
11 COMPLEX ANALYSIS IN C

1.1 Holomorphic Functions

A domain Ω in the complex plane C is a connected, open subset of C. Let zo ∈ Ω and f a map
f : Ω → C. We say that f is real differentiable at zo if there is a real linear map T : C → C with

f(zo + w) = f(zo) + Tw + o(w) as w → 0.

T is the derivative of f at zo which we denote by f ′(zo). This real linear map can be expressed as

T : w 7→ λw + µw

for some complex numbers λ and µ. We shall write ∂f
∂z (zo) for λ and ∂f

∂z (zo) for µ. Note that these
are not actually partial derivatives although they do share many of the formal properties of partial
derivatives. We have

∂f

∂z
=

1
2

(
∂f

∂x
− i

∂f

∂y

)
;

∂f

∂z
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

If the map T = Df(zo) is complex linear then we say that f is complex differentiable at zo. The map
T will then be multiplication by a complex number which we call f ′(zo). Hence, a real differentiable
function f is complex differentiable at zo if, and only if, ∂f

∂z (zo) = 0 and then ∂f
∂z (zo) = f ′(zo). These

are the Cauchy- Riemann equations.

A map f : Ω → C is holomorphic if it is complex differentiable at each point of the domain Ω.
The collection of all such analytic maps from a domain Ω into C forms a vector space O(Ω). A map
g : Ω → Ω′ between two domains is conformal if it is analytic and has an analytic inverse. When such
a map g exists we say that the domains Ω and Ω′ are conformally equivalent .

Proposition 1.1.1

Let f : D → C be an analytic function and zo ∈ D. Either f is constant or there is a natural
number N ∈ {1, 2, 3, . . .} and a conformal map g : D → D′ from a neighbourhood U of zo in D to a
neighbourhood V of 0 with

f(z) = f(zo) + g(z)N for z ∈ U.

The number N is unique and is called the degree deg f(zo) of f at zo.

Proof:

Suppose that f is not constant. Then there must be a least N with f (N)(zo) 6= 0. The Taylor
expansion for f shows that

f(z) = f(zo) + (z − zo)Nh(z) for z ∈ Ω

for some analytic function h : D → C with h(zo) 6= 0. Since h is continuous there is a disc Uo about zo

with <(h(z)/h(zo)) > 0 for z ∈ Uo. So h has an analytic Nth root k : Ω → C. Then

f(z) = f(zo) + ((z − zo)k(z))N

so we can set g(z) = (z−zo)k(z). Now g(zo) = 0 and g′(zo) = k(zo) 6= 0 so the inverse function theorem
shows that there is a neighbourhood U of zo, contained in Uo, with g : U → V conformal. �

The critical points of a non-constant analytic function f : D → C are those zo where f ′(zo) = 0.
Because the zeros of f ′ are isolated, these form a discrete, and hence countable, subset of D. Note that
f ′(zo) = 0 if, and only if, deg f(zo) > 1.

We say that f : D → C is locally conformal if, for each point zo ∈ D, there are open, connected
neighbourhoods U of zo in D and V of f(zo) with f |U : U → V conformal. The previous proposition
shows that f is locally conformal if and only if deg f(zo) = 1 for every point zo ∈ D.
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Proposition 1.1.2

Let f : D → E, g : E → C be holomorphic functions. Then g ◦ f : D → C is holomorphic and

deg(g ◦ f)(zo) = deg f(zo).deg g(f(zo))

for each zo ∈ D.

Proof:

If we set M = deg f(zo) and N = deg g(f(zo)), then

f(z)− f(zo) = (z − zo)Mφ(z) and g(w)− g(f(zo)) = (w − f(zo))Nγ(w)

for holomorphic functions φ, γ with φ(zo) 6= 0 and γ(f(zo)) 6= 0. Therefore

g(f(z))−g(f(zo)) = (f(z)−f(zo))Nγ(f(z)) = ((z−zo)Mφ(z))Nγ(f(z)) = (z−zo)MN
(
φ(z)Nγ(f(z))

)
,

with φ(zo)Nγ(f(zo)) 6= 0. �

1.2 Locally Uniform Convergence

Let fn, f : Ω → C be functions on a domain Ω. We say that fn converges to f locally uniformly
on Ω if, for each zo ∈ Ω there is a neighbourhood U of zo in Ω with fn → f uniformly on U . Each
compact subset K of Ω is covered by finitely many such neighbourhoods so this will imply that fn → f
uniformly on K. Also, every neighbourhood in C contains a compact neighbourhood. Hence fn → f
locally uniformly on Ω if, and only if, fn → f uniformly on each compact subset of Ω.

An increasing sequence (Kn) of compact sets with union Ω is called a compact exhaustion of Ω. An
example is

Kn = {z ∈ Ω : |z| 6 n and |z − w| > 1
n for each w ∈ C \ Ω}.

The functions fn converge locally uniformly to f on Ω if, and only if, they converge uniformly on each
of the sets in a compact exhaustion of Ω. (* A Riemann surface also has a compact exhaustion but it is
very much harder to exhibit one. We will do so in the last chapter when we have proved the Riemann
mapping theorem. *)

The topology of locally uniform convergence is a metric topology:

Proposition 1.2.1

Let D be a domain in C. Then there is a topology on C(D) with fn → f for this metric if and only if
fn → f locally uniformly on D.

Proof:

Let (Kn) be a compact exhaustion of D and set

d(f, g) =
∑

2−n min (1, ||f − g||Kn
)

where
||h||K = sup{|h(z)| : z ∈ K} .

�

Locally uniform convergence is the “correct” type of convergence for analytic functions. Firstly, it
arises frequently in complex analysis. For example, the partial sums of a power series converge locally
uniformly on the open disc where the power series converges. Secondly we have:
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Proposition 1.2.2

Let Ω be a domain in C and fn : Ω → C a sequence of analytic functions which converge locally
uniformly to f : Ω → C. Then f is also analytic. Furthermore, the derivatives f ′n converge locally
uniformly to f ′.

Proof:

For zo ∈ Ω we can find a disc D = {z : |z − zo| 6 r} ⊂ Ω with fn → f uniformly on D. Then∫
γ

fn dz = 0 for any simple closed curve γ in D because of Cauchy’s theorem. The uniform convergence
on γ implies that

∫
γ

f dz = 0. Hence Morera’s theorem implies that f is analytic on D.

Cauchy’s representation theorem shows that

f ′n(w) =
1

2πi

∫
Γ

fn(z)
(z − w)2

dz

for |w − zo| < r and Γ the circle Γ : t 7→ zo + reit. Since fn → f uniformly on Γ we see that f ′n → f ′

uniformly on {w : |w − zo| 6 1
2r}. �

Recall the Arzela-Ascoli theorem:

Let K be compact and C(K) the Banach space of continuous functions f : K → C with the uniform
norm ||f ||∞ = sup(|f(z)| : z ∈ K). Then a subset F of C(K) is relatively compact (i.e. its closure is
compact) if, and only if,

(a) F is bounded : there exists c with ||f ||∞ < c for all f ∈ F .

(b) F is equicontinuous : for each zo ∈ K and ε > 0 there is a neighbourhood U of zo with

|f(z)− f(zo)| < ε for all f ∈ F and all z ∈ U.

We can use this to prove a similar characterization for relatively compact sets of analytic functions. For
a domain Ω we may give the vector space O(Ω) a topology – the topology of locally uniform convergence
– by taking the sets

{g ∈ O(Ω) : |g(z)− f(z)| < ε for all z ∈ K}

with K a compact subset of Ω and ε > 0, as a base for the neighbourhoods of f . Then fn → f in this
topology if, and only if, fn → f locally uniformly on Ω. A subset F of O(Ω) is called a normal family
if, for every compact subset K of Ω there is a constant cK with

|f(z)| 6 cK for all f ∈ F and all z ∈ K.

Theorem 1.2.3

A subset F of O(Ω) is relatively compact for the topology of locally uniform convergence if, and only
if, F is a normal family.

Proof:

Suppose that F is relatively compact. For any compact set K ⊂ Ω the restriction map

RK : O(Ω) → C(K) ; f 7→ f |K
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is continuous, so RK(F) is relatively compact. It must then certainly be bounded. So F is a normal
family.

Conversely, suppose that F is a normal family. Let K ⊂ Ω be compact and consider RK(F) ⊂
C(K). This is certainly bounded. For zo ∈ K find a closed disc D = {z ∈ C : |z − zo| 6 r} contained
in Ω. Since D is compact there is a constant cD which bounds each f ∈ F on D. By Cauchy’s
representation theorem

f(w) =
1

2πi

∫
γ

f(z)
z − w

dz

for |w − zo| < r and γ the circle γ : t 7→ zo + reit. Hence, if |w − zo| 6 1
2r, we have

|f(w)− f(zo)| =
∣∣∣∣ 1
2πi

∫
γ

f(z)
(

1
z − w

− 1
z − zo

)
dz

∣∣∣∣
6

1
2π

∫
γ

|f(z)|
∣∣∣∣ w − zo

(z − w)(z − zo)

∣∣∣∣ |dz|

6
1
2π

cD
|w − zo|

1
2r.r

2πr =
2cD|w − zo|

r

So RK(F) is equicontinuous and hence relatively compact by the Arzela-Ascoli theorem.

Finally observe that the definition of the topology of locally uniform convergence implies that the
mapping

O(Ω) →
∏

K⊂Ω

C(K) ; f 7→ (f |K)

is a homeomorphic embedding of O(Ω) into the product of C(K) over all compact subsets K of Ω. This
maps F into the product of the sets RK(F), which have just shown to be compact. By Tychonoff’s
theorem, F is relatively compact. �

1.3 Harmonic Functions

A function u : D → C on a domain D in C is harmonic if it is twice continuously differentiable and

4u =
∂2u

∂x2
+

∂2u

∂y2
= 4

∂2u

∂z∂z
= 0

on D. Hence, u is harmonic if, and only if, ∂u/∂z : D → C is holomorphic. It certainly follows that any
harmonic function is infinitely differentiable. Furthermore, if f : Ω′ → Ω is holomorphic and u : Ω → C
is harmonic, then u ◦ f : Ω′ → C is harmonic.

It is clear that any holomorphic function f is harmonic, as is its conjugate.

Proposition 1.3.1

Every harmonic function on a disc can be expressed as f + g for two holomorphic functions f, g on the
disc.

Proof:

We may assume that the disc is the unit disc D and that u : D → C is harmonic. Then ∂u/∂z is
holomorphic on D and so can be written as a power series:

∂u

∂z
=

∑
bnzn for z ∈ D .
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The conjugate u is also harmonic and so

∂u

∂z
=

(
∂u

∂z

)
=

∑
cnzn .

Let γ : [0, 1] → D be a smooth curve from 0 to a point z1 ∈ D. Then

u(z1)− u(0) =
∫ 1

0

d

dt
u(γ(t)) dt =

∫
γ

∂u

∂z
dz +

∫
γ

∂u

∂z
dz =

∑ bn

n + 1
zn+1 +

∑ cn

n + 1
zn+1 .

Thus there are two holomorphic functions f, g on D with u = f + g. �

Note that it is not true that every harmonic function on an arbitrary domain Ω is the sum f + g
for two holomorphic functions on Ω. For example, the function log |z| is harmonic on C \ {0} but can
not be expressed in this way.

When u : Ω → R is a real-valued harmonic function, then the Proposition shows that u is the real
part of a holomorphic function on any disc in Ω. Again, it need not be the real part of a holomorphic
function on all of Ω.

Let U : D(zo, R) → C be a harmonic function on a disc. Then Proposition 1.3.1 shows that

u(z) =
∞∑

n=0

an(z − zo)n +
−1∑

n=−∞
an(z − zo)n

for some coefficients (an). Hence

u(zo + reiθ) =
∞∑

n=−∞
anr|n|einθ .

The series converges uniformly on {z : |z − zo| = r} for any fixed r with 0 6 r < R. So

an = r−|n|
∫ 2π

0

u(zo + reiθ)e−inθ dθ

2π
.

In particular,

u(zo) = a0 =
∫ 2π

0

u(zo + reiθ)
dθ

2π
.

This is the mean value property for harmonic functions.

Proposition 1.3.2 Maximum principle for harmonic functions.

If the harmonic function u : Ω → R on the domain Ω ⊂ C has a local maximum (or a local minimum)
then it is constant.

Proof:

Suppose that u has a local maximum at zo. Then there is a disc ∆ containing zo with u(z) 6 u(zo)
for all z ∈ ∆. We have shown that there is an analytic function a : ∆ → C with u = < a. So
< a(z) 6 < a(zo) and this certainly implies that a is not an open mapping. Hence a must be constant,
and u must be constant on ∆.

The zeros of the analytic function ∂u
∂z are therefore not isolated, so it must be identically 0. Thus

u is constant on all of Ω. �
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We wish to study the local behaviour of harmonic functions, so we look in detail at harmonic
functions on the unit disc. Let

H(D) = {u : D → R : u is continuous and harmonic on D}.
This is clearly a vector space. We will give it the supremum norm ||u||∞ = sup(|u(z)| : z ∈ D). For
u ∈ H(D) the restriction Ru = u|∂D is in the space C(∂D) of continuous functions on the unit circle
and R : H(D) → C(∂D) is a continuous linear map. The maximum principle shows that R preserves the
norm. Conversely, for f ∈ C(∂D) define the Poisson integral Pf : D → R by Pf(z) = f(z) for z ∈ ∂D
and

Pf(z) =
∫ 2π

0

f(eiθ)
1− |z|2

|eiθ − z|2
dθ

2π
for z ∈ D.

We will prove that Pf ∈ H(D). The expression

1− |z|2

|eiθ − z|2
= <

(
eiθ + z

eiθ − z

)
is called the Poisson kernel for the disc.

Theorem 1.3.2 Poisson’s formula.

For each f ∈ C(∂D) the Poisson integral Pf is in H(D).

Proof:

For z ∈ D we have

Pf(z) = <
∫ 2π

0

f(eiθ)
(

eiθ + z

eiθ − z

)
dθ

2π
= < 1

2πi

∫
∂D

f(w)
w + z

(w − z)w
dw.

The integral certainly gives an analytic function on D so Pf is harmonic on D. To complete the proof
we need to show that Pf is continuous on D. Note also that when we take f ≡ 1 the above formula
gives

1 = P1(z) =
∫ 2π

0

1− |z|2

|eiθ − z|2
dθ

2π
(∗)

For 0 < r < 1 set fr(eiθ) = Pf(reiθ). Then each fr is continuous on the unit circle. It will suffice
to prove that fr → f uniformly as r ↗ 1. Equation (∗) shows that

|f(eiφ)− fr(eiφ)| =
∣∣∣∣∫ 2π

0

(f(eiφ)− f(eiθ))
1− r2

|eiθ − reiφ|2
dθ

2π

∣∣∣∣
6

∫ 2π

0

|f(eiφ)− f(eiθ)| 1− r2

|eiθ − reiφ|2
dθ

2π

Since ∂D is compact, f is uniformly continuous so, for ε > 0, there exists δ > 0 with |f(w1)−f(w2)| < ε
whenever |w1 − w2| < δ . If |w1 − w2| > δ (w1, w2 ∈ ∂D), then

1− r2

|w1 − rw2|2
6

1− r2

|(w1 − w2) + (1− r)w2|2
6

1− r2

(δ − (1− r))2

for 0 < r < 1. The right side of this tends to 0 as r ↗ 1 so there exists ro with

1− r2

|w1 − rw2|2
6 ε

whenever ro < r < 1 and |w1 − w2| > δ. Hence, for ro < r < 1 we obtain

|f(eiφ)− fr(eiφ)| 6
∫
|eiθ−eiφ|<δ

+
∫
|eiθ−eiφ|>δ

|f(eiφ)− f(eiθ)| 1− r2

|eiθ − reiφ|2
dθ

2π

6
∫
|eiθ−eiφ|<δ

ε
1− r2

|eiθ − reiφ|2
dθ

2π
+

∫
|eiθ−eiφ|>δ

2||f ||∞ ε
dθ

2π

6 ε + 2||f ||∞ε

Therefore, fr → f uniformly as r ↗ 1. �
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Theorem 1.3.3

The maps R : H(D) → C(∂D) and P : C(∂D) → H(D) are mutually inverse linear isometries.

Proof:

We have already seen that R is linear and preserves the norm. Also, P is linear with RP = I. So
R is surjective. Suppose that Ru1 = Ru2. Then the difference u = u1 − u2 ∈ H(D) is 0 on ∂D. By the
maximum (and minimum) principle, u is 0 on all of D. Thus R is bijective. Since RP = I we see that
P must be the inverse of R and P must be an isometry because R is. �

So, for any f ∈ C(∂D) there is an unique u ∈ H(D) whose restriction to the boundary is f . Moreover
u is given by the Poisson integral Pf . Therefore,

u(z) =
∫ 2π

0

u(eiθ)
1− |z|2

|eiθ − z|2
dθ

2π
(†)

for z ∈ D and any u ∈ H(D). A particularly important case is when z = 0 when we see that

u(0) =
∫ 2π

0

u(eiθ)
dθ

2π

which is the mean value of u over the unit circle. This shows that any harmonic function u on a domain
Ω has the mean value property:

u(z) =
∫ 2π

0

u(z + reiθ)
dθ

2π

whenever the disc {w : |w − z| 6 r} lies inside the domain Ω.

Corollary 1.3.4

If vn : Ω → R are harmonic functions on a domain Ω ⊂ C which converge locally uniformly to v : Ω → R
then v is also harmonic. Furthermore the derivatives ∂vn

∂z converge locally uniformly to ∂v
∂z .

Proof:

The theorem shows that H(D) is a Banach space isometric to C(∂D). Hence the uniform limit of
functions in H(D) is also in H(D). Hence, for any compact disc ∆ ⊂ Ω we have the limit v harmonic
on ∆.

Similarly any u ∈ H(D) satisfies (†) so we can differentiate to obtain

∂u

∂z
(z) =

∫ 2π

0

u(eiθ)
eiθ

(eiθ − z)2
dθ

2π
=

1
2πi

∫
∂D

u(w)
1

(w − z)2
dw.

It is now apparent that if the functions un ∈ H(D) converge uniformly to u on ∂D then ∂un

∂z converges
uniformly to ∂u

∂z on the disc {z ∈ D : |z| 6 1
2}. It follows, as above, that the derivatives of vn will

converge locally uniformly to the derivative of v on Ω. �

Theorem 1.3.5 Harnack’s inequality : differential form.

For a compact subset K of a domain Ω ⊂ C there is a constant c with∣∣∣∣∂u

∂z
(z)

∣∣∣∣ 6 cu(z) for z ∈ K

and for every positive, harmonic function u : Ω → R+.
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Proof:

Consider first the case when u ∈ H(D) and u is positive. Then, as we saw in the previous corollary,

∂u

∂z
(z) =

∫ 2π

0

u(eiθ)
eiθ

(eiθ − z)2
dθ

2π

Hence, for |z| 6 1
2 , we obtain∣∣∣∣∂u

∂z
(z)

∣∣∣∣ 6
∫ 2π

0

u(eiθ)
1

|eiθ − z|2
dθ

2π
6

4
3

∫ 2π

0

u(eiθ)
1− |z|2

|eiθ − z|2
dθ

2π
=

4
3
u(z).

Therefore, if ∆ = {z : |z − zo| 6 r} ⊂ Ω and ∆′ = {z : |z − zo| 6 1
2r}, we have∣∣∣∣∂u

∂z
(z)

∣∣∣∣ 6
4
3r

u(z)

for z ∈ ∆′ and any positive harmonic function on Ω. The compact set K is covered by a finite number
of discs like ∆′ so the inequality holds (with c = 4/3dist(K, C \ Ω)). �

Corollary 1.3.6 Harnack’s inequality.

For a compact subset K of a domain Ω ⊂ C there is a constant c with

u(z2) 6 cu(z1) for z1, z2 ∈ K

and for every positive, harmonic function u : Ω → R+.

Proof:

Let ∆ be an open disc whose closure lies in Ω. If z1, z2 ∈ ∆ then let γ be the straight line path
from z1 to z2. Since

d

dt
log u(γ(t)) =

1
u(γ(t))

(
∂u

∂z
(γ(t))γ′(t) +

∂u

∂z
(γ(t))γ′(t)

)
=

1
u(γ(t))

2<
(

∂u

∂z
(γ(t))γ′(t)

)
we can integrate to obtain

u(z2)
u(z1)

= 2<
∫

γ

1
u(z)

∂u

∂z
(z) dz 6 2< c length(γ)

for the constant c of the theorem. Thus u(z2) 6 c′u(z1) for c′ = 2c diameter(∆).

Any compact set K can be covered by a finite number of such discs ∆, so the inequality also holds
for K. �

Theorem 1.3.7 Harnack’s theorem.

If (un : Ω → R) is an increasing sequence of harmonic functions on a domain Ω ⊂ C then either
un(z) → +∞ as n →∞ at each point of Ω or else the functions un converge locally uniformly on Ω to
a harmonic function u : Ω → R.

Proof:

Let u(z) = sup(un(z)) ∈ R ∪ {+∞}. Then un(z) → u(z) as n →∞. For a compact subset K of Ω
we can apply Harnack’s inequality to the positive harmonic functions un − um for n > m to obtain

un(z)− um(z) 6 c (un(zo)− um(zo)) for z, zo ∈ K.

Consequently,
u(z)− um(z) 6 c (u(zo)− um(zo)).

Therefore, either u is +∞ at each point of Ω or else it is finite at each point. In the latter case we can
fix zo and observe that the above inequalities show that un(z) converges uniformly on K by comparison
with un(zo). Corollary 1.3.4 shows that the locally uniform limit of the un is itself harmonic. �
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