb{P}(T): \mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{2}\right) ;\left[z_{1}: z_{2}\right] \mapsto\left[a z_{1}+b z_{2}: c z_{1}+d z_{2}\right] .
$$

It corresponds to the Möbius transformation $\mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty} ; z \mapsto(a z+b) /(c z+d)$. Therefore the map

$$
\mathrm{GL}(2, \mathbb{C}) \rightarrow \text { Möb ; }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left\{z \mapsto \frac{a z+b}{c z+d}\right\}
$$

is a group homomorphism onto the group Möb of Möbius transformations. Its kernel is $\left\{\lambda I: \lambda \in \mathbb{C}^{\times}\right\}$ so Möb is isomorphic to the quotient $\mathrm{GL}(2, \mathbb{C}) / \mathbb{C}^{\times} I$, which is called the projective general linear group $\operatorname{PGL}(2, \mathbb{C})$. Similarly, Möb is isomorphic to the projective special linear group $\operatorname{PSL}(2, \mathbb{C})=$ $\operatorname{SL}(2, \mathbb{C}) /\{-I,+I\}$.

Let $f: R \rightarrow \mathbb{C}_{\infty}$ be a meromorphic function on a Riemann surface R. A point $z_{o} \in R$ is a pole of f if $f\left(z_{o}\right)=\infty$. By Proposition 2.2.1 these are isolated. If R is a domain in \mathbb{C} then f will have a Laurent series $\sum_{n=-N}^{\infty} a_{n}\left(z-z_{o}\right)^{n}$ which converges on a neighbourhood of z_{o}. The coefficient N is equal to $\operatorname{deg} f\left(z_{o}\right)$ and is called the order of the pole. The sum $\sum_{n=-N}^{-1} a_{n}\left(z-z_{o}\right)^{n}$ is called the principal part of f at z_{o}. It is a polynomial in $\left(z-z_{o}\right)^{-1}$ and the difference between f and its principal part is an analytic map into \mathbb{C} on a neighbourhood of z_{o}. Similarly, if R is a domain in \mathbb{C}_{∞} and ∞ is a pole of f then f has a Laurent series $\sum_{n=-N}^{\infty} a_{n} z^{-n}$ convergent in a neighbourhood of ∞. The sum $\sum_{n=-N}^{-1} a_{n} z^{-n}$ is the principal part of f at ∞. It is a polynomial in z.

A rational function r is the quotient a / b of two polynomials a and b which have no common zeros. It is therefore a meromorphic function from \mathbb{C}_{∞} to itself. If the polynomials a and b have degrees deg a and $\operatorname{deg} b$ respectively, then r will have $\operatorname{deg} a$ zeros in \mathbb{C} (counting multiplicity) and a zero of order $\operatorname{deg} b-\operatorname{deg} a$ at ∞ if $\operatorname{deg} b>\operatorname{deg} a$. Therefore r has degree $\max (\operatorname{deg} a, \operatorname{deg} b)$.

Theorem 3.2.1

A function $f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ is meromorphic if, and only if, it is rational.

Proof:

It is clear that a rational function is meromorphic. Suppose that f is meromorphic. Then its poles are isolated in the compact set \mathbb{C}_{∞}, so there are only finitely many of them, say $z_{1}, z_{2}, \ldots, z_{K}$. Let p_{k} be the principal part of f at the pole z_{k}. Then $g=f-\sum p_{k}$ is a meromorphic function and it has no poles. By theorem 2.2.3 g must be constant. Hence f is rational.

Exercises

5. A divisor on a compact Riemann surface is a function $d: R \rightarrow \mathbb{Z}$ which is zero except at a finite set of points. These form a commutative group \mathcal{D}. The map

$$
\delta: \mathcal{D} \rightarrow \mathbb{Z} \quad ; \quad d \mapsto \sum(d(z): z \in R)
$$

is a homomorphism. Let \mathcal{D}_{0} be its kernel.
(a) Let f be a meromorphic function on R which is not identically zero, so $f \in \mathcal{M}(R)^{\times}$. Then f has finitely many zeros and poles. Let (f) be the divisor which is $\operatorname{deg} f(z)$ at any zero $z,-\operatorname{deg} f(z)$ at any pole z, and zero elsewhere. Show that this gives a homomorphism of commutative groups

$$
\mathcal{M}(R)^{\times} \rightarrow \mathcal{D}_{0} \quad ; \quad f \mapsto(f)
$$

Find the kernel of this homomorphism. The quotient $\mathcal{D} /\left\{(f): f \in \mathcal{M}(R)^{\times}\right\}$is called the divisor class group of R.
(b) Show that the divisor class group of \mathbb{C}_{∞} is trivial.
6. Find all the meromorphic 1-forms (differentials) on \mathbb{C}_{∞}.

Theorem 3.3.1

Aut $\mathbb{C}_{\infty}=$ Möb.

Proof:

If $f \in$ Aut \mathbb{C}_{∞} then $f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ is meromorphic and bijective. Hence Theorem 3.2.1 shows that it is a rational function of degree 1 . These are precisely the Möbius transformations $z \mapsto(a z+b) /(c z+$ d) for $a d-b c \neq 0$.

If z_{0}, z_{1}, z_{∞} are three distinct points of \mathbb{C}_{∞} then there is a unique Möbius transformation T which maps them to $0,1, \infty$ respectively. It is given by

$$
z \mapsto \frac{z-z_{0}}{z-z_{\infty}} \frac{z_{1}-z_{\infty}}{z_{1}-z_{0}} .
$$

The image of $z \in \mathbb{C}_{\infty}$ under this transformation is called the cross ratio $\mathcal{R}\left(z_{0}, z_{1}, z_{\infty}, z\right)$. It is then clear that the following result is true.

Proposition 3.3.2 Cross ratios
There is a Möbius transformation which maps the four distinct points $z_{0}, z_{1}, z_{\infty}, z$ in \mathbb{C}_{∞} onto the distinct points $w_{0}, w_{1}, w_{\infty}, w$, in order, if and only if $\mathcal{R}\left(z_{0}, z_{1}, z_{\infty}, z\right)=\mathcal{R}\left(w_{0}, w_{1}, w_{\infty}, w\right)$.

Let $T: z \mapsto(a z+b) /(c z+d)$ be a Möbius transformation with $a d-b c=\delta \neq 0$. Then T fixes a point $z \in \mathbb{C}$ if, and only if, $a z^{2}+(d-a) z-b=0$, and fixes ∞ if, and only if, $c=0$. Thus T is either the identity or it fixes exactly 1 or 2 points of \mathbb{C}_{∞}.

Theorem 3.3.3

If $\pi: \mathbb{C}_{\infty} \rightarrow R$ is a universal covering of the Riemann surface R, then π is conformal.

Proof:

Theorem 2.3.5 showed that R was the quotient of \mathbb{C}_{∞} by a subgroup G of Aut \mathbb{C}_{∞}. Moreover every element of G other than the identity has no fixed points. We have seen that there are no such automorphisms.

Suppose that T has exactly two fixed points z_{0} and z_{∞}. Then we can find a Möbius transformation S which maps z_{0} and z_{∞} to 0 and ∞ respectively. So $T_{1}=S T S^{-1}$ is a Möbius transformation which fixes 0 and ∞ alone. Hence we must have $T_{1}=S T S^{-1}: z \mapsto \lambda z$ for some $\lambda \in \mathbb{C} \backslash\{0,1\}$. Now, if T_{1} and T_{2} are conjugate in Möb, say $T_{2}=U T_{1} U^{-1}$, then U must map the fixed points of T_{2} to the fixed points of T_{1}. Hence, $z \mapsto \lambda z$ and $z \mapsto \mu z$ are conjugate if, and only if, $\mu=\lambda$ or λ^{-1}. It is easy to find the value of λ from T. For, if $T: z \mapsto(a z+b) /(c z+d)$ then the matrix $M(T)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is determined by T up to multiplication of each entry by a non-zero complex number. Hence $\tau(T)=(\operatorname{tr} M(T))^{2} / \operatorname{det} M(T)$ does depend only on T. Since the trace and determinant are invariant under conjugation we see that

$$
\tau(T)=\tau\left(T_{1}\right)=\frac{(\lambda+1)^{2}}{4 \lambda}=\frac{1}{4}\left(\lambda+\lambda^{-1}\right)+\frac{1}{2}
$$

Thus $\tau(T)$ determines the pair $\left(\lambda, \lambda^{-1}\right)$ and this determines the conjugacy class of T in the group of Möbius transformations. We give names to various different classes of transformations:
T is a Möbius transformation not equal to the identity.
T is elliptic $\quad \Leftrightarrow \quad|\lambda|=1$ but $\lambda \neq 1 \quad \Leftrightarrow \quad \tau(T) \in[0,1)$
T is hyperbolic $\Leftrightarrow \lambda \in \mathbb{R} \backslash\{-1,0,1\} \quad \Leftrightarrow \quad \tau(T) \in(1, \infty)$
T is loxodromic $\Leftrightarrow \lambda \in \mathbb{C} \backslash \mathbb{R}$ and $|\lambda| \neq 1 \quad \Leftrightarrow \quad \tau(T) \in \mathbb{C} \backslash[0, \infty)$
If T has exactly one fixed point z_{∞} then we can conjugate T by a Möbius transformation S which sends z_{∞} to ∞. Then $T_{1}=S T S^{-1}$ fixes only ∞ and so is $z \mapsto z+\nu$ for ν a non-zero complex number. All such Möbius transformations T_{1} are conjugate to one another. In this case we say that T is parabolic. Note that $\tau(T)=1$ if, and only if, T is either parabolic or the identity.

Exercises

Let $T: z \mapsto(a z+b) /(c z+d)$ be a Möbius transformation.
7. Consider the chordal metric on \mathbb{C}_{∞} and show that T multiplies the length of an infinitesimally short curve at z by the factor

$$
\frac{\left|T^{\prime}(z)\right|\left(1+|z|^{2}\right)}{1+|T(z)|^{2}}=\frac{|a d-b c|\left(1+|z|^{2}\right)}{|a z+b|^{2}+|c z+d|^{2}}
$$

Show that the maximum and minimum values of this quantity are

$$
s+\sqrt{s^{2}-1} \quad \text { and } \quad s-\sqrt{s^{2}-1}
$$

where

$$
s=\frac{|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}}{2|a d-b c|}
$$

[Hint: Think about \mathbb{C}_{∞} as $\mathbf{P}\left(\mathbb{C}^{2}\right)$.]
8. Let $Z(T)=\{S \in$ Möb : $S T=T S\}$.
(a) Show that $Z(T)$ is a subgroup of Möb.
(b) Find which groups (up to isomorphism)can arise as $Z(T)$ for some Möbius transformation T
9. Let A be a 2×2 complex matrix with trace equal to 0 . Show that the series

$$
\exp A=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}
$$

converges and prove the following properties.
(a) If $A B=B A$ then $\exp (A+B)=\exp A \exp B$.
(b) $\{\exp t A: t \in \mathbb{R}\}$ is a commutative group under multiplication of matrices.
(c) The function $f(t)=\operatorname{det} \exp t A$ satisfies $f^{\prime}(t)=f(t) \operatorname{tr} A=0$. Hence $\exp t A \in S L(2, \mathbb{C})$.

Let $\exp t A$ now denote the Möbius transformation determined by the matrix $\exp t A$. Show that every Möbius transformation is equal to $\exp A$ for some matrix A. Is the choice of A unique? For $z \in \mathbb{C}_{\infty}$ the images of z under the Möbius transformations $\exp t A$ for $t \in \mathbb{R}$ trace out a curve. Which curves can arise in this way? Sketch examples. (The groups $\{\exp t A: t \in \mathbb{R}\}$ for some A are the 1-parameter subgroups of the Lie group Möb.)

