
2 2 RIEMANN SURFACES

2.1 Definitions

Let R be a connected, Hausdorff space. A chart is a homeomorphism φ : U → φU from an open
subset U of R onto a domain φU ⊂ C. A collection of such charts φα : Uα → φαUα for α ∈ A whose
domains Uα cover R is an atlas for R with transition maps

tαβ = φαφ
−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ).

If all the transition maps are analytic, then we say that R, with this atlas, is a Riemann surface.
Since t−1

αβ = tβα the transition maps for a Riemann surface are conformal. The collection of all charts
φ : U → φU which have

φφ−1
α : φα(U ∩ Uβ) → φ(U ∩ Uα)

analytic for every α ∈ A also forms an atlas with analytic transition maps and is the unique maximal
such atlas containing {φα : α ∈ A}. We will identify two Riemann surfaces which have the same maximal
atlases.

Let R,S be two Riemann surfaces and f : R→ S a map between them. For charts φ : U → φU for
R and ψ : V → ψV for S we obtain a map

ψfφ−1 : φ(U ∩ f−1V ) → ψ(V )

between domains in C. We will say that the map f is smooth if each of these maps is smooth, and that
it is analytic if each of these maps is analytic. It is apparent that if these definitions hold for any atlases
then they also hold for the associated maximal atlases.

Note that, since each point of a Riemann surface has a neighbourhood homeomorphic to a domain
in C, the Riemann surface is path connected as well as being connected. Also, any local properties of
analytic maps of domains in C can be transferred to analytic maps on a Riemann surface. We will do
this without further remark.

As a first example, any domain Ω ⊂ C becomes a Riemann surface with the atlas consisting of
the single chart I : Ω → Ω ⊂ C which is the identity. The definition of analytic maps between such
Riemann surfaces obviously agrees with our earlier definition of analytic maps between domains in C. In
particular, the complex plane C is a Riemann surface. The collection of analytic maps f : R→ C from
a Riemann surface R into C forms a vector space O(R). The constant functions are always analytic
but there may be no others. For example, if R is a compact Riemann surface and f : R → C is an
analytic map which is not constant, then f(R) is compact and also open (by the open mapping theorem
for analytic maps). This contradicts the connectedness of R, so O(R) must consist of the constant
functions alone.

Let C∞ be the one-point compactification of C. So C∞ consists of the points of C together with
an additional point denoted by ∞. The open sets in C∞ are those open sets in C together with the
complements in C∞ of the compact subsets of C. It is easy to see that C∞ is a compact, connected,
Hausdorff topological space. The two maps

i : C∞ \ {∞} → C ; z 7→ z

j : C∞ \ {0} → C ;
{
z 7→ z−1

∞ 7→ 0

form an atlas for C∞ which makes it a Riemann surface called the extended complex plane or Riemann
sphere. An analytic function f : R → C∞ from a Riemann surface R into C∞ is called a meromorphic
function on R provided that it is not identically ∞. The collection of all such functions is denoted by
M(R). It is clear that M(R) contains the constant functions but it is not obvious that there are any
other meromorphic functions. We shall prove later that there are. The set of all meromorphic functions
on R forms a field M(R) which is called the function field of R.
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Proposition 2.1.1

Let f : C2 → C be an analytic function and R one component of f−1(0). If f ′(z1, z2) 6= 0 at every point
of R then R can be made into a Riemann surface with the projection maps prk : (z1, z2) 7→ zk being
analytic.

Proof:

Suppose that the conditions are satisfied and (w1, w2) ∈ R. Then either ∂f
∂z1

or ∂f
∂z2

(or both) are
non-zero at (w1, w2). Suppose it is the former. Then the map

F : C2 → C2 ; (z1, z2) 7→ (f(z1, z2), z2)

has F ′(w1, w2) invertible. The inverse function theorem implies that F is invertible when restricted
to some open neighbourhood N of (w1, w2) in C2. Then U = {(z1, z2) ∈ N : f(z1, z2) = 0} is a
neighbourhood of (w1, w2) in R and F acts on this as the second co- ordinate projection

pr2 : U → C ; (z1, z2) 7→ z2.

Take this as a chart for R.

Similarly, if ∂f
∂z2

6= 0 at (w1, w2), then we take the restriction of pr1 to some neighbourhood of
(w1, w2) as a chart for R. Since the mappings F which we constructed were (complex) differentiable
with differentiable inverses, it follows that the transition maps for these charts are differentiable. Hence
R is a Riemann surface. �

For example, suppose that p is a polynomial in two complex variables. If p′(z1, z2) 6= 0 on the set
{(z1, z2) : p(z1, z2) = 0}, then each component of this set is a Riemann surface.

It is more natural to consider homogeneous polynomials p in three variables. Then {[z1 : z2 : z3] ∈
P(C3) : p(z1, z2, z3) = 0} is a subset of the complex projective space P(C3). Let R be a component
of this set and suppose that p′(z1, z2, z3) is never 0 on R. Then we may apply the above result on
polynomials in two variables to the polynomial

(z1, z2) 7→ p(z1, z2, 1)

and the two similar polynomials with z1 or z2 set to 0. This shows that R is a Riemann surface with
the maps

[z1 : z2 : z3] 7→
zj

zk
for j 6= k

meromorphic on R. Since P(C3) is compact, we see that R is a compact Riemann surface. (In fact
every compact Riemann surface is conformally equivalent to a Riemann surface embedded in this way
in P(C4).)

Exercises
1. Let p be a polynomial in one complex variable which has no repeated zeros. Show that

{(w, z) : w2 = p(z)}

is a Riemann surface. What happens if p does have repeated zeros?
2. Show that

R = {(w, z) ∈ C2 : w2 = (z − z1)(z − z2)(z − z3)(z − z4)}

is a Riemann surface provided that the four complex numbers are distinct. Prove that it may be
made into a compact Riemann surface by adjoining two points. Prove that this compact surface is
homeomorphic to a torus (i.e. S1 × S1).
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3. Extend the results of the previous question to surfaces defined by

w2 = (z − z1)(z − z2) . . . (z − zN ).

2.2 Analytic functions.

Proposition 2.2.1

Let f : R → S be an analytic function between two Riemann surfaces. Then either f is constant on R
or else f−1(w) consists of isolated points for each w ∈ S.

Proof:

Suppose that z is a non-isolated point of f−1(w). Then there are charts φ : U → φU for R and
ψ : V → ψV for S with z ∈ U , w ∈ V and fU ⊂ V . The composite F = ψfφ−1 : φU → C is an analytic
function on the plane domain φU and φ(z) is a non-isolated point of F−1(ψw). Consequently, F must
be constant and so f is constant on the neighbourhood U of z. This shows that set of non-isolated
points of f−1(w) is open in R. It is obviously closed so, since R is connected, it must be either empty
or else all of R. �

The following analogue of Proposition 1.1.1 is straightforward.

Proposition 2.2.2

Let f : R→ S be an analytic function between two Riemann surfaces and zo ∈ R. Either f is constant
or there is a natural number N ∈ {1, 2, 3, . . .} and charts φ : U → φU = D and ψ : V → ψV = D for R
and S respectively with φ(zo) = 0, ψ(f(zo)) = 0 and

ψ(f(z)) = φ(z)N for z ∈ U.

The number N is unique and is called the degree deg f(zo) of f . A point zo is a critical point for f if
deg f(zo) > 1 and f(zo) is then a critical value. The theorem shows that each critical point is isolated.

Proof:

Suppose that f is not constant. We can certainly find charts φo : Uo → φoUo for R and ψo :
Vo → ψoVo for S with φo(zo) = 0, ψof(zo) = 0 and fUo ⊂ Vo. Then F = ψofφ

−1
o : φoUo → C is an

analytic map with F (0) = 0. Take N as the degree of F at 0. Proposition 1.1.1 now shows that there
is a neighbourhood D of 0 in φoUo and a conformal map g : D → D′ onto a neighbourhood of 0 with
F (ζ) = g(ζ)N for ζ ∈ D. By reducing the size of D we may ensure that D′ = {ζ ∈ C : |ζ| < r} for some
r > 0. Then FD = D′N = {ζ ∈ C : |ζ| < rN}.

Set U = φ−1
o D and

φ : U → C ; z 7→ gφo(z)
r

.

So φ is a chart for R with φU = D. Similarly, set V = fU and

ψ : V → C ; w 7→ ψo(w)
rN

so that ψ is a chart for S with ψV = D. Then, for z ∈ U we have

ψf(z) =
ψof(z)
rN

=
Fφo(z)
rN

=
(
gφo(z)
r

)N

= φ(z)N

as required. �

This proposition certainly implies that, for each z o ∈ R, there is a neighbourhood U of z in R and
a neighbourhood V of f(zo) so that every value w ∈ V \ {f(zo)} is taken exactly deg f(zo) times in U .
The value f(zo) is only taken at the point zo of U but it has multiplicity deg f(zo).
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Theorem 2.2.3

Let f : R → S be an analytic map from a compact Riemann surface R into another Riemann surface
S. If f is not constant then S is also compact and∑

(deg f(z) : f(z) = w)

is a natural number N ∈ {1, 2, 3, . . .} independent of the point w ∈ S.

The number N is called the degree of f . The critical points of f form a discrete subset of the compact
set R and are therefore finite in number. Consequently the set of critical values is finite. If w ∈ S
is not one of these critical values then there are exactly N points in f−1(w). We often call the sum∑

(deg f(z) : f(z) = w) the number of solutions of f(z) = w counting their multiplicity. The theorem
then shows that this number is independent of w.

Proof:

If f is not constant then the open mapping theorem shows that the image f(R) is open in S. Since
f is continuous, f(R) is compact and hence closed. Therefore f(R) = S and S is compact.

Suppose that f is not constant and set

N(w) =
∑

(deg f(z) : f(z) = w)

for w ∈ S. Let wo be a point of S. The previous proposition shows that each zo ∈ f−1(wo) is contained
in a neighbourhood U which is mapped deg f(zo)-to-1 onto a neighbourhood V of f(zo). By taking
W equal to the intersection of the neighbourhoods V for each zo ∈ f−1(wo) we find that there is an
open set T in R containing f−1(wo) which is mapped N(wo)-to-1 onto an open set W in S containing
wo. This certainly implies that N(w) > N(wo) for w ∈ W . Moreover, the set R \ T is compact so
its image under f will be a compact subset of S which will not meet wo. Hence S \ f(R \ T ) is a
neighbourhood of wo. Clearly N(w) 6 N(wo) on this neighbourhood. Therefore N(w) will be constant
on some neighbourhood of each point wo. Since S is connected this means that N(w) is constant on S.
�

2.3 Covering Surfaces.

Throughout this section R will be a Riemann surface with a specified base point zo ∈ R. A path in R is
a continuous map γ : I → R from the unit interval I. It starts at γ(0) and ends at γ(1). Let C(z1, z2)
be the set of all paths in R which start at z1 and end at z2. A homotopy (relative to {0, 1}) is a family
of paths γs ∈ C(z1, z2) for s ∈ I with

h : I × I → R ; (s, t) 7→ γs(t)

continuous. When such a homotopy exists we say that γ0 and γ1 are homotopic and write γ0 ∼ γ1.
Then ∼ is an equivalence relation on C(z1, z2).

If β ∈ C(z1, z2), γ ∈ C(z2, z3) are two paths in R their product is the path

γ · β : I → R ;
{
β(2t) for 0 6 t 6 1

2
γ(2t− 1) for 1

2 6 t 6 1

in C(z1, z3). The product respects the equivalence relation of homotopy. In particular, the quotient
C(zo, zo)/ ∼ is a group π1(R, zo) called the fundamental or first homotopy group of R. We say that R
is simply connected if the fundamental group of R is trivial.

Exercises
4. Prove that π1(R, z0) is a group. Show that π1(R, z) is isomorphic to π1(R, zo) for any z ∈ R. (The

isomorphism is not natural.) Calculate π1(R, zo) for the following Riemann surfaces: (a) D, (b) an
annulus, (c) a torus, (d) C \ {0, 1}.
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If S is another Riemann surface with a base point wo then we will write f : (S,wo) → (R, zo) to
denote a map f : S → R which maps wo to zo. A regular covering of (R, zo) is a map p : (S,wo) → (R, zo)
from a Riemann surface S which satisfies

(a) p is locally conformal, so each w ∈ S has an open neighbourhood U with the restriction p| : U → pU
conformal.

(b) for each path γ in R which starts at zo there is a path Γ in S which starts at wo and satisfies
pΓ = γ.

The path Γ is called a lift of γ. It is unique, for if Γ′ were another lift then T = {t ∈ I : Γ′(t) = Γ(t)} is
closed, because Γ′ and Γ are continuous, and open, because p is a local homeomorphism. Since 0 ∈ T
and I is connected we must have T = I and so Γ′ = Γ.

The choice of base points is largely irrelevant, as the following proposition shows.

Proposition 2.3.1

If p : (S,wo) → (R, zo) is a regular covering then so is p : (S,w) → (R, f(w)) for every w ∈ S.

Proof:

Let γ be a path in R starting at f(w). Since S is connected there is a path B from wo to w. Its
image under p is a path β in R from zo to f(w). Since p : (S,wo) → (R, zo) is a regular covering the
path γ · β lifts to a path A which starts at wo. The first part of A is a lift of β and so agrees with B.
The remainder is a path Γ which starts at w and is a lift of γ. �

Recall (or prove) the:

Theorem 2.3.2 The monodromy theorem

Let p : (S,wo) → (R, zo) be a regular covering of the Riemann surface R. If (γs) is a homotopy of curves
in R which start at zo and end at some point z ∈ R, then the lifts (Γs) form a homotopy of curves in S
which start at wo and end at some point w ∈ S.

�

A regular covering p : (S,wo) → (R, zo) is a universal covering if S is simply connected. The name
is derived from the following “universal property”.

Proposition 2.3.3

Let p : (S,wo) → (R, zo) be a regular covering and q : (R̂, ẑo) → (R, zo) a universal covering. Then
there is a map f : (R̂, ẑo) → (S,wo) and pf = q. Moreover, f is unique and is itself a universal covering
of S.
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Proof:

For each ζ ∈ R̂ there is a path Γ in R̂ starting from ẑo and ending at ζ. Then β = qΓ is a path in
R starting at zo. Because p is a regular covering, β lifts to a path B in S starting at wo and ending at
a point w ∈ S.

Suppose that Γ′ were another path from ẑo to ζ and that β′ = qΓ′ has a lift B′. Then Γ and Γ′

are homotopic because R̂ is simply connected. The image of this homotopy under q gives a homotopy
between β and β′. Now the monodromy theorem 2.3.2 implies that B and B′ are homotopic. In
particular the endpoint of B′ is w. Therefore we can define a map f : R̂ → S by f : ζ 7→ w. It is clear
that pf = q.

If F : (R̂, ẑo) → (S,wo) satisfies pF = q then FΓ is a path in S with p(FΓ) = qΓ = β. Hence FΓ
is a lift of β and must therefore be B. In particular, f(ζ) = B(1) = F (ζ). So f is unique, and paths
in S lift to R̂. Since p and q are locally conformal, f must be locally conformal. Hence f is a regular
covering of S. Since R̂ is simply connected f is a universal covering. �

This proposition shows that if q : (R̂, ẑo) → (R, zo) and q′ : (R̂′, ẑ′o) → (R, zo) are two universal
coverings, then there is an unique conformal map f : (R̂′, ẑ′o) → (R̂, ẑ′o) with qf = q′. So the universal
covering of R is determined up to a conformal map.

Theorem 2.3.4 Universal coverings

Every Riemann surface has a universal covering.

Proof:

Let (R, zo) be the Riemann surface and C the set of all paths in R which start at zo. Set R̂ equal
to the quotient C/ ∼ and define a map

q : R̂→ R by [γ] → γ(1).

We will prove that this is a universal covering of R.

The constant map e : I → R ; t 7→ zo will be the base point of R̂. Clearly q(e) = zo. Let γ ∈ C be
a path in R which ends at z and φ : U → φU = D be a chart for R with z ∈ U . Then set

[γ, U ] = {[β · γ] : β is a path in U starting at z}.

This is a subset of R̂ and the restriction q| : [γ, U ] → U is bijective. We will show that these sets form
the basis for a Hausdorff topology on R̂.

For suppose that [α] ∈ [γ1, U1] ∩ [γ2, U2]. So there are paths βk in Uk with β1 · γ1 ∼ α ∼ β2 · γ.
Since α ends at a point z ∈ U1 ∩ U2 we can find a chart φ : U → φU = D with z ∈ U ⊂ U1 ∩ U2. Any
path in U starting from z lies entirely within U1 and U2 so

[α,U ] ⊂ [γ1, U1] ∩ [γ2, U2].

Therefore the sets [γ, U ] do from the basis for a topology on R̂. Note that when R̂ is given this topology
each of the restrictions q| : [γ, U ] → U is a homeomorphism.

Suppose that [γ1], [γ2] are two different points of R̂. If γ1(1) 6= γ2(1) then we can certainly find
charts φk : Uk → φkUk = D with γk(1) ∈ Uk and U1, U2 disjoint. Then we claim that [γk, Uk] are
disjoint open sets containing [γk]. Otherwise, γ1(1) = γ2(1) but γ1 and γ2 are not homotopic. Then we
can find a chart φ : U → φU = D with γ1(1) = γ2(1) ∈ U . Suppose that [α] ∈ [γ1, U ] ∩ [γ2, U ] so that
β1 ·γ1 ∼ α ∼ β2 ·γ2 for some curves βk in U . The curves βk have the same endpoints and lie in U which
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is homeomorphic to D. Hence β1 ∼ β2 and consequently γ1 ∼ γ2, which was forbidden. Thus we have
shown that R̂ is Hausdorff.

For each chart φ : U → φU = D the restriction q| : [γ, U ] → U is a homeomorphism so we can take
the composites

[γ, U ]
q−→U

φ−→φU

as charts for R̂. The transition maps for these charts are the same as those for R, so R̂ becomes a
Riemann surface and q a locally conformal map.

Let γ be a path in R starting from zo. For each s ∈ I define

γs : I → R ; t 7→ γ(st).

Then s 7→ [γs] is a lift of γ to R̂ starting from γ0 = e. Hence q : R̂→ R is a regular covering.

Now suppose that Γ is a path in R̂ with both endpoints at e. Then γ = qΓ is a path in R with both
endpoints at zo. Both Γ and s 7→ [γs] are lifts of γ so they are equal. In particular, [γ1] = Γ(1) = [e]
so γ = γ1 ∼ γ0 = e. The monodromy theorem 2.3.2 shows that the homotopy from γ to e lifts to
a homotopy in R̂ from Γ to the path which is constantly e. So Γ is null-homotopic and R̂ is simply
connected. �

An automorphism of the regular covering p : (S,wo) → (R, zo) is a homeomorphism f : S → S with
pf = p. The collection of these form a group Aut(p) called the automorphism group of p (or the deck
transformation group. Since p is locally conformal, each automorphism f must also be conformal. The
set {w ∈ S : f(w) = w} is then closed, since f is continuous, and open, since f is locally conformal. So
it is either empty or all of S. Thus the the only automorphism of p which fixes a point is the identity.

Theorem 2.3.5

Let q : R̂ → R be a universal covering for the Riemann surface R. Then q(w′) = q(w) if, and only if,
there is an automorphism f of q with f(w′) = w. Thus R is the quotient of R̂ by the action of the
group Aut(q).

Proof:

If there is an automorphism f with f(w′) = w then q(w) = qf(w′) = q(w′). Conversely, suppose
that there are two points w,w′ ∈ R̂ with q(w′) = z = q(w). By Proposition 2.3.1 both p : (R̂, w′) →
(R, z) and p : (R̂, w) → (R, z) are universal coverings. Hence Proposition 2.3.3 shows that there is a
map f : (R̂, w′) → (R̂, w) with qf = q. This map is an automorphism of q with f(w′) = w. �

This result shows that every Riemann surface R is the quotient R̂/G of a simply connected Riemann
surface R̂ by the action of a subgroup G of the group Aut R̂ of all conformal automorphisms of R̂.

Theorem 2.3.6

Let G be a subgroup of the group Aut(S) of conformal maps from a Riemann surface S to itself. Suppose
that, for each w ∈ S, there is a neighbourhood U of w with U and T (U) disjoint for every T ∈ G \ {I}.
Then S/G is a Riemann surface. Moreover, every Riemann surface arises in this way from a simply
connected Riemann surface S.
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Note that the condition U ∩ T (U) = ∅ certainly implies that the only element of G with a fixed point
is the identity.

Proof:

Consider those charts φ : U → φU ⊂ C for S which have U ∩ T (U) = ∅ for every T ∈ G \ {I}. The
hypothesis on G ensures that these form an atlas. Let [w] denote the equivalence class {Tw : T ∈ G}
in S/G. For each of the charts the map

φ̃ : {[w] : w ∈ U} → φU ; [w] 7→ φ(w)

is well defined. We take these maps as charts for S/G. It is easy to check that S/G with the quotient
topology is Hausdorff and that these charts form an atlas. The transition maps are analytic because
each φ and each T ∈ G is analytic. Hence they make S/G into a Riemann surface. The quotient map
S → S/G is a regular covering.

Conversely, if R is any Riemann surface the previous theorem shows that R = R̂/G for G a subgroup
of Aut R̂. If w ∈ R̂ then there is a neighbourhood U of w with π| : U → π(U) conformal, because the
universal covering π : R̂→ R is locally conformal. If z ∈ U ∩T (U) then z and T−1(z) are in U and have
π(z) = π(T−1(z)). Therefore z = T−1(z). The only element of G which fixes any point is the identity,
so T = I. �

The Riemann Mapping Theorem states that the only simply connected Riemann surfaces are C∞,C
and D (up to conformal equivalence). Hence any Riemann surface is the quotient of one of these by a
group of automorphisms. We will study these three surfaces in the following chapters.

Exercises

5. Let ψ : (M,wo) → (R, zo) be a regular covering of R and π : (R̂, ẑo) → (R, zo) a universal covering.
Then there is a covering f : (R̂, ẑo) → (M,wo) by Proposition 2.3.3. Prove that the following two
conditions are equivalent.

(a) If T ∈ Autπ then there is an unique S ∈ Autψ with Sf = fT .

(b) Aut f = {T ∈ Autπ : fT = f} is a normal subgroup of Autπ and the quotient Autπ/Aut f
is isomorphic to Autψ.

6. Show that C∞,C and D are all simply connected and that no two of them are conformally equivalent.

7. Exhibit explicitly a universal covering π : D → {z ∈ C : r < |z| < 1} for each 0 6 r < 1. Identify
the group Autπ. [Hint: exp.]

8. Exhibit explicitly a universal covering π : C → {z ∈ C : 0 < |z| <∞}. Identify the group Autπ.

9. Let G be the subgroup of Aut C which consists of the maps z 7→ z+n+mi for n,m ∈ Z. Show that
C/G is a Riemann surface. Is this still true when i is replaced by an arbitrary complex number τ?
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2.4 Differential forms

Let f : R → C be a smooth function on the Riemann surface R. Then, for each chart φα : Uα →
φαUα ⊂ C we have smooth maps

fα = fφ−1
α : φαUα → C

which satisfy
fβ(z) = fα(tαβ(z))

for the transition maps tαβ = φαφ
−1
β . Each of these maps fα is smooth. Conversely, a collection of

smooth maps fα : φαUα → C which satisfy fβ(z) = fα(tαβ(z)) clearly determines a smooth function
f : R → C . We will call a smooth function f : R → C, or the associated collection fα : φαUα → C, a
0-form on R. The set of all 0-forms on R forms a vector space E0(R). The analytic functions f : R→ C
form a vector subspace O(R) of E(R). The analytic functions f : R → C∞, excluding the constant
function ∞ are called the meromorphic functions on R and denoted by M(R). The vector spaces
E(R),O(R) and M(R) are all closed under multiplication (and so form algebras). The meromorphic
functions form a field, often called the function field of R.

However, the derivative of a 0-form f does not give another function on the Riemann surface.
Indeed, the derivatives of the functions fα satisfy

f ′β(z) = f ′α(tαβ(z))t′αβ(z)

rather than f ′β(z) = f ′α(tαβ(z)). This leads us to the idea of a 1-form (or Abelian differential) on R as
a collection of smooth maps

ωα : φαUα → HomR(C,C)

which satisfy
ωβ(z) = ωα(tαβz)t′αβ(z) for z ∈ φα(Uα ∩ Uβ).

(It is easy to check that a collection of maps which satisfy this condition for one atlas on R can be
extended, uniquely, to a collection which satisfies the corresponding condition for a maximal atlas.) It
is more appealing to give a definition of 1-forms which is geometrical, so we will define them in terms
of tangent vectors.

If γ : [a, b] → V is a smooth curve in V with γ(0) = zo ∈ V , then the derivative γ′(0) is often
thought of as an arrow from zo tangent to γ. The set of all such tangent vectors at zo forms the tangent
plane at zo. To deal with tangent vectors to a Riemann surface, we use the curves to define the vectors.

Let R be a Riemann surface and zo ∈ R. Let Γ be the set of all smooth curves

γ : R → R with γ(0) = zo .

Two curves γ1, γ2 ∈ Γ agree to first order at zo (written γ1 ∼ γ2) if, for any chart φ : U → V at zo, we
have

φ(γ1(t))− φ(γ2(t)) = o(t) as t→ 0 .

If this is true for one chart, then it is true for all analytically compatible charts at zo. The tangent plane
at zo is the set of equivalence classes: Tzo(R) = Γ/ ∼ and an equivalence class [γ]zo is a tangent vector
at zo.

If φ : U → V ⊂ C is a chart at zo, then the map

Tzo(R) → C ; [γ]zo 7→ (φ ◦ γ)′(0)

is a bijection. So we may use it to make the tangent plane into a one-dimensional complex vector space.
Since the transition maps are conformal, this vector space structure does not depend on the chart we
use.
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Now let f : R → S be a smooth mapping between two Riemann surfaces with f(zo) = wo. Then
the derivative of f at zo is the real linear map

f ′(zo) : Tzo
(R) → Two

(S) ; [γ]zo
7→ [f ◦ γ]wo

.

It is straightforward to check that this agrees with the usual definition when R and S are domains in C
and that it obeys the chain rule. If f is analytic, then f ′(zo) is a complex linear map.

A 1-form ω on R gives a real linear map ω(z) : Tz(R) → C at each point z ∈ R which should vary
smoothly with z. This means that for each chart φ : U → V the maps

ω(z) ◦ φ′(z)−1 : C → C

vary smoothly with z ∈ U . Obviously this is independent of the charts chosen. The set of all 1-forms
on R is the complex vector space E1(R). Let f : S → R be a smooth mapping and ω a 1-form on R.
Then we can define a 1-form f∗ω on S by

f∗ω(z) = ω(f(z)) ◦ f ′(z) : Tf(z)(S) → C .

This is called the pull-back of ω by f .

To give examples of 1-forms, consider f ∈ E0(R). The differential of f at z is the map

df(z) : Tz(R) → C ; [γ]z 7→ (f ◦ γ)′(0) .

This clearly varies smoothly with z and so df ∈ E1(R).

In particular, if Ω is a domain in C then we have smooth functions

x : Ω → C
z 7→ <z

y : Ω → C
z 7→ =z

z : Ω → C
z 7→ z

z : Ω → C
z 7→ z

and their differentials dx, dy, dz, dz which map each point of Ω to the real linear maps

< : w 7→ <w = : w 7→ =w I : w 7→ w C : w 7→ w

respectively. Any 1-form ω on Ω can be written as adx + bdy or λdz + µdz for some 0-forms a, b, λ, µ.
In particular, for f : Ω → C we have

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz .

The 1-forms are defined precisely so that we can integrate them along paths. Let ω be a 1-form on
R and γ : I = [a, b] → R a smooth path. Then we define the integral of ω along γ by:∫

γ

ω =
∫

I

ω(γ(t))[γ]γ(t) dt .

Here ω(γ(t)) is a real linear map Tγ(t)(R) → C which is applied to the tangent vector [γ]γ(t) at γ(t).
For the particular case where ω = αdz + βdz on a domain Ω ⊂ C we have∫

γ

ω =
∫

I

α(γ(t))γ′(t) + β(γ(t))γ′(t) dt

which agrees with the usual definition of
∫

γ
αdz + βdz. (We can also regard

∫
γ
ω as the integral of

pull-back γ∗ω along I.)
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Proposition 2.4.1

Let γ : I = [a, b] → R be a smooth path in a Riemann surface R and f a 0-form on R. Then∫
γ

df = f(γ(b))− f(γ(a)).

Proof:

∫
γ

df =
∫

I

f ′(γ(t))[γ]γ(t) dt =
∫

I

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a))

by the fundamental theorem of calculus. �

If γ is a closed curve in R, then
∫

γ
df = 0. However, the integral of 1-forms around γ need not give

0. For example, consider the 1-form:

ω =
1
z
dz on C \ {0} .

The integral of this around the unit circle: γ : t 7→ exp(2πit) is 2πi. This shows that not every 1-form ω
is of the type df for some function f ∈ E(R). When ω = df for some f ∈ E(R), we say that ω is exact.
A 1-cycle in R is a finite collection of closed curves Γ = (γn)N

n=1. The integral of ω ∈ E1(R) around Γ
is defined to be ∫

Γ

ω =
N∑

n=1

∫
γn

ω .

This will be 0 if ω is exact.

Any real linear map λ : Tz(R) → C can be decomposed uniquely as the sum of a complex linear
map α : Tz(R) → C and a conjugate linear map β : Tz(R) → C (with w 7→ β(w) complex linear).
Therefore, each 1-form ω ∈ E1(R) can be written as the sum α + β where each α(z) : Tz(R) → C is
complex linear and each β(z) : Tz(R) → C is conjugate linear. We write E1,0 for the space of 1-forms α
with each α(z) complex linear and E0,1 for the space of 1-forms β with each β(z) conjugate linear. Then
E(R) is the direct sum E1,0(R)⊕ E0,1(R). On a domain Ω ⊂ C we can write a 1-form ω as αdz + βdz.
Then αdz ∈ E1,0(Ω) and βdz ∈ E0,1(Ω). For any 0-form f we can decompose df as ∂f + ∂f with
∂f ∈ E1,0(R) and ∂f ∈ E0,1(R). This defines ∂f and ∂f . When f is defined an a domain in C we have

∂f =
∂f

∂z
dz ; ∂f =

∂f

∂z
dz .

We can also define analytic and meromorphic 1-forms. Let ω ∈ E1(R) and let φ : U → V be a chart
for R. Then ω̃ = (φ−1)∗ω is a 1-form on V . If, for each chart φ, ω̃ = αdz for some analytic function
α : V → C, then we say that ω is an analytic differential and write ω ∈ O1(R). Clearly O1(R) is a
vector subspace of E1,0(R). Similarly, suppose that S is a discrete subset of R and ω a 1-form on R \S.
Then ω is a meromorphic 1-form on R if ω̃ = (φ−1)∗ω can always be expressed as αdz with α : V → C∞
meromorphic. The points of S are the possible positions for poles in R. The set of meromorphic 1-forms
forms a complex vector space.

Proposition 2.4.2

If ω and η are both meromorphic 1-forms on a Riemann surface R and η is not identically zero, then
there is a meromorphic function f : R→ C∞ with ω = f.η.
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Proof:

On the image of a chart φ : U → V ⊂ C both the 1-forms ω and η define meromorphic functions,
say (φ−1)∗ω = αdz and (φ−1)∗η = βdz with α, β meromorphic. Since η is not identically zero, the
function β cannot be identically zero either. Thus f = α/β is a meromorphic function on V . The
definition of f does not depend on which charts we choose, so we obtain a meromorphic function on all
of R. Clearly we have ω = f.η on each chart and hence on all of R. �

A 2-form θ on R should be an object which we can integrate over areas. So θ(z) : Tz(R)×Tz(R) → C
should send a pair of tangent vectors (w1, w2) to some complex multiple of the area spanned by w1 and
w2. Hence θ(z) should be real-bilinear and alternating (skew-symmetric). Therefore, a 2-form θ on R
gives, for each z ∈ R, a real-bilinear, alternating map θ(z) : Tz(R)× Tz(R) → C which varies smoothly
with z. This means that for a chart φ : U → V ⊂ C the bilinear maps

C× C → C ; (w1, w2) 7→ θ(φ−1(z))[φ′(z)−1(w1), φ′(z)−1(w2)]

vary smoothly with z ∈ U . The collection of all 2-forms on R forms a vector space E2(R).

If f : S → R is a smooth mapping, then the pull-back f∗θ of a 2-form θ ∈ E2(R) is given by

f∗θ : z 7→ θ(f(z)) ◦ (f ′(z)× f ′(z)) .

So f∗ : E2(R) → E2(S) is a real linear map.

We can construct 2-forms from two 1-forms as follows. Let ω1, ω2 ∈ E1(R). Define a 2-form ω1∧ω2

by
ω1 ∧ ω2(z) : (v1, v2) 7→ ω1(v1)ω2(v2)− ω1(v2)ω2(v1) .

It is easy to check that this is a 2-form and that the wedge product is distributive over addition:

ω1 ∧ ω2 = −ω2 ∧ ω1 ;
ω ∧ ω = 0 ;

ν ∧ (ω1 + ω2) = ν ∧ ω1 + ν ∧ ω2 .

For example, on a domain Ω ⊂ C the 2-form dx ∧ dy is given by

dx ∧ dy(z) : (w1, w2) 7→ u1v2 − u2v1

where wj = uj + ivj . Then

dx ∧ dx = dy ∧ dy = 0 ; dy ∧ dx = −dx ∧ dy ;

and the forms dz, dz satisfy
dz ∧ dz = −dz ∧ dz = 2idx ∧ dy .

Any real-bilinear, alternating form on C is a complex multiple of the determinant: (w1, w2) 7→ u1v2 −
u2v1. So every 2-form on Ω is fdx ∧ dy = gdz ∧ dz for some smooth functions f, g : Ω → C.

Let σ : ∆ → R be a smooth mapping on a compact subset ∆ of R× R with a (piecewise) smooth
boundary. Then the integral of θ ∈ E2(R) over σ is defined by:∫

σ

θ =
∫ ∫

(s,t)∈∆

θ(σ(s, t))
(
∂σ

∂s
(s, t),

∂σ

∂t
(s, t)

)
ds dt .

(Note that the orientation of ∆ is important. Reversing it changes the sign of the integral.) The
boundary ∂∆ of ∆ is oriented so that the interior of ∆ lies to its left. Then the image of ∂∆ under σ
is a 1-cycle in R, which we denote by ∂σ.
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We now wish to define the differential dω of a 1-form. First consider the case of forms on a domain
Ω ⊂ C. Then ω = αdz + βdz and we define

dω = dα ∧ dz + dβ ∧ dz .

This definition transforms properly under conformal maps. For suppose that f : Ω1 → Ω2 is conformal
and ω = αdz2 + βdz2 ∈ E1(Ω2). Then f∗ω(z1) = α(f(z1))f ′(z1)dz1 + β(f(z1))f ′(z1)dz1 and

df∗ω(z1) = dα(f(z1)) ∧ f ′(z1)dz1 + dβ(f(z1)) ∧ f ′(z1)dz1 = f∗dω(z1) .

This means that we can define the differential dω of a 1-form ω ∈ E1(R) locally on charts for any
Riemann surface R. It is now simple to prove the elementary properties of d:

d(ω1 + ω2) = dω1 + dω2 ; d(fω) = df ∧ ω + fdω ; d(df) = 0

for f ∈ E(R), ω, ωj ∈ E1(R).

We can define the operators ∂ and ∂ on 1-forms in a similar way. On a domain Ω ⊂ C the 1-form
ω = αdz + βdz satisfies:

∂ω = ∂α ∧ dz + ∂β ∧ dz
∂ω = ∂α ∧ dz + ∂β ∧ dz

Now we can check that d = ∂ + ∂ and ∂(∂f) = ∂(∂f) = 0. Also, ∂(∂f) = ∂(∂f). On a plane domain
we find that

∂(∂f) =
∂2f

∂z ∂z
dz ∧ dz = 1

4∆f∂(∂f) = ∂(∂f)

where ∆f is the Laplacian of f . Hence, we say that a 0-form f is harmonic if ∂(∂f) = 0.

Proposition 2.4.3

A 0-form f : R→ C on a Riemann surface R is analytic if, and only if, ∂f = 0 and is harmonic if, and
only if, the 1-form ∂f is analytic.

Proof:

The differential ∂f exists and is a 1-form in E1,0(R). On a chart, we have

∂f =
∂f

∂z
dz

so ∂f = 0 precisely when ∂f
∂z = 0. This is when f is analytic.

Similarly, on each chart

∂f =
∂f

∂z
dz

and this is an analytic 1-form when u = ∂f
∂z is analytic. Now u is analytic when ∂u = 0. This corresponds

to ∂(∂f) = 0. �

Exercises
10. Show that it is not true that a 1-form ω is analytic if, and only if, ∂ω = 0.
11. Show that a 0-form f : R → C is harmonic if, and only if, there are two analytic 1-forms α, β ∈

O1(R) with
df = α+ β .

Show that, when f takes only real values, we may choose α = β

13



All of the results for harmonic functions on plane domains which we proved in Chapter 1 can now
be transferred without difficulty to deal with harmonic functions on Riemann surfaces. Do so!

The fundamental theorem of calculus also extends to 1-forms, where it is traditionally called Stokes’
theorem or Green’s theorem.

Theorem 2.4.4 Stokes’ Theorem

Let σ : ∆ → R be a smooth map from a compact subset ∆ of C with piecewise smooth boundary into
the Riemann surface R. Let ω be a 1-form on R. Then∫

σ

dω =
∫

∂σ

ω .

Proof:

Let the pull-back of ω by σ be σ∗ω = a dx+ b dy. Then

dω =
(
−∂a
∂y

+
∂b

∂x

)
dx ∧ dy .

Therefore, ∫
σ

dω =
∫

∆

(
−∂a
∂y

+
∂b

∂x

)
dxdy

and ∫
∂σ

ω =
∫

∂∆

a dx+ b dy .

Green’s theorem in the plane shows that these two are equal. �

Let C0(R) be the free Abelian group generated by the points of R, C1(R) the free Abelian group
generated by piecewise smooth curves γ : I = [a, b] → R, and C2(R) the free Abelian group generated
by smooth mappings σ : ∆ → R from compact subsets ∆ ⊂ C with piecewise smooth boundary. We
can define boundary homomorphisms ∂ : Ck+1(R) → Ck(R) by

∂ : C1(R) → C0(R) ; γ 7→ γ(b)− γ(a) ;
∂ : C2(R) → C1(R) ; σ 7→ ∂σ .

Then the group of k-cycles Zk(R) is the subgroups ker(∂ : Ck(R) → Ck−1(R)) of Ck(R) and the group of
k-boundaries Bk(R) is the subgroup Im(∂ : Ck+1(R) → Ck(R)). Since ∂◦∂ = 0 we have Bk(R) ⊂ Zk(R).
The quotient Zk(R)/Bk(R) is the kth homology group Hk(R). Two k-cycles are homologous if they differ
by a k-boundary, so they represent the same element of Hk(R).

Since every Riemann surface is path-connected, P − Q is a boundary for every pair of points
P,Q ∈ R. Thus H0(R) is isomorphic to the additive group Z and is generated by any point of R.
Every Riemann surface is orientable, since the transition maps are orientation preserving. Hence, if R
is compact and triangulable, we can find a 2-cycle by mapping to each face of the triangulation. This
generates H2(R) which is isomorphic to Z. If R is not compact, every finite union of images σ(∆) must
be compact and so cannot be a cycle. Thus H2(R) = Z2(R) = {0}.
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Theorem 2.4.5 Cauchy’s theorem

Let ω ∈ O1(R) be an analytic 1-form on the Riemann surface R. Then,∫
γ

ω = 0

for each 1-cycle γ which is homologous to 0 (that is , γ is a 1-boundary).

Let u ∈ E(R) be harmonic. Then ∫
γ

∂u =
∫

γ

∂u = 0

for each 1-cycle γ homologous to 0.

Proof:

On a chart we have ω = a dz for some analytic function a. Hence, dω = da ∧ dz = ∂a
∂z dz ∧ dz = 0 .

Thus dω = 0 on all of R. Hence Stokes’ theorem gives∫
∂σ

ω =
∫

σ

dω = 0 .

For any 0-form u we have ∫
γ

du =
∫

γ

∂u+ ∂u = 0

by the fundamental theorem of calculus. When u is harmonic, ∂u ∈ O1(R) by Proposition 2.4.3, so∫
γ

∂u = 0 .

�

A k-form ω is closed if dω = 0. Clearly every exact form is closed since d(df) = 0. However, there
are closed forms which are not exact, for example (1/z) dz on C \ {0}. The quotient

Hk
dR(R) =

{closed k-forms on R}
{exact k-forms on R}

is called the kth de Rham cohomology group of R. Any closed k-form ω has
∫

γ
ω = 0 for any k-boundary

γ, because of Stokes’ theorem. So the map

Hk(R) → C ; [γ] 7→
∫

γ

ω

is a well defined group homomorphism. If ω is exact, then
∫

γ
ω is 0 for all k-cycles γ. Thus we get a

Z-bilinear pairing

Hk
dR(R)×Hk(R) → C ; ([ω], [γ]) 7→

∫
γ

ω .

Finally, let us consider forms on the quotient of the unit disc D by a discrete subgroup Γ of Aut(D).
Let π : D → D/Γ be the quotient map. If f is a 0-form on D/Γ, then F = f ◦ π is 0-form on D which
satisfies

F (T (z)) = F (z) for all T ∈ Γ and z ∈ D .
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Such a function F : D → C is called an automorphic 0-form for Γ. Similarly, a 1-form ω on D/Γ
corresponds to a 1-form Ω = π∗ω on D which satisfies

T ∗Ω = Ω for all T ∈ Γ .

Such forms are called automorphic 1-forms for Γ. The 1-form Ω on D can be written as Ω = a dz+ b dz
for some functions a, b : D → C. Then

T ∗Ω(z) = a(T (z))T ′(z) dz + b(T (z))T ′(z) dz .

Thus a dz + b dz is an automorphic 1-form if, and only if,

a(T (z))T ′(z) = a(z) and b(T (z))T ′(z) = b(z)

for T ∈ Γ and z ∈ D. More explicitly, if T : z 7→ (az + b)/(bz + a), with |a|2 − |b|2 = 1, then

a

(
az + b

bz + a

)
1

(bz + a)2
= a(z) .

In a similar way, a 2-form θ on D/Γ corresponds to a 2-form Θ = π∗θ = c dz ∧ dz which is automorphic
in that

c(Tz)|T ′(z)|2 = c(z) for all T ∈ Γ and z ∈ D .

We can try to construct forms on D/Γ by producing automorphic forms as sums of series. If h : D → C
is smooth, then

h̃(z) =
∑
T∈Γ

h(T (z))

will be an automorphic 0-form provided that it converges suitably. Similarly,

h̃(z) =
∑
T∈Γ

h(T (z))T ′(z),

when it converges, gives an automorphic 1-form h̃ dz. These series are called Poincaré series. Typically
we take h to be a meromorphic or harmonic function which is 0 on the boundary ∂D.

16


	{2} {2  RIEMANN SURFACES} 
	2.1hskip 2emelax Definitions 
	Proposition 2.1.1
	1
	2
	3
	2.2hskip 2emelax Analytic functions. 
	Proposition 2.2.1
	Proposition 2.2.2
	Theorem 2.2.3
	2.3 hskip 2emelax Covering Surfaces. 
	4
	Proposition 2.3.1
	Theorem 2.3.2
	Proposition 2.3.3
	Theorem 2.3.4
	Theorem 2.3.5
	Theorem 2.3.6
	5
	6
	7
	8
	9
	2.4hskip 2emelax Differential forms 
	Proposition 2.4.1
	Proposition 2.4.2
	Proposition 2.4.3
	10
	11
	Theorem 2.4.4
	Theorem 2.4.5

