
GEOMETRY AND GROUPS
TKC Michaelmas 2006

Sample Section I questions

The Faculty asks that questions in Section I of the Part II examinations are straightforward. They
should test your knowledge of the course and not involve significant unseen problems to be solved. I
consider the questions below to be appropriate. They have been chosen to cover different aspects of the
lectures.

However, these sample questions have not been considered and moderated by examiners.

At the end of this paper are copies of the examination questions that were actually set in previous
years (2005, 2006).

1. Show that a map T : R2 → R2 is an isometry for the Euclidean metric on the plane R2 if and only
if there is a vector v ∈ R2 and an orthogonal linear map B ∈ O(2) with

T (x) = B(x) + v for all x ∈ R2 .

When T is an isometry with detB = −1, show that T is either a reflection or a glide reflection.
2. A finite group G consists entirely of orientation preserving isometries of Euclidean 3-space. Show

that either there is a straight line ` which each element of G maps onto itself, or else G is the group
of all orientation preserving symmetries of one of the Platonic solids. (You may assume that the
Platonic solids exist and use any properties of them that you wish.)

3. Define a lattice in R2. Show that such a lattice is either {0}, or Zw1, or Zw1 + Zw2 for a pair
w1,w2 of linearly independent vectors.

4. Explain what a frieze pattern is and prove that there are exactly 7 distinct symmetry group of
frieze patterns.

5. What is a 2-dimensional Euclidean crystallographic group? For such a group define the correspond-
ing lattice and point group.
Prove that a non-trivial rotation in the point group of a 2-dimensional Euclidean crystallographic
group must have order 2, 3, 4 or 6.

6. Prove that a Möbius transformation is an isometry of the Riemann sphere for the chordal metric if
and only if it can be represented as

z 7→ az + b

cz + d

for some special unitary matrix

M =
(

a b
c d

)
∈ SU(2) .

7. A non-identity Möbius transformation

T : z 7→ az + b

cz + d

has ad− bc = 1. Show that the trace a + d determines the conjugacy class of T .
8. Define inversion in a circle Γ on the Riemann sphere. Show from your definition that inversion in

Γ exists and is unique for each circle Γ.
Prove that every Möbius transformation of the Riemann sphere is the composition of an even
number of inversions.

9. Define the hyperbolic metric on the unit disc D and describe the geodesics for this metric. Show
that inversion in a circle Γ is an isometry for the hyperbolic metric on D if and only if Γ is a circle
orthogonal to the unit circle ∂D.

10. Show that a loxodromic Möbius transformation can never map the unit disc onto itself. Can a
loxodromic transformation ever map the unit circle onto itself?
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11. Define the modular group acting on the upper half-plane R2
+. Show that the set

{z = x + iy ∈ R2
+ : − 1

2 < x < 1
2 and |z| > 1} ,

together with part of its boundary, is a fundamental set for the modular group.
12. Define hyperbolic 3-space. Explain carefully how a Möbius transformation can be extended to give

an isometry of hyperbolic 3-space. Your explanation should include a proof that the extension of
each Möbius transformation is unique.

13. Explain briefly how Möbius transformations of the Riemann sphere are extended to give isometries
of the unit ball B3 ⊂ R3 for the hyperbolic metric. Show that every orientation preserving isometry
of the hyperbolic metric on B3 is an extension of a Möbius transformation.

14. Let H3 be the unit ball in R3 with the hyperbolic metric. A Möbius transformation R is an
involution if R2 = I. Describe how such an involution acts on H3. Describe the set of points of H3

fixed by the involution R.
Prove that every Möbius transformation can be expressed as the composition of two involutions.
Are these two involutions unique?

15. Define a Kleinian group. Prove that every finite Kleinian group is conjugate to a subgroup of the
special orthogonal group SO(3).

16. What does it mean for a group G of Möbius transformations to act discontinuously on hyperbolic
3-space H3? Show that G acts discontinuously on H3 if and only if G is a discrete group.

17. Define the limit set of a Kleinian group. Prove from your definition that the limit set depends only
on the group.

18. Define the Cantor set and prove carefully that its Hausdorff dimension is log 2/ log 3.
19. Define the Schottky group corresponding to K pairs of discs all of which are disjoint. Explain why

this Schottky group is a free group.
20. Define Schottky groups. Explain how a Schottky group can be though of as acting on either

the Riemann sphere or on hyperbolic 3-space. Identify, up to homeomorphism, the quotient of
hyperbolic 3-space by a Schottky group.

Paper 1, Section I, Question 3, 2005
Let G be a subgroup of the group of isometries Isom(R2) of the Euclidean plane. What does it mean
to say that G is discrete?

Supposing that G is discrete, show that the subgroup GT of G consisting of all translations in G
is generated by translations in at most two linearly independent vectors in R2. Show that there is a
homomorphism G → O(2) with kernel GT .

Draw, and briefly explain, pictures which illustrate two different possibilities for G when GT is
isomorphic to the additive group Z.

Paper 1, Section II, Question 12, 2005
(This is on material not covered in 2006-2007.)
What is the limit set of a subgroup G of Möbius transformations?

Suppose that G is complicated and has no finite orbit in C ∪ {∞}. Prove that the limit set of G is
infinite. Can the limit set be countable?

State Jørgensen’s inequality, and deduce that not every two-generator subgroup G = 〈A,B〉 of
Möbius transformations is discrete. Briefly describe two examples of discrete two-generator subgroups,
one for which the limit set is connected and one for which it is disconnected.

Paper 2, Section I, Question 3, 2005
Describe the geodesics in the disc model of the hyperbolic plane H2.
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Define the area of a region in H2. Compute the area A(r) of a hyperbolic circle of radius r from
the definition just given. Compute the circumference C(r) of a hyperbolic circle of radius r, and check
explicitly that dA(r)/dr = C(r).

How could you define π geometrically if you lived in H2? Briefly justify your answer.

Paper 3, Section I, Question 3, 2005
By considering fixed points in C ∪ {∞}, prove that any complex Möbius transformation is conjugate
either to a map of the form z 7→ kz for some k ∈ C or to z 7→ z + 1. Deduce that two Möbius
transformations g,h (neither the identity) are conjugate if and only if tr2(g) = tr2(h).

Does every Möbius transformation g also have a fixed point in H3? Briefly justify your answer.

Paper 4, Section I, Question 3, 2005
Show that a set F ⊂ Rn with Hausdorff dimension strictly less than one is totally disconnected.

What does it mean for a Möbius transformation to pair two discs? By considering a pair of disjoint
discs and a pair of tangent discs, or otherwise, explain in words why there is a 2-generator Schottky
group with limit set Λ ⊂ S2 which has Hausdorff dimension at least 1 but which is not homeomorphic
to a circle.

Paper 4, Section II, Question 12, 2005
For real s > 0 and F ⊂ Rn, give a careful definition of the s-dimensional Hausdorff measure of F and
of the Hausdorff dimension dimH(F ) of F .

For 1 6 i 6 k, suppose Si : Rn → Rn is a similarity with contraction factor ci ∈ (0, 1). Prove
there is a unique non-empty compact invariant set I for the {Si}. State a formula for the Hausdorff
dimension of I, under an assumption on the Si you should state.

Hence show the Hausdorff dimension of the fractal F given by iterating the scheme below (at each
stage replacing each edge by a new copy of the generating template) is dimH(F ) = 3/2.
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Paper 1, Section I, Question 3, 2006
Suppose Si : Rn → Rn is a similarity with contraction factor ci ∈ (0, 1) for 1 6 i 6 k. Let X be the
unique non-empty compact invariant set for the Si’s. State a formula for the Hausdorff dimension of
X, under an assumption on the Si’s you should state. Hence compute the Hausdorff dimension of the
subset X of the square [0, 1]2 defined by dividing the square into a 5× 5 array of squares, removing the
open middle square (2/5, 3/5)2, then removing the middle 1/25th of each of the remaining 24 squares,
and so on.

Paper 1, Section II, Question 12, 2006
Compute the area of the ball of radius r around a point in the hyperbolic plane. Deduce that, for any
tessellation of the hyperbolic plane by congruent, compact tiles, the number of tiles which are at most
n “steps” away from a given tile grows exponentially in n. Give an explicit example of a tessellation of
the hyperbolic plane.

Paper 2, Section I, Question 3, 2006
Determine whether the following elements of PSL2(R) are elliptic, parabolic, or hyperbolic. Justify your
answers. (

5 8
−2 −3

)
,

(
−3 1
2 −1

)
.
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In the case of the first of these transformations find the fixed points.

Paper 3, Section I, Question 3, 2006
Let G be a discrete subgroup of the Möbius group. Define the limit set of G in S2. If G contains two
loxodromic elements whose fixed point sets in S2 are different, show that the limit set of G contains no
isolated points.

Paper 4, Section I, Question 3, 2006
What is a crystallographic group in the Euclidean plane? Prove that, if G is crystallographic and g is
a nontrivial rotation in G, then g has order 2, 3, 4, or 6.

Paper 4, Section II, Question 12, 2006
Let G be a discrete subgroup of PSL2(C). Show that G is countable. Let G = {g1, g2, . . .} be some
enumeration of the elements of G. Show that for any point p in hyperbolic 3-space H3, the distance
dhyp(p, gn(p)) tends to infinity. Deduce that a subgroup G of PSL2(C) is discrete if and only if it acts
properly discontinuously on H3.
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