11 COMPLEX ANALYSIS IN C

1.1 Holomorphic Functions

A domain € in the complex plane C is a connected, open subset of C. Let z, € (2 and f a map
f:Q — C. We say that f is real differentiable at z, if there is a real linear map T : C — C with

f(zo +w) = f(20) + Tw + o(w) as w — 0.
T is the derivative of f at z, which we denote by f’(z,). This real linear map can be expressed as

T:w— A\w+ pw

for some complex numbers A and p. We shall write %(20) for A and %(zo) for . Note that these

are not actually partial derivatives although they do share many of the formal properties of partial

derivatives. We have
of 1 (of .0f o of 1 [of Of
wos(aea) o woa (@)
If the map T = Df(z,) is complex linear then we say that f is complex differentiable at z,. The map
T will then be multiplication by a complex number which we call f’(z,). Hence, a real differentiable
function f is complex differentiable at z, if, and only if, %(zo) = 0 and then %(zo) = f'(25). These

are the Cauchy- Riemann equations.

A map f : Q — C is holomorphic if it is complex differentiable at each point of the domain 2.
The collection of all such analytic maps from a domain €2 into C forms a vector space O(€2). A map
g : Q — Q between two domains is conformal if it is analytic and has an analytic inverse. When such
a map ¢ exists we say that the domains Q and Q' are conformally equivalent.

Proposition 1.1.1

Let f : D — C be an analytic function and z, € D. FEither f is constant or there is a natural
number N € {1,2,3,...} and a conformal map g : D — D’ from a neighbourhood U of z, in D to a
neighbourhood V' of 0 with

f(2) = f(zo) + g(2)N for z € U.

The number N is unique and is called the degree deg f(z,) of f at z,.
Proof:

Suppose that f is not constant. Then there must be a least N with f(N)(z,) # 0. The Taylor
expansion for f shows that

f(2) = f(z0) + (2 — 20) N (2) for z € O

for some analytic function h : D — C with h(z,) # 0. Since h is continuous there is a disc U, about z,
with R(h(z)/h(z,)) > 0 for z € U,. So h has an analytic Nth root k : Q@ — C. Then

F(2) = f(z0) + (= = 20)k(2)"

so we can set g(z) = (z—z,)k(2). Now g(2,) = 0 and ¢'(z,) = k(z,) # 0 so the inverse function theorem
shows that there is a neighbourhood U of z,, contained in U,, with g : U — V conformal. (]

The critical points of a non-constant analytic function f : D — C are those z, where f'(z,) = 0.
Because the zeros of f’ are isolated, these form a discrete, and hence countable, subset of D. Note that
f'(z0) = 0 if, and only if, deg f(z,) > 1.

We say that f : D — C is locally conformal if, for each point z, € D, there are open, connected
neighbourhoods U of z, in D and V of f(z,) with f|y : U — V conformal. The previous proposition
shows that f is locally conformal if and only if deg f(z,) = 1 for every point z, € D.

1



Proposition 1.1.2

Let f: D — FE, g: E — C be holomorphic functions. Then go f : D — C is holomorphic and

deg(g o f)(20) = deg f(2,).deg g(f(2,))

for each z, € D.
Proof:
If we set M = deg f(z,) and N = deg g(f(2,)), then
F(2) = f(z0) = (2 = 2)M¢(2)  and  g(w) = g(f(2)) = (w — f(20))"y(w)
for holomorphic functions ¢,y with ¢(z,) # 0 and v(f(2,)) # 0. Therefore
9(f(2)) = 9(f(20)) = (f(2) = f(zo)) V(£ (2)) = (2= 20) M D(2) V1 (f(2)) = (2= 20) "™ (6(2)V1(f(2)))
with ¢(20)¥v(f(20)) # 0. O

1.2 Locally Uniform Convergence

Let fn, f: Q — C be functions on a domain 2. We say that f,, converges to f locally uniformly
on ) if, for each z, € € there is a neighbourhood U of z, in Q with f, — f uniformly on U. Each
compact subset K of  is covered by finitely many such neighbourhoods so this will imply that f,, — f
uniformly on K. Also, every neighbourhood in C contains a compact neighbourhood. Hence f, — f
locally uniformly on € if, and only if, f,, — f uniformly on each compact subset of 2.

An increasing sequence (K,,) of compact sets with union {2 is called a compact exhaustion of Q. An
example is
K,={z€Q:|z]<nand |z —w| > 1 for each w € C\ Q}.

The functions f,, converge locally uniformly to f on € if, and only if, they converge uniformly on each
of the sets in a compact exhaustion of Q. (* A Riemann surface also has a compact exhaustion but it is
very much harder to exhibit one. We will do so in the last chapter when we have proved the Riemann
mapping theorem. *)

The topology of locally uniform convergence is a metric topology:

Proposition 1.2.1

Let D be a domain in C. Then there is a topology on C(D) with f,, — [ for this metric if and only if
fn — [ locally uniformly on D.

Proof:

Let (K,,) be a compact exhaustion of D and set

d(fv g) = 22771 min (15 ||f - gHKn)

where

1Ml = sup{[(z)] : z € K} .
O

Locally uniform convergence is the “correct” type of convergence for analytic functions. Firstly, it
arises frequently in complex analysis. For example, the partial sums of a power series converge locally
uniformly on the open disc where the power series converges. Secondly we have:
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Proposition 1.2.2

Let Q) be a domain in C and f, : Q — C a sequence of analytic functions which converge locally
uniformly to f : Q@ — C. Then f is also analytic. Furthermore, the derivatives f! converge locally
uniformly to f’.

Proof:

For z, € Q we can find a disc D = {z : |z — 2,| < r} C Q with f,, — f uniformly on D. Then
fv fn dz = 0 for any simple closed curve v in D because of Cauchy’s theorem. The uniform convergence

on v implies that f7 f dz = 0. Hence Morera’s theorem implies that f is analytic on D.

Cauchy’s representation theorem shows that

/ 1 In(2)
futw) = 3 [ 2 e

for |{w — 2,| < r and T the circle ' : t — z, + re'’. Since f,, — f uniformly on I' we see that f/, — f
uniformly on {w : |w — z,| < ir}. O

Recall the Arzela-Ascoli theorem:
Let K be compact and C(K) the Banach space of continuous functions f : K — C with the uniform
norm || f|leo = sup(|f(2)| : z € K). Then a subset F of C(K) is relatively compact (i.e. its closure is
compact) if, and only if,
(a) F is bounded : there exists ¢ with ||f||co < ¢ for all f € F.

(b) F is equicontinuous : for each z, € K and e > 0 there is a neighbourhood U of z, with

1f(2) = f(z0)| <€ forall f€F andall ze€ U.

We can use this to prove a similar characterization for relatively compact sets of analytic functions. For
a domain € we may give the vector space O(€2) a topology — the topology of locally uniform convergence
— by taking the sets

{g€0(Q):|g(z) — f(z)] <eforall z€ K}

with K a compact subset of Q2 and € > 0, as a base for the neighbourhoods of f. Then f,, — f in this
topology if, and only if, f,, — f locally uniformly on . A subset F of O(Q) is called a normal family
if, for every compact subset K of ) there is a constant cx with

[f(2)| < ek forall f € F andall z € K.

Theorem 1.2.3

A subset F of O(Q) is relatively compact for the topology of locally uniform convergence if, and only
if, F is a normal family.

Proof:
Suppose that F is relatively compact. For any compact set K C {2 the restriction map
Rk :0(Q) = C(K) ; [~ flx
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is continuous, so R (F) is relatively compact. It must then certainly be bounded. So F is a normal
family.

Conversely, suppose that F is a normal family. Let K C Q be compact and consider Ry (F) C
C(K). This is certainly bounded. For z, € K find a closed disc D = {z € C : |z — z,| < r} contained
in Q. Since D is compact there is a constant ¢p which bounds each f € F on D. By Cauchy’s

representation theorem
1
fw) = 5 [ Lo
5

211 Z—w

for |w — 2,| < r and ~ the circle v : t — 2z, + re'’. Hence, if |w — z,| < 3r, we have

1 1 1
%i[yf(z)<z—w_z—zo> dz

1F(2)] | —e

(z—w)(z — 20)
]- — %o 2 — %o
|w1 z |27T7’ _ eplw — 2|

2m 5T.T r

[f(w) = f(z0)] =

|dz|

N

/
|

o

o)

So Rk (F) is equicontinuous and hence relatively compact by the Arzela-Ascoli theorem.

Finally observe that the definition of the topology of locally uniform convergence implies that the
mapping
o) — [] ct) + f(flx)

KCQ

is a homeomorphic embedding of O(€?) into the product of C'(K') over all compact subsets K of Q. This
maps F into the product of the sets Ry (F), which have just shown to be compact. By Tychonoff’s
theorem, F is relatively compact. O

1.3 Harmonic Functions

A function v : D — C on a domain D in C is harmonic if it is twice continuously differentiable and

0%u 0% 0%u

Au=5m T ap T 45 T

0

on D. Hence, u is harmonic if, and only if, Ou/dz : D — C is holomorphic. It certainly follows that any
harmonic function is infinitely differentiable. Furthermore, if f : " — € is holomorphic and u :  — C
is harmonic, then wo f: Q" — C is harmonic.

It is clear that any holomorphic function f is harmonic, as is its conjugate.

Proposition 1.3.1

Every harmonic function on a disc can be expressed as f + g for two holomorphic functions f,g on the
disc.

Proof:

We may assume that the disc is the unit disc D and that « : D — C is harmonic. Then du/dz is
holomorphic on D and so can be written as a power series:

0
a—u:anz" for zeD.
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The conjugate w is also harmonic and so

ou ou —

Let 7 : [0,1] — D be a smooth curve from 0 to a point z; € D. Then

Ld du du b - & .
- = [ Zu(y@)dt= | =—d —dz=) Ll n_antl
u(z1) — u(0) /O () Tt Em T ZHIZ + D

Thus there are two holomorphic functions f,g on D with v = f + 3. |

Note that it is not true that every harmonic function on an arbitrary domain 2 is the sum f+ ¢
for two holomorphic functions on €. For example, the function log |z| is harmonic on C\ {0} but can
not be expressed in this way.

When v : 2 — R is a real-valued harmonic function, then the Proposition shows that u is the real
part of a holomorphic function on any disc in 2. Again, it need not be the real part of a holomorphic
function on all of Q.

Let U : D(z,, R) — C be a harmonic function on a disc. Then Proposition 1.3.1 shows that

-1

u(z) = Z an(z — 2zo)" + Z an(z — 2zo)"
n=0

n=—oo

for some coefficients (a,,). Hence

oo
u(zo 4 re'?) = E anr™em?

n=—oo

The series converges uniformly on {z : |z — z,| = r} for any fixed r with 0 < r < R. So

27
. o df
Uy, = T*|”|/ u(zo + re®)em0 —
0 2m
In particular,
2m

0\ df
U(ZO) =ag = / ’U,(ZO + 7“610) - .

0 271—

This is the mean value property for harmonic functions.

Proposition 1.3.2 Maximum principle for harmonic functions.

If the harmonic function u : @ — R on the domain Q C C has a local maximum (or a local minimum)
then it is constant.

Proof:

Suppose that u has a local maximum at z,. Then there is a disc A containing z, with u(z) < u(z,)
for all z € A. We have shown that there is an analytic function @ : A — C with u = R a. So
R a(z) < R a(z,) and this certainly implies that a is not an open mapping. Hence a must be constant,
and u must be constant on A.

The zeros of the analytic function % are therefore not isolated, so it must be identically 0. Thus
u is constant on all of Q. O



We wish to study the local behaviour of harmonic functions, so we look in detail at harmonic
functions on the unit disc. Let

H(D) = {u:D — R : u is continuous and harmonic on D}.

This is clearly a vector space. We will give it the supremum norm ||u||sc = sup(|u(z)| : z € D). For
u € H(D) the restriction Ru = u|dD is in the space C(9D) of continuous functions on the unit circle
and R : H(D) — C(9D) is a continuous linear map. The maximum principle shows that R preserves the
norm. Conversely, for f € C(0D) define the Poisson integral Pf : D — R by Pf(z) = f(z) for z € oD

and
27
Pf(z) = / £(e)

We will prove that Pf € H(D). The expression

1—z2 -~ e +2
e — 2|2 e _

is called the Poisson kernel for the disc.

1— 1z db

m% fOI'ZG]D).

Theorem 1.3.2 Poisson’s formula.
For each f € C(0D) the Poisson integral Pf is in H(D).
Proof:

For z € D we have
27 6
- e +z\ do 1 w+ z
P =R i - — =R— — dw.
/) 0 J(eT) <e’9 — z) 27 270 /(m J(w) (w— 2)w v
The integral certainly gives an analytic funciion on D so Pf is harmonic on . To complete the proof
we need to show that Pf is continuous on ID. Note also that when we take f = 1 the above formula

gives
27 1— 2
1= Pl1(2) :/ Al db (*)
0

e — 2|2 o

For 0 < r < 1set f.(e??) = Pf(re??). Then each f, is continuous on the unit circle. It will suffice
to prove that f, — f uniformly as r 1. Equation (x) shows that

‘ _ 2m , , 1—r2  db
1) = fe) = | [ G = 1) s
1—r2 df

27
</O (') — f(e”)] [0 — 792 21
Since 9D is compact, f is uniformly continuous so, for € > 0, there exists ¢ > 0 with |f(w1) — f(w2)| < &
whenever |wy; —ws| <6 . If Jwy —ws| =8 (w1, ws € ID), then
1—7r? 1—r? < 1—7?
lwy = rwa?  [(wr —wa) + (1= r)wal? = (6~ (1—7))?
for 0 < r < 1. The right side of this tends to 0 as r /1 so there exists r, with
1—r?

|wy — rws|?

€

whenever 7, < r < 1 and |w; —ws| > ¢. Hence, for r, < r < 1 we obtain
1—7r2 df

F(e®) = fr(e” </ +/ FEe?) = 1) ———=775 7=
(€)= fr(e")] s ‘ew_ewwl () = 1N g —emop 2x

</ 1—r2 do + / 2/|£]] do
S E—FF7F — g —
it —eid| <6 |619 — T€’¢|2 27 it —ei®|>5 < on

< e+ 2[|flloce
Therefore, f, — f uniformly asr 1. O



Theorem 1.3.3
The maps R : H(D) — C(9D) and P : C(0D) — H(D) are mutually inverse linear isometries.
Proof:

We have already seen that R is linear and preserves the norm. Also, P is linear with RP = I. So
R is surjective. Suppose that Ru; = Rus. Then the difference u = u; — us € H(D) is 0 on dD. By the
maximum (and minimum) principle, v is 0 on all of D. Thus R is bijective. Since RP = I we see that
P must be the inverse of R and P must be an isometry because R is. O

So, for any f € C(0D) there is an unique u € H (D) whose restriction to the boundary is f. Moreover
u is given by the Poisson integral Pf. Therefore,

27 ) o 2
ue) = [ ey o (n

for z € D and any u € H(D). A particularly important case is when z = 0 when we see that

o) = [ ute) 3

which is the mean value of u over the unit circle. This shows that any harmonic function « on a domain

() has the mean value property:

dé

2m
u(z) = /0 u(z 4 re) %

whenever the disc {w : |w — z| < r} lies inside the domain €.

Corollary 1.3.4

If v, : Q@ — R are harmonic functions on a domain €2 C C which converge locally uniformly tov : Q@ — R
then v is also harmonic. Furthermore the derivatives ‘?—; converge locally uniformly to %.

Proof:

The theorem shows that H (D) is a Banach space isometric to C(9D). Hence the uniform limit of
functions in H(D) is also in H(D). Hence, for any compact disc A C Q we have the limit v harmonic
on A.

Similarly any v € H(D) satisfies (1) so we can differentiate to obtain
ou o et do 1 1
—(2) = e — = — —— dw.
0z () /0 u(e”) (e —2)2 21 2mi Jop u(w) (w— 2)? v

It is now apparent that if the functions w,, € H(D) converge uniformly to u on 9D then 38% converges

uniformly to % on the disc {z € D : |2| < 1}. It follows, as above, that the derivatives of v, will

converge locally uniformly to the derivative of v on €. O

Theorem 1.3.5 Harnack’s inequality : differential form.

For a compact subset K of a domain 2 C C there is a constant ¢ with

Ou ‘ < cu(z) for z € K

—(z
5, (%)
and for every positive, harmonic function u : Q — RT.
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Proof:

Consider first the case when u € H(ID) and w is positive. Then, as we saw in the previous corollary,

ou o et do
5=, M G
Hence, for |z| < 5, we obtain

au mo 1 o 4 [ o 1—|z> do 4
il < iy~ T2 iy ——1F 27 Zy(2).
0z (2) /0 u(e”) et — 2|2 27 3/0 u(e”) et — 2|2 27 SU(Z)

Therefore, if A ={z: |z — z,| <r} C Qand A" = {z: [z — 2| < 37}, we have

ou 4

- < —

’5‘2(2)‘ = 3Tu(z)
for z € A’ and any positive harmonic function on Q. The compact set K is covered by a finite number
of discs like A’ so the inequality holds (with ¢ = 4/3dist(K,C \ Q)). O

Corollary 1.3.6 Harnack’s inequality.

For a compact subset K of a domain €2 C C there is a constant ¢ with
u(ze) < cu(zy) for z1,20 € K

and for every positive, harmonic function u : Q — R7T.
Proof:

Let A be an open disc whose closure lies in Q. If 21,25 € A then let v be the straight line path
from z7 to z9. Since

Gosu(0) = e (GEOWN @) + F00T0)

1 Ju ,
~a? (Frer)

we can integrate to obtain

/ B 8 dz < 2R ¢ length(v)
for the constant ¢ of the theorem. Thus u(z2) < c'u(z1) for ¢ = 2¢ diameter(A).

Any compact set K can be covered by a finite number of such discs A, so the inequality also holds
for K. (I

Theorem 1.3.7 Harnack’s theorem.

If (u, : @ — R) is an increasing sequence of harmonic functions on a domain @ C C then either
un(z) — 400 as n — oo at each point of Q or else the functions u,, converge locally uniformly on ) to
a harmonic function u :  — R.

Proof:

Let u(z) = sup(un(2)) € RU {+o00}. Then u,(z) — u(z) as n — oco. For a compact subset K of )
we can apply Harnack’s inequality to the positive harmonic functions u,, — u,, for n > m to obtain
Un(2) — um(2) < ¢ (un(20) — um(2o)) for z, z, € K.
Consequently,
w(z) — um(2) < ¢ (u(z0) — um(20)).
Therefore, either u is 400 at each point of € or else it is finite at each point. In the latter case we can

fix z, and observe that the above inequalities show that u,(z) converges uniformly on K by comparison
with u,(2,). Corollary 1.3.4 shows that the locally uniform limit of the w,, is itself harmonic. O
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